
Chapter 30Chapter 30 Induction and Inductance
 A current produces a magnetic field (in Chapter 29).

 
 A magnetic field can produce an electric field that can drive a current.

 
 This link between a magnetic field and the electric field it produces (induces) is 

now called Faraday's law of induction.

 11stst Experiment Experiment:
 
  1. A current appears only if there is relative 
      motion between the loop and the magnet; 
      the current disappears when the relative 
      motion between them ceases.

  2. Faster motion produces a greater current.

  3. If moving the magnet s north pole toward the loop causes clockwise current,
      then moving the north pole away causes counterclockwise current. Moving
      the south pole toward or away from the loop also causes currents, but in the
      reversed directions.
 
 The current produced in the loop is called an induced currentinduced current; the work done 

per unit charge to produce that current is called an induced emfinduced emf; and the 
process of producing the current and emf is called inductioninduction.

Two Experiments



 22ndnd  Experiment  Experiment: 
  1. If we turn on a current in the right-hand loop, 
      the meter suddenly and briefly registers a current 
      an induced current in the left-hand loop.

  2. If we then open the switch, another sudden 
      and brief induced current appears in the 
      left-hand loop, but in the opposite direction.

  3. We get an induced current (and thus an                       induced emf ) only
      when the current in the right-hand loop is changing (either turning on or
      turning off ) and not when it is constant (even if it is large).
 

 Faraday's law of inductionFaraday's law of induction: 
An emf is induced in the loop at the left in the 1st and 2nd experiments when the 
number of magnetic field lines that pass through the loop is changing.
 
 the values of the induced emf and induced current are determined by the rate 

at which that number changes.
 
A Quantitative TreatmentA Quantitative Treatment
 Suppose a loop enclosing an area A is placed in a magnetic field. Then the 

magnetic fluxmagnetic flux through the loop is

Faraday's Law of Induction

ΦB =∫ B⃗⋅d A⃗ magnetic flux through area A



 If the loop lies in a plane and that the magnetic field is perpendicular to the 
plane of the loop,
 
 the SI unit for magnetic flux is the tesla-square meter, or the weber (Wb):

 

 With the notion of magnetic flux, we can state Faraday's law as
The magnitude of the emf ℰ induced in a conducting loop is equal to the rate at 
which the magnetic flux B through that loop changes with time.
 
 Since the induced emf ℰ tends to oppose the flux change, so Faraday's law is 

formally written as
 

 If we change the magnetic flux through a coil of N turns, and the coil is tightly 

wound (closely packed), so that the same magnetic flux passes through all the 
turns, the total emf induced in the coil is

 the general means by which we can change the magnetic flux through a coil:
   1. Change the magnitude B of the magnetic field within the coil.
   2. Change either the total area of the coil or the portion of that area that lies
       within the magnetic field.
   3. Change the angle between the direction of the magnetic field and the plane.

ℰ=−N
d ΦB

d t
coil of N turn

ℰ=−
d ΦB

d t
Faraday's law

ΦB =∫ B cos 0 d A= B ∫d A= B A ⇐ B⃗ ∥ A⃗ , B⃗ uniform

1 weber = 1 Wb = 1 T⋅m2



 Lenz's lawLenz's law for determining the 
direction of an induced current in 
a loop:
An induced current has a direction 
such that the magnetic field due to 
the current opposes the change in 
the magnetic flux that induces the 
current.
 
 the direction of an induced emf is that of 

the induced current.
 
 2 different but equivalent ways:

 
  1. Opposition to Pole MovementOpposition to Pole Movement.       2. Opposition to Flux ChangeOpposition to Flux Change.

Lenz's Law Problem 30-1



 the flux of      always opposes the change in the flux of     , but that does not 
always mean that     points opposite    .
 
Electric GuitarsElectric Guitars
 In an electric guitar, the oscillations of the metal 

strings are sensed by electric “pickups” that send 
signals to an amplifier and a set of speakers.
 
 When the string is plucked and thus made to 

oscillate, its motion relative to the coil changes the 
flux of its magnetic field through the coil, inducing 
a current in the coil. As the string oscillates toward 
and away from the coil, the induced current changes direction at the same 
frequency as the string's oscillations, thus relaying the frequency of oscillation to 
the amplifier and speaker.
 
                problem 30 -2                                               problem 30-3

B⃗i B⃗
B⃗B⃗i



 By Lenz's law, whether you move the magnet 
toward or away from a loop, a magnetic force 
resists the motion, requiring your applied force 
to do positive work.
 
 At the same time, thermal energy is produced 

in the material of the loop because of the 
material's electrical resistance to the current 
that is induced by the motion.
 
