

Chapter 6

Functions:
 The Tic-Tac-Toe Game

Introducing the Instructions Program

instructions.py
Demonstrates programmer-created functions

def instructions():
 """Display game instructions."""
 print(
 """
 Welcome to the greatest challenge of all time:
 Tic-Tac-Toe. This is a showdown between your human
 brain and my silicon processor.

 You make your move known by entering a number,
 0 - 8. The number will correspond to the board
 position as illustrated:
 0 | 1 | 2

 3 | 4 | 5

 6 | 7 | 8

 Prepare yourself, human. The ultimate battle is
 about to begin. \n
 """
)

main
print("Here are the instructions to the Tic-Tac-Toe \
game:")
instructions()
print("Here they are again:")
instructions()
print("You probably understand the game by now.")

input("\n\nPress the enter key to exit.")

Defining a Function
 the definition of a new function

def instructions():

 This line tells the computer that the block of code that
follows is to be used together as the function instructions().

 This means that when we call the function instructions() in
this program, the block of code runs.

 This line and its block are a function definition. They define
what the function does, but don’t run the function. The
computer won’t actually run the function until it sees a
function call for it.

 To define a function: start with def, followed by a function
name, followed by a pair of parentheses, followed by a colon,
and then the indented block of statements.

Documenting a Function
 Functions allow you to document them with what’s called a

docstring (or documentation string):

 """Display game instructions."""

 A docstring is typically a triple-quoted string and, if you
use one, must be the 1the 1stst line line in your function.

 Functions work just fine without docstrings, but using them
is a good idea.

 It gets you in the habit of commenting your code and
makes you describe the function’s one, well-defined job.

Calling a Programmer-Created Function
 Use the name of the function followed by a set of

parentheses:

instructions()

 This tells the computer to go off and execute the function
defined earlier.

The Receive and Return Program

receive_and_return.py
Receive and Return
Demonstrates parameters and return values

def display(message):
 print(message)

def give_me_five():
 five = 5
 return five

def ask_yes_no(question):
 """Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = input(question).lower()
 return response

main
display("Here's a message for you.\n")

number = give_me_five()
print("Here's what I got from give_me_five():", number)

answer = ask_yes_no("\nPlease enter 'y' or 'n': ")
print("Thanks for entering:", answer)

input("\n\nPress the enter key to exit.")

Receiving Information through Parameters
 display() receives a value via its parameter and prints it:

def display(message):

 Parameters catch the values sent to the function from a
function call through its arguments.

 When display() is called, message is assigned the value
provided via the argument "Here’s a message for you.\n"

 If we hadn’t passed message a value, we would have gotten
an error. display() requires exactly one argument value.

 Functions can have many parameters. To define a function
with multiple parameters, list them out, separated by
commas.

Returning Information through Return
Values
 give_me_five() returns a value via the return statement:

 return five

 When this line runs, the function passes the value of five
back to the part of the program that called it, and then ends.

 A function always ends after it hits a return statement.

 The main part of the program where we call the function:

number = give_me_five()
print("Here's what I got from give_me_five():", number)

 Catch the return value of the function by assigning the
result of the function call to number.

 You can pass more than one value back from a function.
Just list all the values you want to return, separated by
commas.

 Make sure to have enough variables to catch all the return
values of a function. If you don’t have the right number when
you try to assign them, you’ll generate an error.

Understanding Encapsulation
 No variable created in a function, including its parameters,

can be directly accessed outside its function. This is called
encapsulation.

 Encapsulation helps keep independent code truly separate
by hiding or encapsulating the details.

 Parameters and return values are used to communicate just
the information that needs to be exchanged.

 We don’t have to keep track of variables we create within a
function in the rest of our program. As the programs get
large, this is a great benefit.

Receiving and Returning Values in the
Same Function
 ask_yes_no() receives one value and returns another.

def ask_yes_no(question):

 question gets the value of the argument passed to the
function. In this case, it’s a string.

