1. Computational Thinking and Problem Solving
Guttag, John. “Introduction to Computation and Programming Using Python: With Application to Understanding Data.” 2nd ed. MIT Press, 2016.
2. 自編講義(Moodle 可事先下載)
三、教材內容
1. Python 程式語言簡介
i. Python Data Structure
ii. Python Classes
2. 探索最佳化問題(Introduction to Optimization Problems)
i. Knapsack Problems
ii. Greedy algorithm for solving problems
3. 最佳化問題初解(Optimization Problems Solutions)
i. NP-complete Problems
ii. Dynamic Programming
4. 圖形理論模式(Graph- Models)
i. Classic Graph-Theoretic Problems
ii. Graph Searching Algorithm
5. 隨機思考(Stochastic Thinking)
i. Uncertainty World and Stochastic Modeling
ii. Stochastic Programs
6. 隨機漫步(Random Walks)
i. Random Walks
ii. The Drunkard’s Walk
iii. Biased Random Walks
7. 蒙地卡羅模擬(Monte Carlo Simulation)
i. Pascal’s Problem
ii. Probability Problems and solutions
8. 信賴區間(Confidence Intervals)
i. Data analysis
ii. Confidence Intervals
iii. Central Limit Theorem
9. 取樣及標準差(Sampling and Standard Error)
i. Data Sampling
ii. Standard Error of the Mean
10. 認識實驗資料(Understanding Experimental Data)
i. Behavior of Experiments
ii. Know Experiment Data
11. 認識實驗資料二(Understanding Experimental Data (cont.)
12. Fitting Exponentially Distributed Data (Python)
13. 機器學習簡介(Introduction to Machine Learning)
i. Feature Vectors
ii. Distance Metrics
14. 資料分群簡介(Introduction to Clustering)
i. Class Cluster
ii. K-means Clustering
iii. Other Clustering Methods
15. 資料分類簡介 (Introduction to Classification)
i. Knowing Classifiers
ii. Classification Example
iii. K-nearest Neighbors
iv. Regression-based Classifiers
16. 資料分類及統計誤差(Classification and Statistical Sins)
i. Tests Are Imperfect
ii. Sampling Bias
iii. Statistically Significant Differences Can Be Insignificant
17. 期末專題製作
- 教師(teacher): 王宗一