 The energy you transfer to the closed loop 

magnet system via your applied force ends up 
in this thermal energy.
 
 the rate at which you do work – that is, the power – is then

 
 the magnitude of the flux through the loop:

 the magnitude of this emf is

 The direction of the induced current i is obtained with a 
right-hand rule for decreasing flux; applying the rule tells us that the current 
must be clockwise, and ℰ must have the same direction.

Induction and Energy Transfers

P = F v

ΦB = B A= B L x

|ℰ|=
d ΦB

d t
=

d
d t

B L x = B L
d x
d t

= B L v



 To find the magnitude of the induced current, apply the equation i= ℰ/R, then 
 

 Because 3 segments of the loop carry this current through the magnetic field, 
sideways deflecting forces act on those segments,
 
 From the symmetry, forces      and       are equal in magnitude and cancel.       is 

directed opposite your force      on the loop and thus
 

 Then we have 
 
 the speed v at which you move the loop is constant if the magnitude F of the 

force you apply to the loop is also constant.
 
 the rate at which you do work on the loop as you pull it from the magnetic field:

 the rate at which thermal energy appears in the loop as you pull it along at 
constant speed:

 the work that you do in pulling the loop through the magnetic field appears as 
thermal energy in the loop.

i =
B L v

R

F⃗ d = i L⃗ × B⃗
F⃗ 3

P = F v =
B2 L2 v2

R
rate of doing work

P = i2 R =(
B L v

R
)
2

R =
B2 L2 v2

R
thermal energy rate

F⃗ 1

F⃗ 1 =−F⃗
F⃗ 2

F ≡|F⃗|=|F⃗ 1|= F1 = i L B sin
π

2
= i L B =

B2 L2 v
R

F⃗



Burns During MRI ScansBurns During MRI Scans
 A patient undergoing an MRI scan lies in 

an apparatus containing 2 magnetic fields: 
a large constant field and a small sinusoidally 
varying field.
 
 The cable and the lower part of the arm 

then formed a closed loop through which 
the varying magnetic field produced a varying flux, and thus
an induced emf and an induced current.
 
Eddy CurrentsEddy Currents
 With a plate, the conduction electrons swirl about within the 

plate. Such a current is called an eddy current. The eddy current 
induced in the plate results in mechanical energy being 
dissipated as thermal energy.

 Induction furnace: the changing creates eddy 
currents within the metal, increases the 
temperature of the metal to the melting point.

 If there is an induced current in the copper 
ring, an electric field must be present along the 
ring because an electric field is needed to do the 
work of moving the conduction electrons.

Induced Electric Fields



 the electric field must have been produced by the changing magnetic flux.

 restatement of Faraday's law of induction:

A changing magnetic field produces an electric field.

 thus the electric field is induced even if there is 
no conducting wire.

A Reformulation of Faraday s LawA Reformulation of Faraday s Law
 The work W done on a charged particle in one 

revolution by the induced electric field is W = ℰq0, 
where ℰ is defined as the work done per unit charge 
in moving the test charge around the path. 



 From another point of view, the work is 

 Setting these 2 expressions for W equal to each other:
 
 to give a more general expression for the work done on a charged particle  

moving along any closed path

 
 An induced emf can be explained as the sum – via integration – of quantities

            around a closed path, doesn't need a current or particle.

 Combine the above equation with Faraday's law( ℰ = – dB/dt ) to rewrite the 
Faraday's law as

 A changing magnetic field induces an electric field.

A New Look at Electric PotentialA New Look at Electric Potential
 the difference between electric fields produced by induction and those produced 

by static charges

Electric potential has meaning only for electric fields that are produced by static 
charges; it has no meaning for electric fields that are produced by induction.

ℰ= 2 π r E

W =∫ F⃗⋅d s⃗ =(q0 E ) (2 π r )

W =∮ F⃗⋅d s⃗ = q0 ∮ E⃗⋅d s⃗ ⇒ ℰ=∮ E⃗⋅d s⃗

E⃗⋅d s⃗

∮ E⃗⋅d s⃗ =−
d ΦB

d t
Faraday's law



 It is because the definition of potential is                                      

   In a closed loop, the expression should vanish

 When a changing magnetic flux is present, this integral is not 0 but is – dB/dt. 
Thus, assigning electric potential to an induced electric field leads us to a 
contradiction. 
                                                                                                        problem 30-4

 an inductorinductor (symbol          ) can be used to produce a 
desired magnetic field. We shall consider a long solenoid
as our basic type of inductor.
 
 The inductanceinductance of the inductor is

 

 The windings of the inductor are said to be linked by the 
shared flux, and the product NB is called the magnetic flux linkage.

