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Special Topics on Visual Intelligence with Deep Learning
智慧視覺深度學習專論
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Objective: AI Research Training and Finding
Help New Students to Start Their Researches!

Selected Topics:
1. Pure AI Related Research: Performance Improvement/Fast Learning
2. Applications in 3D and AR/VR Related Research
3. Intelligent Visualization: Autonomous Driving
4. AR/VR for medical applications
5. Other

Help New Students to Fill Their Research Gaps!
Teaching materials will depend on the requests of course students. 
The teaching course will be the selected topics in intelligence visual 
researches and advanced digital signal processing:

1. Advanced Linear Optimization
2. Adaptive Linear Optimization
3. Others (Requested by Students)
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• Hard to train
• Insufficient computational 

resources
• Small training sets
• Does not work well

Neural network
Back propagation

1986
• Solve general learning problems
• Tied with biological system

But it was given up…

History of Deep Learning (Neural Networks 1986)

The linearization optimal (adaptive) problems for Weiner 
solution have been changed to nonlinear problems!
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• SVM
• Boosting
• Decision tree
• KNN
• …

Neural network
Back propagation

1986 2006

History of Deep Learning (Machine Learning before 2006)

• Loose tie with biological systems
• Shallow model
• Specific methods for specific tasks

– Hand crafted features (LBP, SIFT, HOG, …..)

Machine Learning

Machine learning uses many 
new features with reasonable 
new processing techniques 
followed by learnt classification 
methods for object recognitions.
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… …

… …

… …

… …
• Unsupervised & Layer-wised pre-training
• Better designs for modeling and training 

(normalization, nonlinearity, dropout) 
• Feature learning
• New development of computer architectures

– GPU
– Multi-core computer systems

• Large scale databases

Neural network
Back propagation

1986 2006

Deep belief net
Science

History of Deep Learning (2006 Deep Belief Net)

Deep network and large database for much better results! 

Machine Learning
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deep learning results (error rate)

Neural network
Back propagation

1986 2006

Deep belief net
Science

Speech

2011

History of Deep Learning (2011 Art in Speech)

Machine Learning
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How many computers to identify a Cat? 16000 CPU cores!

Neural network
Back propagation

1986 2006

Deep belief net
Science

Speech

2011 2012

History of Deep Learning

Machine Learning
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Rank Name Error rate Description

1 U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted 

features and 
learning models.

Bottleneck.

3 U. Oxford 0.26979
4 Xerox/INRIA 0.27058

Object recognition over 1,000,000 images 
and 1,000 categories (2 GPU)

Neural network
Back propagation

1986 2006

Deep belief net
Science

Speech

2011 2012

History of Deep Learning

Artificial Intelligence (AI) becomes the dominated 
research topics in many application areas

Machine Learning
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Grading Policy
Research Motivations - An Introduction (Oral Presentation) --------------- 10% 
The report powerpoint file should be sent to teacher one day before the 
presentation (after 3 weeks of class begin) about March 2

Survey Reports – Past Existed Researches (Oral Presentation) -------------- 15% 
The report powerpoint file should be sent to teacher one day before the 
presentation (after another 3 weeks of class) about March 30

Research Designs – New Research Idea (Oral Presentation) ------------------ 20% 
The report powerpoint file should be sent to teacher one day before the  
presentation (after another 3 weeks of class) aabout April 27

Discussion and Question During Presentation ------------------------------------ 20% 
During the other students’ reports, the student must raise at least one 
question or suggestion, the scores are based on technical contributions

Final Report: (Course Summary) ------------------------------------------------------ 35% 
A final report WORD file in IEEE paper format and its powerpoint file should be 
given after one week of course closing date: 1. Powerpoint file in Chinese

2. Word file in English (At least 4 pages like a conference paper)
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Course Outline

智慧視覺深度學習專論
Special Topics on Visual Intelligence with Deep Learning

Topics:
0.   Invited Talk: AI-based Multimedia Detection, Extraction, and Transformation
1. 視覺信號處理 (Fundamental of Visual Signal Processing)
2. 線性代數和視覺特徵空間(Linear Algebra and Visual Feature Space)
3. 視覺數據分析與回歸(Fundament of Visual Data Analyses and Regression)
4. 統計分析和推理(Statistical Analyses and Inference)
5. 目標優化之自適應濾波(Adaptive Filtering for Target Optimization)
6. 支持向量機器學習(Support Vector Machine Learning)
7. 類神經網路之後向傳播學習(Back Propagation Learning for Neural Networks)
8. 深度學習和轉移學習(Deep Learning and Transfer Learning)
9. 深度積捲式神經網絡(Deep Convolutional Neural Networks)
10.深度神經網絡的應用(Application of Deep Neural Networks)
11.深度神經網絡之研究設計(Designs of Deep Neural Networks)