 Then the function prompts the user for a response:

 response = None
 while response not in ("y", "n"):
 response = input(question).lower()

 The while loop keeps asking the question until the user
enters either y , Y , n , or N . After the user has entered a
valid response, the function sends a string back return
response to end the function.

Understanding Software Reuse
 Another great thing about functions is that they can easily

be reused in other programs.

 This type of thing is called software reuse.

 It’s always a waste of time to “reinvent the wheel,” so
software reuse, using existing software and other project
elements in new projects, is a technique that business has
taken to heart.

 So writing good functions not only saves you time and
energy in your current project, but can also save you effort
in future ones!

 We can create our own modules and import our functions
into a new program, just like we import standard Python
modules and use their functions. (Chapter 9)

 Software reuse can do the following:

* Increase company productivity.

* Improve software quality.

* Provide consistency across software products.

* Improve software performance.

Introducing the Birthday Wishes Program

birthday_wishes.py
Birthday Wishes: Demonstrates keyword arguments
and default parameter values

positional parameters
def birthday1(name, age):
 print("Happy birthday,", name, "!", " I hear you're",
 age, "today.\n")

parameters with default values
def birthday2(name = "Jackson", age = 1):
 print("Happy birthday,", name, "!", " I hear you're",
 age, "today.\n")

birthday1("Jackson", 1)
birthday1(1, "Jackson")
birthday1(name = "Jackson", age = 1)
birthday1(age = 1, name = "Jackson")

birthday2()
birthday2(name = "Katherine")
birthday2(age = 12)
birthday2(name = "Katherine", age = 12)
birthday2("Katherine", 12)

input("\n\nPress the enter key to exit.")

Using Positional Parameters and
 Positional Arguments
 List out a series of variable names in a function’s header,

you create positional parameters:

def birthday1(name, age):

 If you call a function with just a series of values, you create
positional arguments:

birthday1("Jackson", 1)

 Using positional parameters and positional arguments
means that parameters get their values based on the position
of the values sent. The 1st parameter gets the 1st value sent,
the 2nd parameter gets the 2nd value sent, and so on.

 So the result is:

Happy Birthday, Jackson ! I hear you’re 1 today.

 If you switch the positions of 2 arguments, the parameters
get different values:

birthday1(1, "Jackson")

 The result becomes:

Happy Birthday, 1 ! I hear you’re Jackson today.

Using Positional Parameters and
 Keyword Arguments
 You can tell the function to assign certain values to specific

parameters, regardless of order, if you use keyword
arguments.

 With keyword arguments, you use the actual parameter
names from the function header to link a value to a
parameters: birthday1(name = "Jackson", age = 1)

 The beauty of keyword arguments is that their order
doesn’t matter; it’s the keywords that link values to
parameters: birthday1(age = 1, name = "Jackson")
give the same result.

 Keyword arguments let you pass values in any order. But
their biggest benefit is clarity.

Using Default Parameter Values
 You have the option to assign default values to your

parameters, values that get assigned to the parameters if no
value is passed to them:

def birthday2(name = "Jackson", age = 1):

 This means that if no value is supplied to name, it gets
"Jackson". And if no value is supplied for age, it gets 1.

 So the call

birthday2()

doesn’t generate an error; instead, the default values are
assigned to the parameters:

 Once you assign a default value to a parameter in the list,
you have to assign default values to all the parameters listed
after it:

def monkey(bananas=10, barrel="yes", uncle="your"): √
def monkey(bananas=10, barrel, uncle):

 You can override the default values of any or all the
parameters:

birthday2(name = "Katherine")
birthday2(age = 12)
birthday2(name = "Katherine", age = 12)
birthday2("Katherine", 12)

 Default parameter values are great if you have a function
where almost every time it’s called, some parameter gets
sent the same value.

