Chnzpiar 27 Circuits

® We restrict our discussion to circuits through which charge flows in one
direction, which are called either direct-current circuits or DC circuits.
“Pumping” Charges

® An emf device: a device that does work on charge carriers and maintains a
potential difference between a pair of terminals.

® The emf device will provide an emf &, which means that it does work on
charge carriers. An emf device is sometimes called a seat of emf.

® The term emf comes from the outdated phrase electromotive force.
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® A common emf device is the battery. — :
|
® The emf device that most influences our daily lives a'
is the electric generator. +
)
Work, Energy, and Emf 2 R l

® When an emf device is connected to a circuit,

its internal chemistry causes a net flow of positive

charge carriers from the negative terminal to the

positive terminal, in the direction of the emf arrow. e m—




® Within the emf device, positive charge carriers move from a region of low
electric potential and thus low electric potential energy to a region of higher
electric potential and higher electric potential energy.

@ This motion is the opposite of what the electric field between the terminals
would cause the charge carriers to do.

® There must be some source of energy within the device, enabling it to do work
on the charges by forcing them to move as they do, eg, chemical forces,
mechanical forces, or temperature differences.

® We define the emf of the emf device in terms of this work:

& = d—W definition of &

dg
the emf is the work per unit charge that the device does in moving charge from
its low-potential terminal to its high-potential terminal.

® The SI unit for emf is the joule per coulomb, volt.

® An ideal emf device is one that lacks any internal resistance to the internal
movement of charge from terminal to terminal. The potential difference
between the terminals of an ideal emf device is equal to the emf of the device.

® A real emf device has internal resistance to the internal movement of charge.
the potential difference between its terminals differs from its emf.
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Calculating the Current in a Single-Loop Circuit
® 2 ways to calculate the current in the simple single-loop circuit potential:

a. energy conservation considerations,

b. the concept of potential. —— Higher
potential
Energy Method
® The work done on a charge by a battery is %Ii_— B R lz
dW=&dg=&idt Y

_ o : Lower
® From the principle of conservation of energy, the potential
work done by the battery must equal the thermal )

energy that appears in the resistor: cidi=iRdt =» L =iR



® The emf & is the energy per unit charge transferred to the moving charges by

the battery. The quantity iR is the energy per unit charge transferred from the
moving charges to thermal energy within the resistor.

® Solving for i, we find = R

Potential Method
Kirchhoff's loop rule (or Kirchhoff's voltage law):

LOOP RULE: The algebraic sum of the changes in potential encountered in a
complete traversal of any loop of a circuit must be 0.

® Let us start at point a, whose potential is V,, traverse a complete loop clockwise,
and back at point g, the potential is again V , then o

V,+&—iR=V, > &—iR=0 = i:E
® If we apply the loop rule to a complete counterclockwise walk

around the circuit, the rule gives us —F+iR=0 = i=— the same
R

® 2 rules for finding potential differences as we move around a loop:

RESISTANCE RULE: For a move through a resistance in the direction of the
current, the change in potential is —iR; in the opposite direction it is +iR.

EMF RULE: For a move through an ideal emf device in the direction of the
emf arrow, the change in potential is +¢&; in the opposite direction it is -&.



Other Single-Loop Circuits
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® The internal resistance of the battery is the electrical resistance of the
conducting materials of the battery and thus is an unremovable feature of the
battery.

® Apply the loop rule clockwise beginning at point a,

&
b
R+r .
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&S—ir—iR=0 = (=

Resistances in Series

® “in series” means that the N
resistances are wired one afteré] =
another and that a potential

difference V is applied across
the 2 ends of the series.
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When a potential difference V is applied across resistances connected in series,
the resistances have identical currents i. The sum of the potential differences
across the resistances is equal to the applied potential difference V.

® Note that charge moving through the series resistances can move along only a
single route.

Resistances connected in series can be replaced with an equivalent resistance

R., that has the same current / and the same total potential difference V as the
actual resistances.

® Starting at a and going clockwise around the circuit, we find

&—iR,—iR,—i1R,=0 = i= il
R, +R,+R,
® With the 3 resistances replaced with a single equivalent resistance R,,
&—iR,=0 = i:é = R,=R,*+R,+R,

€q
® The extension to n resistances is

n
R, = Z R; n resistances in series
Jj=1

® When resistances are in series, their equivalent resistance is greater than
any of the individual resistances.