 The inductance L is thus a measure of the flux linkage produced by the inductor 
per unit of current.

 the SI unit of inductance is the tesla–square meter per ampere (T · m2/A), or 
henryhenry (H),  

∮ E⃗⋅d s⃗ =0

V f −V i =−∫i

f
E⃗⋅d s⃗

Inductors and Inductance

L =
N ΦB

i
inductance defined

1 henry = 1 H = 1 T⋅m2
/A



Inductance of a SolenoidInductance of a Solenoid
 The flux linkage for the cross-section of a solenoid is

 
 Since the magnitude of the magnetic field is

and the inductance per unit length near the center of a long solenoid is
 

 Inductance – like capacitance – depends only on the geometry of the device.

 Since n is a number per unit length, an inductance can be written as a product 
of the permeability constant 0 and a quantity with the dimensions of a length. 
This means that 0 can be expressed in the unit henry per meter:

 
An induced emf ℰL appears in any coil in which the 
current is changing. 
 
 This process is called self-inductionself-induction, and the emf 

that appears is called a self-induced emfself-induced emf.

B =μ0 i n ⇒ L =
N ΦB

i
=

(n ℓ) (B A)
i

=
(n ℓ) (μ0 i n) (A)

i
=μ0 n2

ℓ A

N ΦB =(n ℓ) (B A)

μ0 = 4 π ×10−7 T⋅m /A = 4 π ×10−7 H /m

L
ℓ
=μ0 n2 A solenoid

Self-Induction



 From the definition of inductance and Faraday's law,

 In any inductor, a self-induced emf appears whenever 
the current changes with time. The magnitude of the 
current has no influence on the magnitude of the induced 
emf; only the rate of change of the current counts.

 We can find the direction of a self-induced emf from 
Lenz's law: the self-induced emf ℰL has the orientation 
such that it opposes the change in current.

 When a self-induced emf is produced in an inductor, we 
cannot define an electric potential within the inductor itself,
where flux is changing. However, potential can still be 
defined at points of the circuit not within the inductor.

 we can define a self-induced potential difference VL 
across an inductor. For an ideal inductor, the magnitude 
of VL is equal to the magnitude of the self-induced emf ℰL. 

N ΦB = L i and ℰL =−
d (N ΦB)

d t

⇒ ℰL =−L
d i
d t

self-induced emf



 If the wire in the inductor has resistance r, we mentally separate the inductor 
into a resistance r and an ideal inductor of self-induced emf ℰL.

 if we introduce an emf ℰ into a single-loop RC circuit, the charge on the 
capacitor is:

 The rate at which the charge builds up is determined by the capacitive time 
constant C=RC.

 If we suddenly remove the emf from this same circuit, then

 An analogous slowing of the rise (or fall) of the 
current occurs if we introduce an emf ℰ into (or 
remove it from) a single-loop circuit containing a 
resistor R and an inductor L.
Initially, an inductor acts to oppose changes in the 
current through it. A long time later, it acts like 
ordinary connecting wire.

 Let us apply the loop rule, then

    1. the resistor gives – i R,                     2. the inductor gives
    3. the battery gives the potential change +ℰ. 

RL Circuits

q =C ℰ (1 − e−t / τC)

q = q0 e−t / τC

ℰL =−L
d i
d t



 the loop rule gives us
 

 Similar to a RC circuit, the solution is

which we can rewrite as

 The inductive time constant L is
 
 the current i = 0 at t = 0. If t go to infinity, then 

the current goes to its equilibrium value of  ℰ/R.
 
 To show that the quantity L (=L/R) has the dimension 

of time,
 

 If we put t =L=L/R, then

 Thus, the time constant L is the time it takes the 
current in the circuit to reach  about 63% of its final 
equilibrium value ℰ/R.

−i R − L
d i
d t

+ℰ= 0 ⇒ L
d i
d t

+ R i =ℰ RL circuit

i =
ℰ

R
(1− e−t / τL) rise of current

i =
ℰ

R
(1− e−Rt / L

)

τL =
L
R

time constant

1
H
Ω

= 1
V⋅s /A
V /A

= 1 s

i =
ℰ

R
(1− e−1

)= 0.63
ℰ

R



 The differential equation that governs the decay is

 the solution of this differential equation that satisfies the initial condition 
i(0) = i0 is

problem 30-5

problem 30-6

 In a RL circuit, 

 If we multiply each side by i, we obtain

which has the following physical interpretation in terms of work and energy:

 1. The rate at which the battery does work is ( ℰdq)/dt, or ℰi. Thus, the left side
     represents the rate at which the emf device delivers energy to the rest of the
     circuit.

L
d i
d t

+ R i = 0

i = i0 e−t / τL decay of current

Energy Stored in a Magnetic Field

ℰ= L
d i
d t

+ R i

ℰ i = L i
d i
d t

+ i2 R



 2. The rightmost term represents the rate at which energy appears as thermal 
     energy in the resistor.
 
 3. Energy that is delivered to the circuit but does not appear as thermal energy 
     must, by the conservation-of-energy hypothesis, be stored in the magnetic 
     field of the inductor. Thus the middle term must represent the rate dUB / dt at 

     which magnetic potential energy UB is stored in the magnetic field.
  