Anonymous Functions: lambda

def add10(a):
 return a + 10

def axb(a,b):
 return a * b

def low(x,y):
 if x < y: return x
 else: return y

 Using lambda is a easy to write a simple function:

 lambda arguments : expression

add10 = lambda a : a + 10
print(add10(5)) # 15

axb = lambda a, b : a * b
print(axb(5, 6)) # 30

low=lambda x, y: x if x < y else y
print(lower('cc','bb')) # ‘bb’
print(lower('aa','bb')) # 'aa'

 Use lambda because it is easy and handy;

 Don’t use lambda to avoid messing up your code.

Understanding
 Scopes

 Scopes represent different
areas of your program that
are separate from each other.

 The 1st scope is defined by
func1(), the 2nd is defined by
func2(), and the 3rd is the
global scope, which all
programs automatically have.

 Any variable created in the
global scope is called a global
variable, while any variable
created inside a function is
called a local variable (it’s
local to that function).

 Since variable1 is defined in func1(), it’s a local variable
that lives only in the scope of func1(). variable1 can’t be
accessed from any other scope. So, no command in func2()
can get at it, and no command in the global space can access
or modify it either.

 When you’re in a function, you have access to all of its
variables. But when you’re outside a function, like in the
global scope, you can’t see any of the variables inside a
function.

 If 2 variables have the same name inside 2 separate
functions, they’re totally different variables with no
connection to each other.

Introducing the Global Reach Program

global_reach.py
Global Reach
Demonstrates global variables

def read_global():
 print("From inside the local scope of read_global(),”,
 “ value is:", value)

def shadow_global():
 value = -10
 print("From inside the local scope of shadow_global()”,
 “ value is:", value)

def change_global():
 global value
 value = -10
 print("From inside the local scope of change_global()”,
 “ value is:", value)

main
value is a global variable since we’re in the global
scope here

value = 10

print("In the global scope, value has been set to:",
 value, "\n")

read_global()
print("Back in the global scope, value is still:",value,"\n")

shadow_global()
print("Back in the global scope, value is still:",value,"\n")

change_global()
print("Back in the global scope,”,
 ” value has now changed to:", value)

input("\n\nPress the enter key to exit.")

Reading a Global Variable from Inside a
Function
 you can read the value of a global variable from within any

scope in your program, eg, in the function read_global().

 While you can always read the value of a global variable in
any function, you can’t change it directly.

 So, in read_global(), doing something like

value += 1

would generate a nasty error.

Shadowing a Global Variable from Inside
a Function
 If you give a variable inside a function the same name as a

global variable, you shadow the global variable.

 It might look like you can change the value of a global
variable by doing this, but you only change the local variable
you’ve created.

 In shadow_global():

 value = – 10

This doesn’t change the global version of value. Instead, we
create a new, local version of value inside the function and
that got –10. But he global version of value won’t change.

 It’s not a good idea to shadow a global variable inside a
function. It can lead to confusion.

Changing a Global Variable from Inside a
Function
 To gain complete access to a global variable, use the

keyword global like in change_global():

 global value

 At this point, the function has complete access to value.

 So when we change it with

 value = – 10

the global variable value got –10, no matter inside the
function, or back in the main part of the code.

 In general, global variables make programs confusing
because it can be hard to keep track of their changing values

 You should limit your use of them as much as you can.

 Global constants (global variables treated as constants), on
the other hand, can make programs less confusing.

 It makes your code clearer and it makes changes no sweat
when the global constants change (like gas price).

Understanding When to Use Global
Variables and Constants

Introducing Tic-Tac-Toe Game

Planning the Tic-Tac-Toe Game:
Writing the Pseudocode
display the game instructions
determine who goes first
create an empty tic-tac-toe board
display the board

while nobody’s won and it’s not a tie
 if it’s the human’s turn
 get the human’s move
 update the board with the move
 otherwise
 calculate the computer’s move
 update the board with the move
 display the board
 switch turns

congratulate the winner or declare a tie

Representing the Data
 Since we are going to print the game board on the screen,

we can represent a piece as one character, an "X" or an "O".
And an empty piece could just be a space.

