
Chapter 19Chapter 19 The Kinetic Theory of Gases
 3 variables associated with a gas:

 
  (1) volumevolume: a result of the freedom the atoms have to spread throughout the
                     container
  (2) pressurepressure: a result of the collisions of the atoms with the container's walls
  (3) temperaturetemperature: related to the kinetic energy of the atoms
 

One mole is the number of atoms in a 12g sample of carbon-12.
 
 Avogadro's numberAvogadro's number

 
 Avogadro suggested that all gases occupying the same volume under the same 

conditions of temperature and pressure contain the same number of atoms or 
molecules.

 The number of moles

 the number of moles n in a sample from the mass Msam of the sample and either 

the molar mass M (the mass of 1 mole) or the molecular mass m (the mass of one 
molecule):

Avogadro's Number

n=
N
N A

n=
M sam

M
=

M sam

m N A

⇐ M =m N A

N A=6.02×1023
/mole Avogadro's number



 At low enough densities, all real gases tend to obey the relation
 

R is the gas constantgas constant
  
 We can rewrite the equation in terms of the Boltzmann constant,

 

 An ideal gas is defined as a gas which 
behavior follows the above equation.
 

 All real gases approach the ideal state at low 
enough densities and at high enough 
temperature.
 
Work Done by an Ideal Gas at Constant Work Done by an Ideal Gas at Constant 
TemperatureTemperature
 isothermal expansionsothermal expansion (or isothermal isothermal 

compressioncompression): A process carried out from an 
initial volume Vi to a final volume Vf  at constant temperature.

k=
R

N A

=
8.31 J /mol⋅K

6.02×1023 mol−1 =1.38×10−23 J /K

⇒ n R=N k ⇒ p V = N k T ideal gas law

Ideal Gases

R=8.31 J /mol⋅K .

p V = n R T ideal gas law



 On a p-V diagram, an isotherm is a curve that connects points that have the 
same temperature, ie, a graph of pressure versus volume for a gas whose 
temperature T is held constant.
 

 the isotherms with different temperatures doesn't cross each other.

 the work done by an ideal gas during an isothermal process

 For an isothermal process:

  For Vf > Vi (expansion),     the work W done by an ideal gas is positive;

    For Vf < Vi (compression), the work W done by an ideal gas is negative.
 
Work Done at Constant Volume and at Constant PressureWork Done at Constant Volume and at Constant Pressure
 
 If the volume of the gas is constant, then

W =∫V i

V f

p d V =∫V i

V f n R T
V

d V ⇐ p V = n R T

p=n R T
1
V
=(a constant )

1
V

T =const ⇒ W = n R T∫V i

V f d V
V

= n R T ln V|V i

V f

⇒ W =n R T ln
V f

V i

ideal gass, isothermal process

W = 0 constant-volume process



 If the volume changes while the pressure p of the 
gas is held constant, then
 

problem 19-1                                problem 19-2

 n moles of an ideal gas are confined in a cubical 
box of volume V. The walls of the box are held at 

temperature T. We need to relate the macroscopic
quantity - pressure p, to the microscopic quantity

— the velocity of the molecule v.
 
 The molecules of gas in the box are moving in 

all directions and with various speeds, bouncing 
from the walls of the box. 

 Ignore collisions of the molecules with one 
another and consider only elastic collisions with 
the walls.

 the change in the particle's momentum along 
the x axis is

W = p (V f −V i)= p Δ V constant-pressure process

Pressure, Temperature, and RMS Speed

Δ p x=(−m v x)−m vx=−2 m vx



 the momentum px delivered to the wall by the molecule is +2mvx.
 
 The molecule of will hit the wall repeatedly. The time t between collisions is 

the time the molecule takes to travel to the opposite wall and back again (a 
distance 2L) at speed vx

 

 
the average rate at which momentum is delivered to the wall by this single 

molecule is
 

 From Newton's 2nd law, the rate at which momentum is delivered to the wall is 
the force acting on that wall.

