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Chapter 37Chapter 37 Relativity

 RelativityRelativity: the field of study that measures events: where and when they 
happen, and by how much any 2 events are separated in space and in time.

 Relativity has to do with transforming such measurements between reference 
frames that move relative to each other.

 In 1905, Albert Einstein published his special relativity. “special” means that 
the theory deals only with inertial frames, in which Newton’s laws are valid.

 Entangled: Einstein demonstrated that space and time are entangled; that is, 
the time between 2 events depends on how far apart they occur, and vice versa. 
Also, the entanglement is different for observers who move relative to each other. 

 One result is that time does not pass at a fixed rate, instead, that rate is 
adjustable: Relative motion can change the rate at which time passes. 

 Any engineer involved with the Global Positioning System (GPS) must routinely 
use relativity (both special relativity and general relativity) to determine the rate 
at which time passes on the satellites because that rate differs from the rate on 
Earth’s surface. If the engineers failed to take relativity into account, GPS would 
become almost useless in less than one day.

Simultaneity and Time Dilation



  

The PostulatesThe Postulates
 examine the 2 postulates of relativity, on which Einstein’s theory is based:

1. The Relativity Postulate: The laws of physics are the same for observers in 
all inertial reference frames. No one frame is preferred over any other.

 Galileo assumed that the laws of mechanics were the same in all inertial frames. 

Einstein extended that idea to include all the laws of physics, especially those of 
electromagnetism and optics.

 This postulate does not say that the measured values of all physical quantities 
are the same for all inertial observers; It is the laws of physics, which relate 
these measurements to one another, that are the same.

2. The Speed of Light Postulate: The speed of light in vacuum has the same 
value c in all directions and in all inertial reference frames.

 So there is in nature an ultimate speed c, the same in all directions and in all 
inertial reference frames. Light happens to travel at this ultimate speed.

 No entity that carries energy or information can exceed this limit. Moreover, no 
particle that has mass can actually reach speed c, no matter how much or for 
how long that particle is accelerated.



  

The Ultimate Speed
 The existence of a limit to the speed of 

accelerated electrons was shown in a 1964
experiment. As the force on a fast electron 
is increased, the electron’s kinetic energy 
increases toward very large values but its 
speed does not increase appreciably.

 This ultimate speed has been defined to 
be exactly

Testing the Speed of Light Postulate
 If the speed of light is the same in all inertial frames, 

then the speed of light emitted by a source moving relative to a lab should be the 
same as the speed of light emitted by a source at rest in the lab.

 The light source was the neutral pion π0, an unstable, short-lived particle that 
can be produce. It decays into 2 gamma rays by the process

 In 1964, physicists at CERN generated a beam of π0’s moving at a speed of 
0.99975c to the lab. The experimenters measured the speed of the gamma rays 
emitted from these very rapidly moving sources. They found that the speed of the 
light emitted by the π0’s was the same as it would be if the π0’s were at rest in the 
lab, namely c.

π
0
 γ+γ

c=299792458  m /s



  

Measuring an EventMeasuring an Event
 An event is something that happens, and every event can be 

assigned 3 space coordinates and 1 time coordinate: (1) turn 
on/off a light (2) an explosion (3) the collision of 2 particles 
(4) light passes a specific point (5) etc

 Because space & time are entangled with each other in relativity, we can 
describe these coordinates collectively as spacetime coordinates.

 In general, different observers will assign different spacetime coordinates to 
the same event.

 Travel Times: suppose a balloon bursts 1 km to your right while a firecracker 
pops 2 km to your left, both at 9 am. Because light from the firecracker pop has 
farther to go, it arrives at your eyes later than does light from the balloon burst, 
and thus the pop will seem to have occurred later than the burst.

 To sort out the actual times, we construct an imaginary array of measuring rods 
& clocks throughout the observer’s inertial frame. This construction allows us to 
find the coordinates, as follows:

1. The Space Coordinates: Imagine the observer’s coordinate system fitted
with a close-packed, 3D array of measuring rods, one set of rods parallel to each 
of the 3 coordinate axes. These rods provide a way to determine coordinates 
along the axes. The observer needs only read the 3 space coordinates to locate 
the position of an event.



  

2. The Time Coordinate: Imagine every 
point of intersection in the array of rods 
includes a clock, illuminated by the light by 
the event.