 The board itself should be a list since it’s going to change
as each player makes a move.

 There are 9 squares on a tic-tac-toe board,
so the list should be 9 elements long:

 The list will be 9 elements long and have
position numbers 0–8.

 The sides the player and computer play could also be
represented by "X" and "O". And a variable to represent the
side of the current turn would be either an "X" or an "O".

Creating a List of Functions

tic-tac-toe.py

Tic-Tac-Toe: Plays the game of tic-tac-toe against a
human opponent

global constants
X = "X"
O = "O"
EMPTY = " "
TIE = "TIE"
NUM_SQUARES = 9

def display_instruct():
 """Display game instructions."""
 print(
 """
 Welcome to the greatest intellectual challenge of all
 time: Tic-Tac-Toe. This will be a showdown between
 your human brain and my silicon processor.

 You will make your move known by entering a number,
 0 – 8. The number will correspond to the board
 position as:

 0 | 1 | 2

 3 | 4 | 5

 6 | 7 | 8
 Prepare yourself. The battle is about to begin. \n
 """
)
def ask_yes_no(question):
 """Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = input(question).lower()
 return response

def ask_number(question, low, high):
 """Ask for a number within a range."""
 response = None
 while response not in range(low, high):
 response = int(input(question))
 return response

def pieces():
 """Determine if player or computer goes first."""
 go_first =ask_yes_no(\
 "Do you require the first move? (y/n): ")
 if go_first == "y":
 print("\nThen take the first move. You will need it.")
 human = X
 computer = O
 else:
 print("\nYour bravery will be your undoing…”,
 “ I will go first.")
 computer = X
 human = O
 return computer, human

def new_board():
 """Create new game board."""
 board = []
 for square in range(NUM_SQUARES):
 board.append(EMPTY)
 return board

def display_board(board):
 """Display game board on screen."""
 print("\n\t", board[0], "|", board[1], "|", board[2])
 print("\t", "---------")
 print("\t", board[3], "|", board[4], "|", board[5])
 print("\t", "---------")
 print("\t", board[6], "|", board[7], "|", board[8], "\n")

def legal_moves(board):
 """Create list of legal moves."""
 moves = []
 for square in range(NUM_SQUARES):
 if board[square] == EMPTY:
 moves.append(square)
 return moves

def winner(board):
 """Determine the game winner."""
 WAYS_TO_WIN = ((0, 1, 2),
 (3, 4, 5),
 (6, 7, 8),
 (0, 3, 6),
 (1, 4, 7),
 (2, 5, 8),
 (0, 4, 8),
 (2, 4, 6))

 for row in WAYS_TO_WIN:
 if board[row[0]]==board[row[1]]==board[row[2]]\
 !=EMPTY:
 winner = board[row[0]]
 return winner

 if EMPTY not in board:
 return TIE

 return None

def human_move(board, human):
 """Get human move."""
 legal = legal_moves(board)
 move = None
 while move not in legal:
 move = ask_number("Where will you move? (0 – 8):",
 0, NUM_SQUARES)
 if move not in legal:
 print("\nThat square is already occupied, foolish”,
 “human. Choose another.\n")
 print("Fine...")
 return move

def computer_move(board, computer, human):
 """Make computer move."""
 # make a copy to work with since function changes list
 board = board[:]
 # the best positions to have, in order
 BEST_MOVES = (4, 0, 2, 6, 8, 1, 3, 5, 7)

 print("I shall take square number", end=" ")

 # if computer can win, take that move
 for move in legal_moves(board):
 board[move] = computer
 if winner(board) == computer:
 print(move)
 return move
 board[move] = EMPTY # done checking, undo it

 # if human can win, block that move
 for move in legal_moves(board):
 board[move] = human
 if winner(board) == human:
 print(move)
 return move
 board[move] = EMPTY # done checking, undo it