 Dividing the magnitude of the total force Fx by the area of the wall (=L2) gives 

the pressure p on that wall.
 
 we can write this pressure:
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 For any molecule, v2 = vx
2+ vy

2 + vz
2. Because there are many molecules and 

because they are all moving in random directions, the average values of the 
squares of their velocity components are equal, so that vx

2 = v2/3, 
 

 root-mean-square speedroot-mean-square speed 
 

 The equation tells how the pressure of the gas (a purely macroscopic quantity) 
depends on the speed of the molecules (a purely microscopic quantity). 

 Using the ideal gas law (p V = n R T ) gives
 
 The rms speed is only a kind of average speed; many molecules move much 

faster than this, and some much slower.

 The speed of sound in a gas is closely related to the rms speed of the molecules 
of that gas.

 If molecules move so fast, why does it take as long as a minute or so before you 
can smell perfume when someone opens a bottle across a room?

problem 19-3

v rms≡√(v2
)avg=√ 1

N ∑
i=1

N

vi
2

⇒ p=
n M v rms

2

3 V

p=
n M (v2

)avg

3 V

v rms= √3 R T
M



 consider a single molecule of an ideal gas, Its average translational kinetic 
energy over the time is
 

At a given temperature T, all ideal gas molecules — no matter what their mass 
— have the same average translational kinetic energy — namely, 3kT/2. When 
we measure the temperature of a gas, we are also measuring the average 
translational kinetic energy of its molecules. 
 

 the mean free pathmean free path : is one useful parameter to describe this random motion 
of the molecules; it is the average distance traversed by a molecule between 
collisions.
 

 We expect (1)   V/N (2)   1/d 2
, the cross section of a molecule determines 

its effective target area, thus 

Translational Kinetic Energy

K avg=(12 m v2)
avg
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1
2

m (v2
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m
3 R T
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3
2

k T

Mean Free Path

λ=
V

√2 π N d 2 mean free path



justification
 A collision will then take place if the 

centers of 2 molecules come within 
a distance d of each other.
 
 As a single molecule zigzags through 

the gas, it sweeps out a cylinder of 
cross-sectional area d 2 between 
successive collisions. 
 
 For a time interval t, it moves a distance vavgt. 

 
 The volume of the cylinder is (d 2)(vavgt).

 
 The number of collisions that occur in time t is equal to 

the number of molecules that lie within this cylinder,
 

vavg: the mean speed of the molecules relative to the 
       container;
vrel : the mean speed of a single molecule relative to 
       the other molecules.

λ=
length of path during Δ t

number of collisions in Δ t
=

vavg Δ t

π d 2 vrel Δ t N /V
=

vavg

π d2 v rel N /V



 A detailed calculation, taking into account the actual speed distribution of the 
molecules, gives                          
 

 The mean free path of air molecules: 0.1m for H=0; 16cm for H=100km;
  20km for H=300km.
 
problem 19-4

 Maxwell's speed distribution lawMaxwell's speed distribution law, the 
speed distribution of gas molecules, is    

The Distribution of Molecular Speeds

v rel=√2 vavg ⇒ λ=
V

√2 π N d2

P (v )=√ 2 M3

π R3 T 3
v2 e−M v2

/2 R T



vrel
2
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2
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 The quantity P(v) is a probability distribution function: For any speed v, the 

product P(v)dv (a dimensionless quantity) is the fraction of molecules with 
speeds in the interval dv centered on speed v,
 
 The fraction (frac) of molecules with speeds in an interval of v1 to v2 is

 

Average, RMS, and Most Probable SpeedsAverage, RMS, and Most Probable Speeds
 find the average speedaverage speed vavg of the molecules in a gas with the distribution law

 

 Substituting for P(v) from the Maxwell's speed distribution law and find
 

 Similarly,

 The most probable speedmost probable speed vP is the speed at which P(v) is maximum, therefore
solve it to find
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Gaussian Integral ∫
−∞
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 some molecules will have speeds that are many times of vP. These molecules 

form the high-speed tail of a distribution curve, useful for rain & sunshine.
 
problem 19-5, 19-6

Internal Energy Internal Energy EEintint

 assume that our ideal gas is a monatomic gas and the internal energy Eint of the 
ideal gas is simply the sum of the translational kinetic energies of its atoms.
 
