
Chapter 23Chapter 23 Gauss' Law
 Instead of considering the electric fields of charge 

elements in a given charge distribution, Gauss' law 
considers a hypothetical closed surface enclosing 
the charge distribution. This Gaussian surfaceGaussian surface can 
have any shape.
 
 Find the electric field on the surface by using 

the fact that
Gauss' law relates the electric fields at points on
a (closed) Gaussian surface to the net charge 
enclosed by that surface.
 
 If we know the electric field on a Gaussian surface, 

we can find the net charge enclosed by the surface.

Electric Flux



 Let  represent the volume flow rate (volume per unit time) at which air flows 
through the loop.
 
 the rate of volume flow through the loop is

 

where     is an area vector whose magnitude is 
equal to an area and whose direction is normal 
to the plane of the area.
 
 This rate of flow through an area is an example 

of a fluxflux – a volume flux in this situation.
 
 In a more abstract way, the above equation is 

regarded as the flux of the velocity field through 
the loop. Thus flux means the product of an area 
and the field across that area.
 

 A provisional definition for the flux of the electric 
field for the Gaussian surface is
 
 For the area vectors approaching a differential limit, the 

sum becomes an integral and the definition of electric flux is

A⃗

Φ=∑ E⃗⋅Δ A⃗ .

Flux of an Electric Field

Φ=(v cos θ) A=v A cos θ= v⃗⋅A⃗

Φ=∮ E⃗⋅d A⃗ electric flux through a Gaussian surface



 The flux of the electric field is a scalar, and its SI unit is the newton – square-
meter per coulomb (N · m2/C).
 
 the magnitude E is proportional to the number of electric field lines per unit 

area. Thus, the scalar product is proportional to the number of electric field 
lines passing through the area dA. Thus
 
The electric flux  through a Gaussian surface is proportional to the net number 
of electric field lines passing through that surface.
 
                                                                                                 problem 23-2
    problem 23-1

 Gauss' law relates the net flux  of an electric field through a closed surface 
(a Gaussian surface) to the net charge qenc that is enclosed by that surface,

Gauss' Law

ε0 Φ=ε0∮ E⃗⋅d A⃗=qenc Gauss's Law



4

 If qenc is positive, the net flux is outward; if qenc is 

negative, the net flux is inward.
 
 The only things that matter are the magnitude and 

sign of the net enclosed charge. Charge outside the 
surface, and the exact form and location of the charges 
inside the Gaussian surface are of no concern. 

 From the symmetry of 
the situation, at any 
point the electric field is 
perpendicular to the spherical 
Gaussian surface and directed 
outward from the interior,
 

 Although E varies radially with 

distance from q, it has the same value 
everywhere on the spherical surface,
this is exactly Coulomb's law.

Problem 23-3, 23-4

Gauss' Law and Coulomb's Law

ε0∮E d A ⇐ ε0∮ E⃗⋅d A⃗=qenc ⇒ q

ε0 E ∮d A=ε0 E (4 π r2
)=q

⇒ E =
1

4 π ε0

q

r2



 Gauss' law permits us to prove an important theorem about conductors:
 
If an excess charge is placed on an isolated conductor, 
that amount of charge will move entirely to the surface 
of the conductor. None of the excess charge will be found 
within the body of the conductor.
 
 The electric field inside this conductor must be 0. If this

were not so, the field would exert forces on the conduction 
(free) electrons, which are always present in a conductor, 
and thus current would always exist within a conductor.
 
 Since there is no such perpetual current in an isolated 

conductor, and so the internal electric field is 0.
 
 the charges are then in electrostatic equilibrium if the 

net force on each charge is 0.
 
 If the electric field is 0 everywhere inside the copper conductor,

it must be 0 for all points on the Gaussian surface because that surface is inside 
the conductor. And Gauss' law tells us that the net charge inside the Gaussian 
surface must also be 0.
 
 the excess charge is not inside the Gaussian surface, it must be outside that 

surface, which means it must lie on the actual surface of the conductor.

A Charged Isolated Conductor



An Isolated Conductor with a CavityAn Isolated Conductor with a Cavity
 Because the electric field vanishes inside the conductor, there can be no flux 

through this new Gaussian surface. From Gauss' law, that surface can enclose no 
net charge. We conclude that there is no net charge on the cavity walls.
 
The Conductor RemovedThe Conductor Removed
 the electric field is set up by the charges and not by 

the conductor. The conductor simply provides an initial 
pathway for the charges to take up their positions.
 