NCKU, Tainan Taiwan

Department of Electrical Engineering, National Cheng Kung University

Good Resources about Deep Learning 
• Webpages:

– Geoffrey E. Hinton’s readings (with source code available for DBN) 
http://www.cs.toronto.edu/~hinton/csc2515/deeprefs.html

– Notes on Deep Belief Networks  http://www.quantumg.net/dbns.php
– MLSS Tutorial, October 2010, ANU Canberra, Marcus Frean

http://videolectures.net/mlss2010au_frean_deepbeliefnets/
– Deep Learning Tutorials http://deeplearning.net/tutorial/
– Hinton’s Tutorial, http://videolectures.net/mlss09uk_hinton_dbn/
– Fergus’s Tutorial, 

http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf
– CUHK MMlab project : 

http://mmlab.ie.cuhk.edu.hk/project_deep_learning.html
• People:

– Geoffrey E. Hinton’s http://www.cs.toronto.edu/~hinton
– Andrew Ng http://www.cs.stanford.edu/people/ang/index.html
– Ruslan Salakhutdinov http://www.utstat.toronto.edu/~rsalakhu/
– Yee-Whye Teh http://www.gatsby.ucl.ac.uk/~ywteh/
– Yoshua Bengio www.iro.umontreal.ca/~bengioy
– Yann LeCun http://yann.lecun.com/
– Marcus Frean http://ecs.victoria.ac.nz/Main/MarcusFrean
– Rob Fergus http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php
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FTP Information for Materials Download

from Moodle
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Part 1. Fundamental of Visual Signal Processing
視覺信號處理

Special Topics on Visual Intelligence with Deep Learning
智慧視覺深度學習專論
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1-D Signal and Its Spectral

x[n]

t  

X(ej)

Continuous-Time Signal:
x(t)

t Ω

)( jX
Fourier 
Transform

Fourier 
Transform

Discrete-Time Signal:
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I(x, y)
xj

yj

jx

jy

2-D Signal and Its Spectral

I(n, m)

Continuous-Time Signal:

Discrete-Time Signal:
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3-D Signal and Its Spectral
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Fourier Transform of Discrete Signals
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Discrete Fourier Transform (DFT)
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DFT: Sampling of Fourier Transform

Continuous Time
x(t) )|)()(][( sTs txnTxnx 

Discrete Time

X(f)

 

Continuous Time 
(Continuous Freq. )

F.T Fourier Series

F.T F.T

F.T
Fourier SeriesPeriodic

Discrete-Frequency Fourier Transform
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Fourier Transform Versus DFT

x(t)

F.T

x[n]

F.T  2

discrete Time 
(periodic sequence)

F.T
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DFT: Computing Fourier Transform
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16-point DFT
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Types of Systems:

1.Memory or Memoryless System?

2.Linear or Nonlinear System?

4.Causal or Noncausal System:
3.Time-variant or Time-invariant System?

5.Stable or Unstable System?

Systemx[n] y[n]

h[n][n]

Discrete Systems
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Linear and Time-Invariant

LTI
x[n] y[n] 






n

nznhzH ][)(

If the system is causal, 
h[n] = 0 for n < 0

4-4              0

0 8

can be transferred to! 
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Discrete LTI Systems
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System Characteristics:
1. ][nh : Impulse Response

2.
)(zH : z transform of 3.

)( jeH : Fourier transform of 

][][][ nxnhny 

)()()( zXzHzY 

)()()( jωjωjω eXeHeY 

LTIx[n] y[n]

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


n
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Discrete LTI Systems

][nh
][nh

Input and Output Relations:

1. Time domain:
2. Fourier domain:
3. Z-domain:
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System and Its Stability

For realizable system, the causal condition gives the 
“outward” ROC

The poles must be inside the unit circle to assure a 
stable system.

 xBnx ][

 yBny ][
for all n

for all n

BIBO Stable System:

For an LTI system (h[n] is given), if and only if





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k
khS ][ ROC must contain 

the unit circle
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Convolution of LTI  Systems

x[1]δ[n1]                                               x[1] h[n1]
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LTI
System

h[n]δ[n]