 The average translational kinetic energy of a single atom depends only on the 

gas temperature, ie, Kavg = 3kT/2. The internal energy of a sample of n moles of 
the gas is
 

The internal energy Eint of an ideal gas is a function of the gas temperature only; 
it does not depend on any other variable.
 
 2 types of the molar specific heat of an ideal gas:

  CV: molar specific heat at constant volume;

  Cp: molar specific heat at constant pressure.

The Molar Specific Heats of an Ideal Gas

E int=(n N A) K avg=(n N A) (
3
2

k T )=(n N A) (
3 R

2 N A

T )

⇒ E int=
3
2

n R T monatomic ideal gas



Molar Specific Heat at Constant VolumeMolar Specific Heat at Constant Volume
 the heat Q is related to the temperature change T by

 

the 1st law of thermodynamics gives

 the internal energy of any ideal gas can be rewritten

 This equation applies to monatomic, diatomic, and 
polyatomic ideal gases, provided the appropriate 
value of CV is used.
 
 When an ideal gas that is confined to a container 

undergoes a temperature change T, then the 
change in its internal energy as is

E int=n CV T any idea gas

Δ E int=Q−W =n CV Δ T −W =n CV Δ T

⇒ CV =
Δ E int

n Δ T
=

3 n R Δ T /2
n Δ T

⇒ CV =
3
2

R=12.5 J /mol⋅K monatomic gas

Q=n CV Δ T constant volume

Δ E int=n CV Δ T ideal gas, any process



A change in the internal energy Eint of a confined 
ideal gas depends on the change in the gas tempe-
rature only; it does not depend on what type of 
process produces the change in the temperature.
 
 Although the values of heat Q and work W associated 

with these 3 paths differ, the values of Eint associated 
with them are identical because they all involve the 
same temperature change  T.
 
Molar Specific Heat at Constant PressureMolar Specific Heat at Constant Pressure
 Q is related to the temperature change T by

 

 This Cp is greater 
than the molar 
specific heat at 
constant volume CV, 
because energy must 
now be supplied not 
only to raise the 
temperature of the gas 
but also for the gas to do work.

Q=n C p Δ T
constant pressure



 From the 1st law of thermodynamics
 

problem 19-7

 to explain the discrepancy by considering the possibility 
that molecules with more than one atom can store internal 
energy in forms other than translational kinetic energy.

 assume that all 3 types (monatomic, diatomic, polyatomic) of 
molecules can have translational motions, and rotational motions.
 
 assume that the diatomic and polyatomic molecules can have 

oscillatory motions.

 the theorem of the equipartition of energyequipartition of energy:
 
Every kind of molecule has a certain number f , degrees 
of freedom, which are independent ways in which the 
molecule can store energy. Each such degree of freedom 
has associated with it - on average - an energy of kT/2
per molecule (or RT/2 per mole).

n CV Δ T ⇐ Δ E int=Q−W = n C p Δ T − p Δ V =n C p Δ T −n R Δ T
⇒ CV =C p−R ⇒ C p=CV + R

Degrees of Freedom and Molar Specific Heats



 For the translational motion, the molecules have velocity components along xyz 
axes. Thus, gas molecules of all types have 3 degrees of translational freedom 
and, on average, an associated energy of 3( kT/2 ) per molecule.
 
 A monatomic gas molecule does not rotate and so has no rotational energy.

 A diatomic molecule can rotate only about axes perpendicular to the line 
connecting the atoms and have only 2 degrees of rotational freedom and a 
rotational energy of only 2(kT/2) per molecule.
 
 Only the polyatomic molecules are able to rotate with an angular velocity 

component along each of the 3 axes, and have 3 degrees of rotational freedom, 
and an energy of 3( kT/2 )per molecule.
 