 Thus,

which represents the total energy stored by an inductor L carrying a current i.
 
 Note the similarity in form between this expression and the expression for the 

energy stored by a capacitor with capacitance C and charge q;
 

 
problem 30-7 

d U B

d t
= L i

d i
d t

⇒ d U B = L i d i ⇒ ∫0

U B

d U B =∫0

i
L i d i

⇒ U B =
1
2

L i2 magnetic energy

U E =
q2

2 C



 Consider a length ℓ near the middle of a long solenoid of cross-sectional area A 

carrying current i; the volume associated with this length is Aℓ. Thus, the energy 
stored per unit volume of the field is
 

Since                     then the energy density 

 This energy density expression holds for all magnetic fields, no matter how they 
are generated.

 The equation is comparable to the energy density expression for electric field:

 Note that both uB and uE are proportional to the square of the appropriate field 

magnitude, B or E.

Selected problems: 26, 40, 58, 76 

Energy Density of a Magnetic Field

uB =
U B

A ℓ
=

Li2

2 A ℓ
=

L
ℓ

i2

2 A
⇐ U B =

1
2

L i2 &
L
ℓ
=μ0 n2 A ⇒ uB =

1
2
μ0 n2 i2

B =μ0 n i uB =
B2

2 μ0

magnetic energy density

uE =
1
2
ϵ0 E 2



Charging a CapacitorCharging a Capacitor
 When the circuit for charging is complete, charge 

begins to flow between a capacitor plate and a 
battery terminal on each side of the capacitor. This 
current increases the charge q on the plates and the 

potential difference VC(=q/C) across the capacitor. 
When the potential difference equals the potential difference across the battery, 
the current is 0.
 
 the equilibrium (final) charge on the fully charged capacitor is equal to Cℰ.

 
 apply the loop rule to the circuit clockwise, and we find

 Since

 Solve this equation:

assume q = 0 at t = 0: ln
|C ℰ−q|

C ℰ
=−

t
R C

⇒ C ℰ−q=C ℰ e−t /R C

RC Circuits

ℰ− i R−V C

=ℰ− i R−
q
C
=0

i≡
d q
d t

⇒ R
d q
d t

+
q
C
=ℰ charging equation

R
d q
d t

+
q
C
=ℰ ⇒

d q
d t

=
ℰ

R
−

q
R C

=
1

R C
(C ℰ−q)

d q
C ℰ−q

=
d t
R C

⇒
d (C ℰ−q)

C ℰ−q
=−

d t
R C

⇒ ln|C ℰ−q|∣q0

q

=−
1

R C
t ∣0

t



Thus
 
 at t = 0 the term e−t/RC is unity; so q = 0. As t 

goes to infinity, the term e−t/RC goes to 0; so 

q = Cℰ, the proper value for the full (equilibrium) 
charge on the capacitor.
 
 The derivative of q(t) is the current i(t) charging 

the capacitor:
 

 the current has the initial value ℰ/R and it 
decreases to 0 as the capacitor becomes fully 
charged.
 
 the potential difference VC(t) across the 

capacitor during the charging process is
 

 VC = 0 at t = 0 and that VC = ℰ when the capacitor 

becomes fully charged as t  ∞.

i=
d q
d t

=
ℰ

R
e−t /R C charging a capacitor

V C=
q
C
=ℰ (1−e−t /R C

) charging a capacitor

q=C ℰ (1−e−t /R C
) charging a capacitor



A capacitor that is being charged initially acts like ordinary connecting wire
relative to the charging current. A long time later, it acts like a broken wire.

The Time ConstantThe Time Constant
 The product RC has the dimensions of time and is called the capacitive time capacitive time 

constantconstant of the circuit and is represented with the symbol :
 

 at time t =  (= RC), the charge on an initially uncharged capacitor has 
increased from 0 to
 
during the first time constant  the charge has increased from 0 to 63% of its 
final value Cℰ.
 
Discharging a CapacitorDischarging a Capacitor
 The differential equation for discharging is 

 

 The solution to this differential equation is

where q0(=CV0). And the current

 q decreases exponentially with time, at a rate that is set by the capacitive time 

constant  = RC. At time t = , the capacitor's charge has been reduced to q0e−1, 
or about 37% of the initial value.

τ=R C time constant

q=C ℰ (1−e−1
)=0.63 C ℰ

R
d q
d t

+
q
C
=0 discharging equation

q=q0 e−t /R C discharging a capacitor

i=
d q
d t

=−
q0

R C
e−t /R C discharging a capacitor


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