Potential Difference Between Two Points

® To find out the potential difference, let's start —_—
at one point and move through another point U ¢
while keeping track of the potential changes.
i : : r=2.0Q 3
® For the potential difference from a to b, R=4.0€Q
V+&—ir=V, or V,=-V =& —ir i =12V

® We need i to evaluate the expression: | = al- ;

o« o« R+r B E—

R+r R+r 19V
® Substitute the data in the figure: V, -V = 4002=80V
4.002+2.09
® If we move from a to b counterclockwise, then
V,+iR=V, or V,-V,=iR = V,—-V = Ré: R (again)
r

To find the potential between any 2 points in a circuit, start at one point and
traverse the circuit to the other point, following any path, and add algebraically
the change in potential you encounter.

Potential Difference Across a Real Battery
® The potential difference V across a batteryis V=& —ir



® If the internal resistance r were 0, V = & b 1+ 2

® For the upper circuit, V=8.0 V.

r=2.0Q R_400

® The result depends on the value of the current.

6=12V
® If the same battery were in a different circuit with,¢_ _
different current, V would have some other value. S —

Grounding a Circuit —
® Grounding a circuit usually means connecting the circuit ()

to a conducting path to Earth's surface, as indicated by
the symbol L .

® It means tat the potential is defined to be 0 at
the grounding point in the circuit.

® In the upper figure, V, =0, V, = 8.0V.

In the 1 figure, V, =0, V,=-8.0V.
n the lower figure b 4 R=4.0Q

Power, Potential, and Emf

® When a battery does work on the charge carriers
to establish a current, the battery transfers energy
from its energy to the charge carriers.




® If the battery has an internal resistance r,
it also transfers energy to internal thermal
energy via resistive dissipation.

Battery | Battery 2

® The net rate P of energy transfer from
battery to the charge carriers is

P=iV=i(&—ir)=i&—i’r @

where i’r is the rate P, of energy transfer
to thermal energy within the battery a *—Ol L B g ¢ oan? T
|

L Bt

.2 . . . .
P_=1i"r internal dissipation rate

and (& is the rate P, at which the of n
battery transfer its energy b

P_.=i& power of emf device

€ 2 |%=44v | 1 V! __——

® If a battery is being recharged,
with a "wrong way" current through

it the energy transfer is from the

charge carriers fo the battery— 5

both to the battery's chemical |
energy and the the energy dissipate(c(}) Battery 1 Resistor  Battery 2

in the internal resistance r.

Potential (V)

problem 27-1



Multiloop Circuits o

. . . . . . +
® There are 2 junctions in this circuit, at b and d, L

and there are 3 branches , bad, bcd, bd, connecting
these junctions. ; 11 R, Ry lz s Ro ‘Z .

® Consider junction d for a moment: the total incoming
current must equal the total outgoing current:

d
I ti, =1,
® Kirchhoff’s junction rule (or Kirchhoff’s current law):

JUNCTION RULE: The sum of the currents entering any junction must be equal
to the sum of the currents leaving that junction.

® Kirchhoff’s junction rule is simply a statement of the conservation of charge for
a steady flow of charge.

® The basic tools for solving complex circuits are the loop rule (based on the

conservation of energy) and the junction rule (based on the conservation of
charge).

® 3 unknowns, i, I,, i3, we need 2 more equations to solve them.

® Apply the loop rule to the left-hand loop badb and the right hand loop bcdb.



i2 + 1o

I

- &,—i,R,+i;R,=0 for badb r’f —
—i,R,—i,R,— &,=0 for bcdb
now we have 3 equations for 3 unknowns. %ii__ R, lz’l R, lig R lig
® If we apply the loop rule to the big loop badcb, L
. . .
= é”l—lel—zsz—é”z:O b :Jr_?%
but this equation is only the sum or the above equations. ) ( aj

Resistances in Parallel

When a potential difference V is applied across (—> a

resistances connected in parallel, the resistances all

have that same potential difference V. + ,
%1 - Rﬁq lz

Resistances connected in parallel can be replaced with

an equivalent resistance R, that has the same potential L "

difference V and the same fotal current i as the actual ; b

resistances. (b)

i . |72 |72 1% Ce . 1 1 1 %4

'TogetReq:llz_, ly=—, I3=— = 1211+12+13=V( + + ):—
Rl R2 R3 Rl RZ RB Req

1 1 1 1 . 1 S 1 . .
= =—+—+ = extention — = Z — n resistances in parallel
Req R, R, R, Req i1 RJ



Series and Parallel Resistors and Capacitors

Series Paprallel Series Parallel
Resistors Capacitors
Ry=2 R, =27 =X C,=2C
ta R, =1k, Co 216 ta

Same current through
all resistors

same potential difference
across all resistors

Same charge on
all capacitors

across all capacitors

same potential difference

Note: when 2 or more resistances are
connected in parallel, the equivalent
resistance is smaller than any of the
combining resistances.