 Now the internal energy:

where f is the number of degrees of freedom.
 f  = 3 for monatomic gases, f = 5 for diatomic gases, f = 6 for polyatomic gases.

                    Degrees of Freedom for Various MoleculesDegrees of Freedom for Various Molecules
                                              Degree of Freedom                specific heat
 

                                                                                                             problem 19-8

E int=
f
2

n R T ⇒ CV =
f
2

R=4.16 f J /mol⋅K

Molecule Example Translational Rotational Total ( f ) CV C p

monatomic He 3 0 3 3
2 R 5

2 R

diatomic O2 3 2 5 5
2 R 7

2 R
polyatomic CH4 3 3 6 3 R 4 R



 improve the agreement of kinetic 
theory by including the oscillations 
of the atoms in a gas of diatomic or 
polyatomic molecules.
 
 experiment shows that such 

oscillations are “turned on” only 
when the gas molecules have 
relatively large energies.

 quantum theory shows that 
rotational motion of the molecules 
requires a certain minimum amount 
of energy; oscillatory motion of the 
molecules requires a certain (higher) minimum amount of energy.

 ensure that Q = 0 either by carrying out the process very quickly (as in sound 
waves) or by doing it (at any rate) in a well-insulated container.
 
 the relation between the pressure and the volume during an adiabatic process 

is

in which  = Cp/CV, the ratio of the molar specific heats for the gas.

The Adiabatic Expansion of an Ideal Gas

A Hint of Quantum Theory

p V γ
=a constant adiabatic process



Proof
 the 1st law of thermodynamics:

 

 Now from the ideal gas law (p V = n R T) we have
 

 Combining (a) & (b) gives

d p
p

+
C p

CV

d V
V

=0 ⇒ ln p+γ ln V =a const ⇒ p V γ
=a constant

n CV d T ⇐ d E int=Q− p d V =−p d V ⇒ n d T =−
p

CV

d V (a)

n R d T = p d V +V d p ⇒ n d T =
p d V +V d p

C p−CV

(b) ⇐ R=C p−CV



[− p
CV

d V =
p d V +V d p

C p−CV ]×(C p−CV )

⇒ −
C p−CV

CV

p d V = p d V +V d p

⇒ (1−γ) p d V = p d V +V d p

⇒ γ p d V +V d p=0

⇒ ∫i

f

[ d p
p

+ γ
d V
V

=0]
⇒ ln p+ γ ln V =const



 Since the gas goes from an initial state i to a final state f,
 

 use the ideal gas equation (p V = n R T) to eliminate p, 
 

 When the gas goes from an initial state i to a final state f, we can rewrite
 

 Understanding adiabatic processes allows you to understand why popping the 
cork on a cold bottle of champagne or the tab on a cold can of soda causes a 
slight fog to form at the opening of the container.

Free ExpansionsFree Expansions
 Since a free expansion is not in equilibrium, 

the equation of the adiabatic expansion can not 
apply to it.
 
 In a free expansion, because Eint 

=0, the 

temperature of the final int state must be that 
of the initial state, ie, Ti=Tf 

, and piVi=pfVf 
.

 
Problem 19-9, 19-10

n R T
V

V γ
=a constant ⇒ T V γ−1

=a constant adiabatic process

T i V i
γ−1

=T f V f
γ−1 adiabatic process

pi V i
γ
= p f V f

γ adiabatic process



Path Constant Quantity Process Type Δ E int=Q−W and
Δ E int= n CV Δ T for all paths

1 p Isobaric Q=n C p Δ T ; W = p Δ V
2 T Isothermal Q=W = n R T ln (V f /V i ) ; Δ E int=0
3 p V γ , T V γ−1 Adiabatic Q=0 ; W =−Δ E int

4 V Isochoric Q=Δ E int= n CV Δ T ; W =0

Four Special ProcessesFour Special Processes

Some Special Results

Selected problems: 6, 14, 23, 41
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