 The array of clocks must be synchronized 
properly. We don’t know whether moving the 
clocks will change their rates. (Actually, it 
will.) We must put the clocks in place and 
then synchronize them.

 We choose light to send out our synchronizing signals because light travels at 
the greatest possible speed, the limiting speed c.

 The observer sends out a pulse of light when the origin clock reads t=0. When 

the light pulse reaches the location of a clock, it is set to t=r/c.

3. The Spacetime Coordinates: The observer can now assign spacetime 
coordinates to an event by simply recording the time on the clock nearest the 
event and the position as measured on the nearest measuring rods.

 If there are 2 events, the observer computes their time separation as the time 
difference on clocks near each and their space separation from the coordinate 
differences on rods near each. We thus avoid the practical problem of calculating 
the travel times of the signals to the observer from the events.



  

The Lorentz Transformation
 We claim that the y and z coordinates, 

which are perpendicular to the motion, 
are not affected by the motion

Galilean Transformation Equations
 Before Einstein, the 4 coordinates were 

related by the Galilean transformation 
equations:

 The 2nd equation effectively claims that time passes at the same rate for 
observers in both reference frames.

The Lorentz Transformation Equations
 The equations above work well when v is small compared to c, but they are  

incorrect when v is greater than about 0.1 c.

 The equations that are correct for any physically possible speed are called the 
Lorentz transformation equations.

 The equations can be derived from the postulates of relativity, they will be 
showed in an auxiliary page.

x ' = x−v t Galilean transformation equations,
t ' = t approximately valid at low speeds.

y ' = y , z ' = z



  

c=c ' ⇒ 0=c2
(t2 − t 1 )

2
−( x2 − x1 )

2
−( y2 − y1 )

2
−(z2 − z1 )

2

=c2
(t '2− t '1)

2
−(x '2− x '1)

2
−(y '2− y '1)

2
−(z '2− z '1)

2 for light

⇒ define an (infinitesimal) interval d s2
=c2 d t 2

−d x2
−d y2

−d z2  for 2 events

⇒ d s2
=d s '2

⇐ d s '2
= a (v) d s2 , d s2

=a (v) d s '2
⇒ a=± 1 ⇒ a=1

Moves along x -axis ⇒ d y=d y ' , d z =d z ' ⇒ c2 d t 2
−d x2

=c2 d t '2
−d x '2

{d x ' = A (d x −v d t ) generalized Galilean
transformation

d t ' = B d t + D d x
⇒

A= B=± γ

D=−
β

c
B

⇐ d s2
=d s '2

Choose +  for v  approaching 0 continuously.

⇒ {
c d t ' =γ (c d t −β d x )

d x ' =γ ( d x −β c d t)
d y ' = d y
d z ' = d z

⇐ β=
v
c

, γ=
1

√1−β
2
=

1

√1−v2
/ c2



  

d s2
=d s '2

⇒ c2 d t2
−d x2

=c2 d t '2
−d x '2

⇐ d y=d y ' , d z=d z '

⇒ c2 d t2
−d x2

=c2
(B d t + D d x )

2
− A2

(d x−v d t )2

=(c2 B2
− A2 v2

) d t2
+2 (c2 B D + A2 v) d t d x −(A2

−c2 D2
) d x2

⇒
B2

−β
2 A2

=1
c B D+ A2

β=0
A2

−c2 D2
=1

⇒ A2
=−

c
β

B D ⇒
B (B+ c β D)=1

−
c
β

D (B+ c β D)=1

⇒ D=−
β

c
B ⇒ B2

(1−β
2
)=1 ⇒ B=± γ ⇒ A2

= B2
⇒ A=± γ



  

 

 This entanglement of space & time are showed in the 1st and the last equations.

 It is a formal requirement of relativistic equations that they should reduce to  
classical equations if we let c  ∞. So, if c were infinitely great, all finite speeds 
would be “low” and classical equations would never fail.

 From the equations above, we have

 If the S’ frame has a positive velocity relative to an observer in the S frame, 
then the S frame has a negative velocity relative to an observer in the S’ frame.