Impulse ResponseUnit impulse

… …

… …

… …

+)

x[2]δ[n2]                                               x[2] h[n2]

x[k] δ[nk]                                             x[k] h[nk]
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Properties of Convolution Sum
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Facts:
1. By using convolution formula, this system should be 

linear and time-invariant (LTI)。

2. But not assure if this system is memoryless or memory 
/ causal or noncaual / stable or unstable?


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
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Convolution Integral:

Convolution Sum:
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All-pole system:
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Minimum Phase system
If all zeros and poles are inside the unit circle

Maximum phase system
If all zeros are outside the unit circle 

(poles much inside the unit circle)
Linear phase system: ))(arg()()(
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1-D Convolution Procedures
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1. Reflecting h[k] about the origin to obtain h[k].

2. Shifting the origin of the reflected sequence to k = n.

3. Multiplying x[k] and h[k] and summing the results for all k.

4. Trying all

Convolution Procedures:

Convolution Sum:

 n

n

x[n]

n

h[n]

…. ….
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….

h[2k]
n=2

….

h[1k]
n=1

….

h[-k]
n=0

….

1D Convolution Procedures in Graphics


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k
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k

x[k]

n

h[n]

….

Computation in the k-domain

n

x[n]

….

….….

h[-k]
n=0

….

h[nk]
n

n-3

….

h[3k]
n = 3
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Convolution Examples (Two finite sequences)
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22 2 2

n=5
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Convolution Examples (Two finite sequences)

n
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n=-3
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n=-2
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n=-1
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n=0
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n=-5
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N-point

P-point

(N+P1)-point
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Practical Filtering Processes (P-point)

M=1080

N=1920

2D Image/Video

N=128

1D Speech/Audio Data

Filter coefficients (P=odd): {h0, h1, h2, h3, h4}, 
normally with h0=h4 , h1= h3 (symmetrical)

Filter coefficients (P=even): {h0, h1, h2, h3}, 
normally with h0=h3 , h1= h2 (symmetrical)

How to get the same size of data vector (matrix)?

Filters inflate the data size to  N+P-1 or M+P-1!!!
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xN-1 xN-2

xN-2 xN-3

x1 x0

x2 x1

Practical Filtering Processes (P-coefficients)

Filter coefficients (P=odd): {h0, h1, h2, h3, h4}, 
normally with h0=h4 , h1= h3 (symmetrical)

Filter coefficients (P=even): {h0, h1, h2, h3}, 
normally with h0=h3 , h1= h2 (symmetrical)

symmetrical 
extension

symmetrical 
extension

symmetrical 
extension

symmetrical 
extension

xN-1

xN-1x0

x0

Proper data symmetrical extension 
and process N points only 
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2-D Convolution – Expanded Size (Theory)  

1 3 -1 1
3 -1 2 1
3 2 2 2
2 1 1 3

x[n, m]= 1 -1

1 -1
h[n, m]=

1 3 -1 1
3 -1 2 1
3 2 2 2
2 1 1 3

Find the 2-D convolution: y[n, m]=x[n, m] *h[n, m]=?

-1 1

-1 1

h[k, l] x[k, l]
l

k

       



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1
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n
n

m
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1 1
4
6
5 -2 0 2
2 -1 0 2 -3

y[n, m]m

n

(0, 1) (1, 1)

(1, 0)

(-1, -1)

(0, -1)

(-1, 0)

No values = 0
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2-D Convolution – Same Size (Practical Case)  

1 3 -1 1
3 -1 2 1
3 2 2 2
2 1 1 3

x[n, m]= 1 -1

1 -1
h[n, m]=

1 1 3 -1 1 1

1 1 3 -1 1 1
3 3 -1 2 1 1

3 3 2 2 2 2
2 2 1 1 3 3
2 2 1 1 3 3

Find the 2-D convolution: y[n, m]=x[n, m] *h[n, m]=?

-1 1

-1 1

h[k, l] x[k, l]

l

k

n
n

m
m

0 0 1
0
0 -2 0 2
0 -2 2 0

y[n, m]m

n

(0, 1) (1, 1)

(1, 0)

(-1, -1)

(0, -1)

(-1, 0)

Boundary 
values by 

symmetrical 
padding

NCKU, Tainan Taiwan

Department of Electrical Engineering, National Cheng Kung University

2-D Convolution – Reduced Size (AI-Application)  

1 3 -1 1
3 -1 2 1
3 2 2 2
2 1 1 3

x[n, m]= 1 -1

1 -1
h[n, m]=

1 3 -1 1
3 -1 2 1
3 2 2 2
2 1 1 3

Find the 2-D convolution: y[n, m]=x[n, m] *h[n, m]=?