 # None can win on next move, pick best open square
 for move in BEST_MOVES:
 if move in legal_moves(board):
 print(move)
 return move

def next_turn(turn):
 """Switch turns."""
 if turn == X:
 return O
 else:
 return X

def congrat_winner(the_winner, computer, human):
 """Congratulate the winner."""
 if the_winner != TIE:
 print(the_winner, "won!\n")
 else:
 print("It's a tie!\n")

 if the_winner == computer:
 print("As I predicted, human, I am triumphant”,
 “ again. \nProof that computers are superior to”,
 “ humans in all regards.")

 elif the_winner == human:
 print("No! It cannot be! You tricked me, human.”,
 “ \nBut never again! I, the computer, so swear it!")

 elif the_winner == TIE:
 print("You were most lucky, human, and somehow”,
 “managed to tie me. \n", "Celebrate today... for”,
 “ this is the best you will ever achieve.")

def main():
 display_instruct()
 computer, human = pieces()
 turn = X
 board = new_board()
 display_board(board)

 while not winner(board):
 if turn == human:
 move = human_move(board, human)
 board[move] = human
 else:
 move = computer_move(board, computer, human)
 board[move] = computer
 display_board(board)
 turn = next_turn(turn)

 the_winner = winner(board)
 congrat_winner(the_winner, computer, human)

start the program
main()
input("\n\nPress the enter key to quit.")

Setting Up the Program
 We set up some global constants because these are values

that more than one function will use:

global constants
X = "X"
O = "O"
EMPTY = " "
TIE = "TIE"
NUM_SQUARES = 9

The ask_number() Function
def ask_number(question, low, high):

 """Ask for a number within a range."""

 response = None

 while response not in range(low, high):
 response = int(input(question))

 return response

The pieces() Function
def pieces():

 """Determine if player or computer goes first."""

 go_first=ask_yes_no(\
 "Do you require the 1st move? (y/n):")

 if go_first == "y":
 print("\nThen take the 1st move. You will need it.")
 human = X
 computer = O
 else:
 print("\nYour bravery will be your undoing…”,
 “ I will go first.")
 computer = X
 human = O

 return computer, human

The new_board() Function
 This function creates a new board (list) with all 9 elements

set to EMPTY and returns it:

def new_board():

 """Create new game board."""

 board = []

 for square in range(NUM_SQUARES):
 board.append(EMPTY)

 return board

The display_board() Function
 This function displays the board passed to it:

def display_board(board):

 """Display game board on screen."""

 print("\n\t", board[0], "|", board[1], "|", board[2])

 print("\t", "---------")

 print("\t", board[3], "|", board[4], "|", board[5])

 print("\t", "---------")

 print("\t", board[6], "|", board[7], "|", board[8], "\n")

The legal_moves() Function
 This function receives a board and returns a list of legal

moves. And a legal move is represented by the number of an
empty square.

 So, this function just loops over the list representing the
board. Each time it finds an empty square, it adds that
square number to the list of legal moves. Then it returns the
list of legal moves:

def legal_moves(board):
 """Create list of legal moves."""
 moves = []

 for square in range(NUM_SQUARES):
 if board[square] == EMPTY:
 moves.append(square)

 return moves

The winner() Function
 winner() receives a board and returns the winner.

 There are 4 possible values for a winner. winner() will
return either X or O if one of the players has won. If every
square is filled and no one has won, it returns TIE. If no one
has won and there is at least one empty square, the function
returns None.

 The constant WAYS_TO_WIN is defined to represents all 8
ways to get 3 in a row. Each way to win is represented by a
tuple:

 WAYS_TO_WIN=((0, 1, 2),(3, 4, 5), (6, 7, 8), (0, 3, 6),
 (1, 4, 7),(2, 5, 8), (0, 4, 8), (2, 4, 6))

 Next, we use a for loop to go through each possible way a
player can win, to see if either player has 3 in a row.