 To be more general than t=t’=0, let’s rewrite the Lorentz transformations in 
terms of any pair of events 1 & 2, 

Δ x = x2 − x1 & Δ t = t2 − t1 in S
Δ x ' = x '2− x '1 & Δ t ' = t '2− t '1 in S '

x ' =γ ( x−β c t )
y ' = y Lorentz transformation equations,
z ' = z valid at all physically possible speeds.

c t ' =γ (c t −β x)

x=γ ( x ' +β c t ' )
c t =γ (c t ' +β x ' )



  

 

Some Consequences of the Lorentz EquationsSome Consequences of the Lorentz Equations

SimultaneitySimultaneity 
 Since Δt = γ( Δt′ + vΔx′/c2 ), if 2 events occur at different places in S′, Δx′≠0.  

It follows that even if the events are simultaneous in S′ (Δt′=0), they will not be 
simultaneous in S. In S

 The spatial separation Δx′ guarantees a temporal separation Δt.

Time Dilation
 If 2 events occur at the same place in S′ (Δx′=0) but at different times (Δt′≠0)

Length Contraction
 Since Δx′ = γ( Δx – v Δt ), if a rod lies parallel to the x and x′ axes and is at rest 

in S′, and Δx′ is the proper length L0 of the rod . For the rod moving in S, Δx can 

be identified as the length L of the rod in S only if the coordinates of the rod’s 

end points are measured simultaneously (Δt=0)
⇒ L =

L0
γ length contraction

⇒ 1. Δ x =γ ( Δ x ' +β c Δ t ' )
2. c Δ t =γ (c Δ t ' +β Δ x ' )

& 1 ' . Δ x ' =γ ( Δ x−β c Δ t )
2 ' . c Δ t ' =γ (c Δ t −β Δ x )

Δ t =γ
v
c2

Δ x ' simultaneous events in S '

Δ t =γ Δ t ' events in same places in S '
⇒ Δ t =γ Δ t0 time dilation



  

Problem 37.5



  

The Relativity of Simultaneity
 Suppose that Sam notes that 2 events occur at the same time. Suppose also 

that Sally, who is moving at a constant velocity    with respect to Sam, also 
records these same 2 events. Sally will find that they occur at different time.

If 2 observers are in relative motion, they will not, in general, agree as to 
whether 2 events are simultaneous. If one observer finds them to be 
simultaneous, the other generally will not.

 Their observations are equally valid, no reason to favor one over the other.

Simultaneity is not an absolute concept but rather a relative one, depending on
the motion of the observer.

 If the relative speed of the observers is much less than the speed of light, then 
measured departures from simultaneity are small that they are not noticeable.

A Closer Look at Simultaneity
 Suppose that the wavefronts from the 2 events happen to reach Sam at the 

same time. And Sam finds, by measurement, that he was stationed exactly 
spatially halfway between the 2 events.

 Sam thinks that Red’s light & Blue’s reached him at the same time, and he was 
halfway between the 2 sources. So these 2 events  were simultaneous events.

v⃗



  

 Sally and Red’s wavefront are moving toward each other, while she and Blue’s 

wavefront are moving in the same direction. Thus, Red’s wavefront reaches Sally 
before Blue’s wavefront does.

 Sally thinks that Red’s light reached her before Blue’s light did. She found that 
she too was halfway between the 2 sources. So the events were not simultaneous.

 These reports do not agree. Nevertheless, both observers are correct. Note that 
there is only one wavefront from the site of each event and that this wavefront 
travels with the same speed c in both reference frames, as Einstein states.



  

The Relativity of Time
 If observers who move relative to each other measure the time 

interval (or temporal separation) between 2 events, they generally 
will find different results.



  

The time interval between 2 events depends on how far apart they occur in
both space and time; ie, their spatial and temporal separations are entangled.

 we discuss this entanglement by means of an example in a crucial way: To one 
of 2 observers, the 2 events occur at the same location.

 The time interval by Sally:

 The time interval by Sam:

 Sam measures a greater time interval between the 2 events than does Sally.

 Sam and Sally have measured the time interval between the same 2 events, but 
the relative motion between Sam and Sally made their measurements different.

 Relative motion can change the rate at which time passes between 2 events; 
the key to this effect is that the speed of light is the same for both observers.

v≤c ⇒ √1−(v / c)2
≤1 ⇒ Δ t ≥Δ t0

Δ t0=
2 D

c
Sally

Δ t =
2 L

c
Sam ⇐ L =√( v Δ t

2
)
2

+ D2

⇒ L =√(
v Δ t

2
)
2

+(
c Δ t0

2
)

2

⇒ Δ t =
Δ t0

√1−(v /c)2



  

When 2 events occur at the same location in an inertial reference frame, the
time interval between them, measured in that frame, is called the proper time
interval or the proper time. Measurements of the same time interval from any
other inertial reference frame are always greater.

