課程大綱(Course Outline)

課程概述  本課程介紹泛函分析的基本要素。我們將著重 Sobolev 空間 及線性算子理論. 我們將討論 Hahn-Banach theorem, principle of uniform boundedness open mapping theorem. 我們也將討論 Riesz theory Fredholm theory.

We study some basic elements of functional analysis including some operator theory. The main objects in this course are Sobolev spaces and linear operators. We will discuss the Hahn-Banach theorem, the principle of uniform boundedness and open mapping theorem. Also, Riesz theory and Fredholm theory will also be discussed.

 

教學目標  We expect to grab the basic idea and concept of Constructive mathematics in modern mathematical language, Function spaces, and operators. Then we learn various properties of them from different aspects.

 

授課課程大綱明細       

Ch1: Banach Contraction Fixed Point Theorem

Ch2: Banach Spaces

Ch3: Hilbert Spaces

Ch4: Midterm exam.

Ch5: Hahn–Banach Theorem

Ch6: Principle of Uniform Boundedness

Ch7: Open Mapping Theorem

Ch8: Differential and Integral Calculus in Banach Spaces

Ch9: Spectral Theory with Applications

Ch10: Final Exam.

 

參考書目       Functional Analysis and Applications, Abul Hasan Siddiqi, 2019, 1, 978-981-10-3725-2, Springer

課程要求       Real Analysis and Partial Differential Equations

評量方式       Homework:  40%

Final:       60%

 

學習規範 Course Policy

請遵守智慧財產權觀念不得不法影印

Please follow the Intellectual Property instruction and No illegal copy

1. 作業不能遲交。

2. 缺考需要醫師證明、或家長證明、或學校公假單。

3, 考試違規,報請學校處理。

 

課程網址       http://www.math.ncku.edu.tw/~fang
icon_Functional Analysis-I-課程大綱-2021-09.pdfFunctional Analysis-I-課程大綱-2021-09.pdf