 The if statement checks if the 3 squares in question all
contain the same value and are not empty. If so, that means
that the row has either 3 X’s or O’s and somebody has won:

 for row in WAYS_TO_WIN:
 if board[row[0]] == board[row[1]] \
 == board[row[2]] != EMPTY:
 winner = board[row[0]]
 return winner

 If neither player has won, then the function continues.
Next, it checks to see if there are any empty squares left on
the board. If there aren’t any, the game is a tie:

 if EMPTY not in board:
 return TIE

 If it isn’t a tie, the function continues. If neither player has
won and the game isn’t a tie, there is no winner yet. So, the
function returns None: return None

The human_move() Function
 human_move() receives a board and the human’s piece. It

returns the square number where the player wants to move.

 First, the function gets a list of all the legal moves for this
board. Then, it asks the user for the square number to which
he wants to move:

def human_move(board, human):
 """Get human move."""
 legal = legal_moves(board)
 move = None
 while move not in legal:
 move = ask_number("Where will you move?”,
 “ (0-8):", 0, NUM_SQUARES)
 if move not in legal:
 print("\nThat square is already occupied,”,
 “ foolish human. Choose another.\n")
 print("Fine...")
 return move

The computer_move() Function
 computer_move() receives the board, the computer’s piece,

and the human’s piece. It returns the computer’s move.

 When you get a mutable value passed to a function, eg,
board, you have to be careful. If you know you’re going to
change the value as you work with it, make a copy and use
that instead:

def computer_move(board, computer, human):
 """Make computer move."""
 # make a copy since function changes list
 board = board[:]

The basic strategy for the computer:

1. If there’s a move that allows the computer to win this
 turn, the computer should choose that move.

2. If there’s a move that allows the human to win next turn,
 the computer should choose that move.

3. Otherwise, the computer should choose the best empty
 square as its move. The best square is the center. The
 next best squares are the corners. And the next best
 squares are the rest.

 # the best positions to have, in order
 BEST_MOVES = (4, 0, 2, 6, 8, 1, 3, 5, 7)

 After creating a list of all the legal moves, we try the
computer’s piece in each empty square number from the
legal moves list and check for a win.

 If the computer can win, the function returns that move
and ends. Otherwise, we undo the move just tried and try the
next one in the list:

 # if computer can win, take that move
 for move in legal_moves(board):
 board[move] = computer
 if winner(board) == computer:
 print(move)
 return move

 # done checking the move, undo it
 board[move] = EMPTY

 Then we check if the player can win on his next move. If
the human can win, then that’s the move to take for a block.

 If this is the case, the function returns the move and ends.
Otherwise, we undo the move and try the next legal move in
the list:

 # if human can win, block that move

 for move in legal_moves(board):
 board[move] = human
 if winner(board) == human:
 print(move)
 return move

 # done checking the move, undo it
 board[move] = EMPTY

 Then we look through the list of best moves and take the 1st
legal one. The computer loops through BEST_MOVES, and as
soon as it finds one that’s legal, it returns that move:

 # None can win on next move, pick best open square

 for move in BEST_MOVES:
 if move in legal_moves(board):
 print(move)
 return move

The next_turn() Function
 This function receives the current turn and returns the next

turn:

def next_turn(turn):

 """Switch turns."""

 if turn == X:
 return O
 else:
 return X

The main() Function
 Here we put the main part of the program into its own

function, instead of leaving it at the global level. This
encapsulates the main code too.

 It’s usually a good idea to encapsulate even the main part
of it.

 The main part of the program is almost exactly, line for
line, the pseudocode earlier:

def main():
 display_instruct()
 computer, human = pieces()
 turn = X
 board = new_board()
 display_board(board)

 while not winner(board):
 if turn == human:
 move = human_move(board, human)
 board[move] = human
 else:
 move = computer_move(board, computer, human)
 board[move] = computer
 display_board(board)
 turn = next_turn(turn)

 the_winner = winner(board)
 congrat_winner(the_winner, computer, human)

Starting the Program
 The next line calls the main function (which in turn calls

the other functions) from the global level:

start the program

main()
input("\n\nPress the enter key to quit.")

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