-1 1

-1 1

h[k, l] x[k, l]
l

k

n
n

m
m

-2
1
-2 0 2

y[n, m]
m

n

(0, 1) (1, 1)

(1, 0)

(-1, -1)

(0, -1)

(-1, 0)

Removed 
boundary 

values

The size of NxM image convolutes to a PxP filter will be reduced to (N-P)x(M-P)!
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DSP Related Courses

Mathematics
Linear Algebra

Circuits
Theory

Communication
Theorem

Signals  and  Systems

DSP

Speech
Processing

Video
Engineering

Advanced
DSP

Adaptive
Signal

Processing

Image
Processing

Advanced
Communication

High Speed DSP Chip Design

Digital Signal Processing
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Media (Visual) Signal Processing:
Visual signal processing in 2D or 3D signals needs some processing 
techniques (mathematics) to deal with operations or analysis of 
signals.

Signal Processing can be further applied to:

Control system;       System Identification;  
Spectrum Estimation;   Communications (Detection and Estimation) ; 
Pattern Recognition     Information Theorem and Coding;   
Tomography;             Medical Engineering

Signal Processing Coverage

Present a series of relevant mathematical and statistical tools such 
that we could use the so-called advanced visual signal processing 
fundamentals to establish a solid backgrounds for advanced 
researches and realization practices.

Advanced Digital Signal Processing:
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Mathematical Topics for Signal Processing:
Linear System, Signal, Transformation; 
Vector Spaces and Linear Algebra;
Probability and Stochastic Processes;  
Optimization (Constrained); 
Statistical Decision and Estimation Theorem
Iterative Methods

Fundamentals for Advanced DSP

Linear Signal Models:
Linear Discrete-time Models; Stochastic MA and AR Models;  

Adaptive Filtering Models:
System Identification; Inverse System Identification;   
Adaptive Predictors; Interference cancellation

Gaussian Random Models:
Random probability model: Normal, Poisson, …

Hidden Markov Models:
Speech and text recognition, …

Mathematical Models:

NCKU
Tainan Taiwan

Jar-Ferr Yang

Institute of Computer and Communication Engineering, 
Department of Electrical Engineering, 

National Cheng Kung University, Tainan, Taiwan

Important Features for Visual Intelligence (HOG, SIFT, LBP)

Special Topics on Visual Intelligence with Deep Learning
智慧視覺深度學習專論

NCKU, Tainan Taiwan
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Histograms of Oriented Gradients (HOG)
HOG is an edge orientation histograms based on the orientation 
of the gradient in localized region that is called cells. Therefore, it 
is easy to express the rough shape of the object and is robust to 
variations in geometry and illumination changes. On the other 
hand, rotation and scale changes are not supported.

HOG Feature Vector Extraction

for each cell.
 Feature quantity becomes robust to changes in form

4. Normalization and Descriptor Blocks
 Feature quantity becomes robust to changes in illumination

1. Color image converted to grayscale
2. Luminance gradient calculated at each pixel
3. Create a histogram of gradient orientations

NCKU, Tainan Taiwan
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Gradient Computation
Luminance gradient is calculated at each pixel
 The luminance gradient is a vector with magnitude m(x,y) and 

orientation (x,y) represented by the change in the luminance.

m(x,y)  (L(x1,y)L(x 1,y))2 (L(x,y1)L(x,y 1))2

 ( x, y )  tan 1 L ( x , y  1)  L (x , y  1)

L ( x  1, y )  L (x  1, y )











where L(x,y) denotes the luminance 
value of pixel at (x,y).



2
 


2
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To create a histogram of gradient orientations  for each cell (5×5 
pixels) using the gradient magnitude and orientation of the 
calculated.
The orientation bins are evenly spaced over 0°– 180° and divided 

by nine of 20°. By adding the magnitude of the luminance
gradient for each orientation, generation a histogram.