 Sally measures a proper time interval, Sam measures a greater time interval. 

 The amount by which a measured time interval is greater than the proper time 
interval is called time dilation.

 Newton’s mechanics works well enough for 
v<0.1c, but we must use special relativity 

for greater values of v.

 From Sally’s viewpoint, Sam failed to 
synchronize his clocks C1 and C2 in spite of 
his insistence that he did. And that is why the 
time interval he measured between the 2 
events was greater than the interval she 
measured.

speed parameter β≡
v
c
≤1 , Lorentz factor γ≡

1

√1−β
2
=

1

√1−(v / c)2
≥1

⇒ Δ t =γ Δ t0 time dilation



  

2 Tests of Time Dilation2 Tests of Time Dilation
1. Microscopic Clocks: The lifetime of a subatomic particle muon in a rest frame 
is                      , a proper time interval.

 If the muons are moving wrt a lab, their lifetimes observed by the lab should 
yield a greater lifetime (a dilated lifetime).

2. Macroscopic Clocks: In1971, J. Hafele and R. Keating flew 4 atomic clocks 
twice around the world, once in each direction, to test special relativity with 
macroscopic clocks. They verified the predictions of the theory to within 10%. 
Nowadays the accuracy is within 1%.

 Today, when atomic clocks are transported from one place to another for some 
purposes, the time dilation caused by their motion is always taken into account.

Problem 37.1

Problem 37.2

Δ t0=2.2 μ s

For β=0.9994 , γ≡
1

√1−β
2
=28.87 ⇒ Δ t =γ Δ t0=63.51 μ s



  

The Relativity of Length
 If you measure the length of a moving rod,

you must note the positions of the end points 
simultaneously.

 Because simultaneity is relative, length 
should also be a relative quantity.

 If there is relative motion at v between you 
and the rod along the length of the rod, with 
simultaneous measurements its length L is

L0 is the length of a rod at rest.

 

 The relative motion causes a length 
contraction, and L is called a contracted length. A greater speed v results in a 
greater contraction.

The length L0 of an object measured in the rest frame of the object is its proper 
length/rest length. Measurements of the length from any reference frame that 
is in relative motion parallel to the length are always less than the proper length.

γ≥1 ⇒ L ≤L0

L= L0 √1−β
2
=

L0
γ length contraction



  

 When you measure a contracted length for a moving rod, to the rod you did not 
locate the 2 ends of the rod simultaneously. To the rod, you first located the rod’s 
front end and then, slightly later, its rear end, and that is why you measured a 
length less than the proper length.

Proof: Sam, at rest with a rod, get its proper length L0. Sally moves through the 

rod in a time Δt ⇒ L0 = vΔt, from Sam. Δt is not a proper time interval because 
the 2 events occur at 2 different places.  For Sally, she finds that the 2 events 
measured by Sam occur at the same place. and she measures the interval Δt0 as a 

proper time interval ⇒ L = vΔt0 from Sally.

Problem 37.3
Problem 37.4

⇒
L
L0

=
v Δ t0

v Δ t
=

1
γ ⇒ L =

L0
γ



  

The Relativity of Velocities
 Use the Lorentz transformation  to 

compare the velocities that 2 observers in 
different inertial reference frames would
measure for the same moving particle.

 Let the particle move with constant 
velocity parallel to the x & x′ axes, send out 2 signals as it moves. Each observer 
measures the space interval and the time interval between these 2 events.

 As c  ∞, it reduces to the classical velocity transformation equation,

Δ x=γ (Δ x ' + v Δ t ' )

Δ t =γ (Δ t ' +
v
c2

Δ x ' )
⇒

Δ x
Δ t

=
Δ x ' + v Δ t '

Δ t ' + v Δ x ' / c2
=

Δ x ' / Δ t ' + v
1+ v (Δ x ' / Δ t ' )/ c2

To the limit
u ≡

d x
d t

the velocity of the particle in S

u ' ≡
d x '
d t '

the velocity of the particle in S '

⇒ u=
u ' + v

1+u ' v / c2
relativistic velocity transformation

u=u ' + v



  

Doppler Effect for Light
 Different from the sound wave, the relativistic 

(longitudinal) Doppler effect for light waves 
depends on only the relative velocity between 
source and detector, as measured from the 
reference frame of either.