Problem 27-4
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The Ammeter and the Voltmeter

® An instrument used to measure currents is
called an ammeter. <

® The resistance R, of the ammeter should be
very much smaller than other resistances in the

circuit. Otherwise, the very presence of the
meter will change the current to be measured.

® A meter used to measure potential differences is
called a voltmeter.

® The resistance R, of a voltmeter be very much L
larger than the resistance of any circuit element * y
across which the voltmeter is connected. Otherwise, ’

the meter itself becomes an important circuit element and alters the potential
difference that is to be measured.

® An ohmmeter is designed to measure the resistance of any element connected
between its terminals.

® A versatile unit with an ammeter, a voltmeter, and an ohmmeter is called
multimeter.



RC Circuits °S AAAA
Charging a Capacitor el R

® When the circuit for charging is complete, charge

begins to flow between a capacitor plate and a ol 2L C

battery terminal on each side of the capacitor. This L-
current increases the charge g on the plates and the
potential difference V(=¢/C) across the capacitor.

When the potential difference equals the potential difference across the battery,
the current is 0.

® The equilibrium (final) charge on the fully charged capacitor is equal to C&'.

@ Apply the loop rule to the circuit clockwise, and we find & —i R—V .

: q
=& —IR——=0

OSinceiEd—? = Ri—?+i:g charging equation C
OSolvethisequation:Rd—q+i:éﬁ = dng— 1 — L (C%—q)

dt C dt R RC RC

dg _dt _ d(C&-q)__dt _ n|C#—qf =— L
C&—qg RC C&—q RC fo RC |,
assume g = 0 at = O: 1n|Cg_Q|:_L . Cg—QZCge_R—C

C&



Thus g=C & ( 1—e K€ ) charging a capacitor

R ~1/RC - : 12 Cé

® At = 0 the term e is unity; sog = 0. As ¢ S R T s R
goes to oo, the term e k¢ goesto0;sog=C&, = 8

the proper value for the full (equilibrium) S

charge on the capacitor. |

® The derivative of ¢(7) is the current i(f) charging

the capacitor: ) s i | _6( 5); 10
dq_ & e , . ime (ms
1= ir R e charging a capacitor (@)

® The current has the initial value & /R and it

decreases to 0 as the capacitor becomes fully
charged.

® The potential difference V(f) across the
capacitor during the charging process is

: (MA)

No

L
Vo= % =& ( 1—e *€ ) charging a capacitor

@ V.=0at?=0and that V., = & when the capacitmp 2 4 6 8 10
becomes fully charged as ¢ — oo. Time (ms)

(0)



A capacitor that is being charged initially acts like ordinary connecting wire
relative to the charging current. A long time later, it acts like a broken wire.

The Time Constant

® The product RC has the dimensions of time and is called the capacitive time
constant of the circuit and is represented with the symbol 7:

=R C time constant

® At time f = 7 (= R(C), the charge on an initially uncharged capacitor has

increased from 0 to g=C& (1—¢ ')=0.63C &

during the first time constant 7the charge has increased from 0 to 63% of its
final value C&.

Discharging a Capacitor dg ¢
@ The differential equation for discharging is R 45 +— =0 discharging equation
[

i

e The solution to this differential equationis g=¢g,e “° discharging a capacitor

where ¢g,(=CYV,) is the initial charge on the capacitor.

® ¢ decreases exponentially with time, at a rate that is set by the capacitive time

constant 7 = RC. At time 7 = 7, the capacitor's charge has been reduced to g,e™!
or about 37% of the initial value.

J



® The current i(f): j=—=— e discharging a capacitor

® The initial current i, =

Tire
Effective resistance
capacitance

problem 27-5 (@)

Rtil‘c§ %Rtlrc : C %Rm‘c %Rtu'c C : R

Selected problems: 8, 20, 44, 60, 66 (6) ()
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