The External Electric FieldThe External Electric Field
 the surface charge density varies over the surface 

of any nonspherical conductor. And this variation 
makes the determination of the electric field set up 
by the surface charges very difficult.
 
 However, the electric field just outside the surface 

of a conductor is easy to determine using Gauss' law.
 
 The electric field at and just outside the conductor's 

surface must be perpendicular to that surface. Other-
wise, then it exert forces on the surface charges, 
causing them to move. Thus

ε0 E A ⇐ε0 Φ=qenc ⇒ σ A ⇒ E =
σ

ε0

conducting surface



 the magnitude of the electric field just outside a conductor is proportional to 
the surface charge density on the conductor. 
 

       problem 23-5

 at every point on the cylindrical part of the Gaussian surface, the electric field 
must have the same magnitude E and (for a positively charged rod) must be 
directed radially outward.
 
 The flux through this cylindrical surface is

 
 with Gauss' law,

Applying Gauss' Law: Cylindrical Symmetry

Φ=∮ E⃗⋅d A⃗= E (2 π r h) .

ε0 E (2 π r h)⇐ ε0 Φ=qenc ⇒ λ h ⇒ E =
λ

2 π ε0 r
line of
charge



 This is the electric field due to an infinitely long, straight line of charge, at a 
point that is a radial distance r from the line. It also approximates the field of a 
finite line of charge at points that are not too near the ends (compared with the 
distance from the line).
 
       problem 23-6

Nonconducting SheetNonconducting Sheet
 From symmetry, the electric field must be perpendicular 

to the sheet and hence to the end caps.
 
 With Gauss' law

 Since we are considering an infinite sheet with uniform charge density, this 
result holds for any point at a finite distance from the sheet.

Applying Gauss' Law: Planar Symmetry

ε0 (E A+ E A)⇐ ε0∮ E⃗⋅d A⃗=qenc ⇒ σ A

⇒ E =
σ

2 ε0

sheet of charge



Two Conducting PlatesTwo Conducting Plates
  

 Since the plates are conductors, when we bring them into this arrangement, 
the excess charge on one plate attracts the excess charge on the other plate, and 
all the excess charge moves onto the inner faces of the plates. Thus, the electric 
field at any point between the plates has the magnitude
 

 Since no excess charge is left on the outer faces, the electric field to the left 
and right of the plates is 0.
 
 the charge distribution of the 2-plate system is not merely the sum of the 

charge distributions of the individual plates.

E =
σ

ε0



 

                                                                         problem 23-7

 Two shell theorems:
A shell of uniform charge attracts or repels a 
charged particle that is outside the shell as if 
all the shell's charge were concentrated at 
the center of the shell.
 
If a charged particle is located inside a shell of 
uniform charge, there is no electrostatic force 
on the particle from the shell.
 
 applying Gauss' law to surface S2  (r ≥R)

 

 Applying Gauss' law to surface S1 (r <R) 

Applying Gauss' Law: Spherical Symmetry

E =
1

4 π ε0

q

r2
spherical shell, field at r ⩾ R

E =0 spherical shell, field at r < R



 Any spherically symmetric charge distribution can be constructed with a nest 
of concentric spherical shells.
 
 For purposes of applying the 2 shell theorems, the volume charge density   

should have a single value for each shell but need not be the same from shell to 
shell. Thus, for the charge distribution as a whole,  can vary, but only with r, 
the radial distance from the center.
 
 For r > R, 

 

 If the charge density is uniform,   E =
1

4 π ε0 r2

4 π

3
ρ R3

=
1

3 ε0

ρ R3

r2

E =
1

4 π ε0

q

r2 =
1

4 π ε0 r2 ∫0

R
ρ (4 π r '2 d r ' )



 Let q' represent that enclosed charge,
 
 If the full charge q enclosed within radius R is uniform (=const), then q' 

enclosed within radius r in Fig (b) is proportional to q:

Selected problems: 6, 12, 28, 40

[charge enclosed by
sphere of radius r ]

[volume enclosed by
sphere of radius r ]

=
full charge
full volume

⇒
q '

4 π r3
/3

=
q

4 π R3
/3

⇒ q ' = q
r3

R3

⇒ E =
q

4 π ε0 R3 r =
ρ

3 ε0

r uniform charge, field at r ⩽ R

E =
1

4 π ε0

q '

r2
spherical shell,
field at r ⩽ R



E r =
1

4 π ε0

Q

R3 r , r ≤ R

E r =
1

4 π ε0

Q

r2 , r ≥ R

R

E r

r
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