 Let f0 represent the proper frequency of 

the source, and f represent the frequency 
detected by an observer moving with velocity     
    relative to that rest frame. Then, when the 
direction of     is directly away from the source,

 When the direction of     is directly toward the source, we must change the 
signs of β in the equations.

v⃗

v⃗

λ=(c + v) T =c (1+β)
T 0

√1−β
2
=λ0 √ 1+β

1−β
⇐ β=

v
c

⇒ f = f 0 √1−β

1+β
source and detector separating

⇒ λ=λ0 √
1+β

1−β
source and detector separating

v⃗



  

 For an increasing separation, the measured wavelength is greater than the 
proper wavelength, λ>λ0. Such a Doppler shift is called as being a red shift.

 For a decreasing separation, λ<λ0, and the Doppler shift is a blue shift.

Low-Speed Doppler Effect

 The low-speed equation for the Doppler effect with sound waves has the same 
first 2 terms but a different coefficient in the 3rd term. Thus, the relativistic effect 
for low-speed light sources and detectors shows up only with the β2 term.

 A police radar uses the Doppler effect with microwaves to measure the speed of 
a car. The radar emits a microwave at f0 along the road. A car toward the radar 
intercepts the beam but at a frequency blue-shifted by the Doppler effect due to 
the car’s motion toward the radar. The car reflects the beam back toward the 
radar. Because the car is toward the radar, the detector intercepts a reflected 
beam that is further blue-shifted. The radar compares that detected frequency 
with f0 and computes the speed of the car.

Astronomical Doppler Effect
 We can determine how fast stars/galaxies are moving, either away from/toward 

us, by measuring the Doppler shift of the known frequency light that reaches us.

β≪ 1 ⇒ f = f 0 (1−β+
1
2

β
2
)



  

 This Doppler shift is due only to the radial motion of the star, and the speed we 
can determine by measuring this Doppler shift is only the radial speed of the star 
—only the radial component of the star’s velocity relative to us.

 If a star moves away from us with a slow radial speed

Transverse Doppler Effect
 When S reaches point P, S is moving neither toward nor 

away from D.

 However, if the source is emitting light waves,there is 
still a Doppler effect, called the transverse Doppler effect.

 No longitudinal motion, so only time dilation

 The 1st term is expected for sound waves, and the relativistic effect for low-
speed light sources and detectors appears with the β2 term.

f ≈ f 0 (1−β) ⇒ λ≈
λ0

1−β
≈λ0 (1+β) ⇒ β≈

λ−λ0

λ0

⇒ v =
Δ λ

λ0

c radial speed of light source v ≪ c ⇐ Δ λ  wavelength Doppler shift

⇒ f =
f 0

γ
= f 0 √1−β

2 transverse Doppler effect ⇒ f ≈ f 0 (1−
β

2

2
) low speed



  

 For the speed being too slow like a car, the relativistic term β2/2 in the 
transverse Doppler effect is extremely small. Thus, f≈f0 and the radar unit 
computes a speed of 0.

 The transverse Doppler effect is really another test of time dilation:

T =
1
f

⇒ T =
T0

√1−β
2
=γ T0 ⇐ T0  proper period



  

Momentum and Energy
A New Look at Momentum

 To find a relativistic expression for momentum, we start with the new definition

dx: the distance measured by an observer watching that particle;

dt0: the time measured not by the observer watching the moving particle but by
       an observer moving with the particle — comoving observer & proper time.

 Relativistic momentum approaches ∞ as v approaches c. 

 

 For v ≪ c, it reduces to the classical definition of momentum

Mass Energy
 In 1905, Einstein showed that mass can be considered to be another form of 

energy. Thus, the law of conservation of energy is really the law of conservation 
of mass – energy. 

p⃗=m v⃗

p=m v=m
d x
d t

classical momentum

p=m
d x
d t0

d t =γ d t0 ⇒ p= m
d x
d t0

=m
d x
d t

d t
d t0

=m γ
d x
d t

⇒ p=γ m v momentum

p⃗=γ m v⃗ momentum



  

 In a chemical reaction, the amount of mass transferred into other forms of 

energy is tiny. So mass and energy seem to be separately conserved. In a nuclear 
reaction, the energy released is often about a million times greater than in a 
chemical reaction, and the change in mass can easily be measured.