HOG Feature Vector



2
 


2

 

2







  9Orientation bin is
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Normalization and Descriptor Blocks
 Normalization is performed by:

Normalization of HOG Feature Vector 

v(n) 
v(n)

v(k)2

k1

339










1

Block (3 × 3 cells) is performed by moving one cell to the 
entire region.

v(n) denotes the nth accumulated 
magnitudes for each bin direction
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Pictorial Examples

(a) average gradient image over training examples
(b) each “pixel” shows max positive SVM weight in the block centered on that 

pixel
(c) same as (b) for negative SVM weights
(d) test image
(e) its HOG descriptor
(f) HOG descriptor weighted by positive SVM weights
(g) HOG descriptor weighted by negative SVM weights

*
NCKU, Tainan Taiwan

Department of Electrical Engineering, National Cheng Kung University

Scale Invariant Feature Transform (SIFT)

Image content is transformed into local SIFT feature 
coordinates that are invariant to translation, rotation, scale, 
and other imaging parameters

Scale Selection Principle 
In the absence of other evidence, assume that a scale level, at which 
combination of normalized derivatives assumes a local maximum over scales, 
can be treated as reflecting a characteristic length of a corresponding 
structure in the data.

Maxima/minima of Difference of Gaussian
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Finding Keypoints – Scale, Location

Convolve 
with

Gaussian

Down
sample

# of scales/octave 
=> empirically

Find extrema
in 3D 

DoG space

NCKU, Tainan Taiwan
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Difference of Gaussian (1/2)

54

Estimate the Gaussian difference of different 𝜎
),,(),,(                 

),()),,(),,((),,(



yxLkyxL
yxIyxGkyxGyxD




Scale 
(next 
octave)

Scale 
(first 
octave)
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Difference of Gaussian (2/2)

55

Difference of Gaussian binary imagesDifference of Gaussian images

NCKU, Tainan Taiwan
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Check- Local Minima and Maxima 

56

The local minima and maxima binary images

Find the local minima and maxima
and check if X is the minima and maxima 
value in the neighbors 

X : the extreme pixel. 
Green points : the neighbor scale points of X.
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Discard Low-contrast Feature Points

 Taylor Expansion of DoG:

 Let D(x) = 0, the offset 𝑥ො is :

57

x
x
Dxx

x
DDxD T

T

2

2

2
1)(









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x
D

x
Dx 








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  remove   ))(( 2

12

The real extrema

Detected extrema

D

T

TxDx
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
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

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Related Work – Scale-Invariant Feature Transform

58

Eliminate edge responses











yyxy

xyxx

DD
DD

H

  yyxx DDHTr )(

 2)( xyyyxx DDDHDet








 2

2

222 )1()()(
)(

)( 








HDet
HTrR

th

thR


 2)1( 
Remove the edge point  by

Hessian matrix

Principal curvature R:

With 𝛾௧௛ ൌ 10With 𝛾௧௛ ൌ 1
 let 

Original
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Feature Point Orientations 

59

The gradient magnitude 𝑚 𝑥, 𝑦 and orientation 𝜃ሺ𝑥, 𝑦ሻ
22 ))1,()1,(()),1(),1((),(  yxLyxLyxLyxLyxm

)),1(),1(),1,()1,((tan),( 1 yxLyxLyxLyxLyx  

gradient magnitude weighted by 2D 
Gaussian kernel

weighted by 2D 
gradient magnitude

orientation
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Generate the Descriptor of SIFT

60

Form an orientation histogram with 8 bits (45 degree per bit)

Image gradient Key-point descriptor
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Finding Keypoints – Scale, Location
 Sub-pixel Localization
 Fit Tri-variate quadratic to find sub-pixel extrema

 Eliminating edges
 Similar to Harris corner detector

NCKU, Tainan Taiwan
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Finding Keypoints – Scale, Location

 Key issue: Stability (Repeatability)
 Alternatives
 Multi-scale Harris corner detector
 Harris-Laplacian
 Kadir & Brady Saliency Detector
 …
 Uniform grid sampling
 Random sampling

** Important Note ** Their application was scene classification
NOT correspondence matching

NCKU, Tainan Taiwan
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Finding Keypoints – Scale, Location

 Harris-Laplacian1

Find local maximum of:
 Laplacian in scale
 Harris corner detector in 

space (image coordinates)

scale

x

y

 Harris 


La

pl
ac

ia
n 


• SIFT2 

Find local maximum of:
– Difference of Gaussians 

in space and scale

scale

x

y

 DoG 


Do

G


1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV 2004
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Finding Keypoints – Orientation

 Create histogram of local 
gradient directions computed 
at selected scale

 Assign canonical orientation 
at peak of smoothed 
histogram

 Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2

 Assign dominant orientation as 
the orientation of the keypoint
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Creating Signature