 This energy associated with the mass of an object is called mass energy/rest 
energy. E0 is an energy that the object has even when it is at rest, simply 
because it has mass. 

 In this aspect, masses are usually measured in atomic mass units, and energies 
are usually measured in electron-volts, 

Object Mass(kg) Energy Equivalent

Electron ≈9.11×10−31
≈8.19×10−14 J ( ≈511 keV)

Proton ≈1.67×10−27
≈1.50×10−10 J ( ≈938 MeV)

Uranium atom ≈3.95×10−25
≈3.55×10−8 J ( ≈225 GeV)

Dust particle ≈1×10−13
≈1×104 J ( ≈2 kcal)

U.S. penny ≈3.1×10−3
≈2.8×1014 J ( ≈78 GW⋅h)

1 u=1.66053886 ×10−27 kg , 1 eV=1.602176462×10−19 J
⇒ c2

=9.31494013×108 eV /u=9.31494013×105 keV / u=931.494013 MeV / u

E 0=m c2



  

Total Energy
 If the object is moving, it has additional energy in the form of kinetic energy. 

Assuming its potential energy is 0, then its total energy is

 Given without proof, the total energy can also be expressed as

 The law of conservation of total energy still applies when the mass energy is 
included and the changes in mass energy are significant:

The total energy E of an isolated system cannot change.

 Q Value: When undergoing a chemical/nuclear reaction, a change in the total 
mass energy of the system due to the reaction is often given as a Q value

 If a reaction results in the transfer of energy from mass energy to other form of 
energy, the system’s total mass energy E0 (and total mass M) decreases and Q is 
positive. If a reaction requires that energy be transferred to mass energy, the 
system’s total mass energy E0 (and its total mass M) increases and Q is negative.

(system's initial
total mass energy)=(system's final

total mass energy)+Q

⇒ E0 i = E0 f +Q ⇒ M i c2
= M f c2

+Q ⇒ Q= M i c2
− M f c2

=−Δ M c2

E =E 0+ K = m c2
+ K (1)

E =γ m c2
(2)



  

 For 2 hydrogen nuclei undergoing a fusion reaction (as occurred in Sun)

 The total mass energy (and total mass) of deuterium, positron, and neutrino is 
less than the total mass energy (and total mass) of the initial hydrogen nuclei. 
Thus, Q > 0, and energy is said to be released by the reaction.

Kinetic Energy

 Classically,

 From (1) & (2)

 the kinetic energy increases dramatically, 
approaching ∞ as v/c approaches 1.

Work
 The required work W is equal to the resulting

change ΔK in the object’s kinetic energy. 

⇒ K =E −m c2
= m c2

(γ−1) kinetic energy

=m c2
(

1

√1−(v / c)2
−1)≈

1
2

m v2

for v ≪ c

H1
+ H1

 H2
+ e+

+ ve + energy ⇐ H2 : Deuterium

K ≈
1
2

m v2



  

 If the change is to occur on the high-speed, the required work could be 
enormous because the kinetic energy increases so rapidly.

 To increase an object’s speed to c would require an infinite amount of energy; 
thus, doing so is impossible.

Momentum and Kinetic Energy

 With their relativistic definitions

 The triangle can help you keep these 
useful relations in mind, where

Problem 37.6
Problem 37.7

Selected Problems: 10, 38, 50, 58   

( p c )
2
= K 2

+2 K m c2
⇒ E 2

=( p c )
2
+(m c2

)
2

sin θ=β , cos θ=
1
γ

p2
=2 K m classically



  

p⃗=γ m v⃗ ⇒ ( p c)2
=γ

2 m2 v2 c2
⇐ γ=

1

√1− v2
/c2

K 2
+2 K m c2

=[m c2
(γ−1)]

2
+2 m c2

(γ−1) m c2

=m2 c4
(γ

2
−2 γ+1)+2 m2 c4

(γ−1)

=m2 c4
(γ

2
−1)=m2 c4

(
1

1−β
2 −1) ⇐ β=

v
c

=mc c4 β
2

1−β
2 =m2 c4

γ
2
β

2
=γ

2 m2 v2 c2
=( p c)

2

E =γ m c2
⇒ E2

=γ
2 m2 c4

( p c)
2
+(m c2

)
2
=γ

2 m2 c2 v2
+m2 c4

=m2 c4
(γ

2
β

2
+1)

=m2 c4
(

β
2

1−β
2
+1)= γ

2 m2 c4
= E2
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