 Thresholded image gradients are sampled over 16x16 
array of locations in scale space

 Create array of orientation histograms
 8 orientations x 4x4 histogram array = 128 dimensions

# dimension => empirically

NCKU, Tainan Taiwan
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Comparison with HOG

 Histogram of Oriented Gradients
 General object class recognition (Human)
 Engineered for a different goal

 Uniform sampling
 Larger cell (6-8 pixels)
 Fine orientation binning
 9 bins/180O vs. 8 bins/360O

 Both are well engineered

NCKU, Tainan Taiwan
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More about SIFT

 Multi-Image Matching using Multi-Scale Orientated Patches 
(CVPR ’05)

 Simplified SIFT
 Multi-scale Harris corner

 No Histogram in orientation selection

 Smoothed image patch as descriptor
 Good performance for panorama stitching

 Histogram of Oriented Gradients are becoming more 
popular

 SIFT may not be optimal for general object classification

Comparison with MOPS:

Conclusion about SIFT:

NCKU, Tainan Taiwan
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Why LBP for Visual Description?
Object can be seen as a composition of micro-patterns 
which can be well described by LBP operator.

Local Binary Pattern (LBP) 

Basic LBP operator
The LBP operator was originally designed for texture description. 
The operator assigns a label to every pixel of an image by 
thresholding the 3x3-neighborhood of each pixel with the center 
pixel value and considering the result as a binary number. 

The histogram of the labels used as a texture descriptor.
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 Extended LBP operators to use larger neighborhoods of 
different sizes, where u2 stands for using only uniform 
patterns and the subscript (P, R) represents using the 
operator in a neighborhood with P points and R radius

 Defining the local neighborhood as a set of sampling points 
evenly spaced on a circle centered at the pixel to be abled to 
allow any radius and number of sampling points. 

 If a sampling point does not fall in the center of a pixel  using 
Bilinear interpolation.

LBP Operators for Different Scales

Notation for LBP Operator:

(16,2) (8,2)(8,1)

NCKU, Tainan Taiwan
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Uniform Pattern: 
A local binary pattern is called uniform if the binary pattern contains at most 
two bitwise transitions from 0 to 1 or vice versa when the bit pattern is 
considered circular. The patterns with 00000000 (0 transitions), 01110000 (2 
transitions) and 11001111 (2 transitions) are uniform. The patterns with 
11001001 (4 transitions) and 01010011 (6 transitions) are not uniform.

Histogram of LBP:

Uniform LBP Patterns and Histogram of LBP

 For the LBP histogram, uniform patterns are used so that the histogram 
has a separate bin for every uniform pattern and all non-uniform patterns 
are assigned to a single bin.

 Ojala et al. noticed that in their experiments with texture images, uniform 
patterns account for a bit less than 90 % of all patterns when using the 
(8,1) neighborhood and for around 70 % in the

 (16,2) neighborhood. We have found that 90.6 % of the patterns in the 
(8,1) neighborhood and 85.2 % of the patterns in the (8,2) neighborhood 
are uniform in case of preprocessed FERET facial images.
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Histogram of LBP Bins

LBP versus Gradient:
 Two same gradients may correspond to 

rather different local structures, thus 
ambiguous.

 The unexpected noises will drastically degrade the performance. Only 
gradient is insufficient to judge useful points and outliers. The ”uniform LBP” 
provides the possibility to effectively remove outliers. 

 The gradient typically drops color information, for it is difficult to define a 
metric for colors similar to intensity gradient.
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Image Data Vectors

 Assume there are C subjects characterized by training facial
images used for identity recognition. For C identities, the ith
identity is with N training facial images in size of p×q pixels and
the kth channel of jth face image of ith identity is represented by
Vi,j,k ∈ Rp×q, i = 1, 2, …, C, j = 1, 2, …, N and k =1,2, …K.

 To achieve subspace-based classification, the facial image, Vi,j ∈
Rp×q×K is further reformed by converting it to grayscale domain
and cascading its q column vectors into a larger column vector,
xi,j ∈ Rd×1, where d = p×q.

72

Grayscale Transformation and Cascading:

1
, , ,

p q K p q d
i j i j i jR R R       V G x
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Linear Regression Classification (LRC)

73

Linear Model

Reconstructed Sample

Precomputation

Class-specific Model

  1

,
ˆ T T

LRC i i i i


 X X X y
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ˆˆLRC i i LRC i LRC i y X H y

*
,ˆarg min , 1,2,...,LRC LRC ii

i i C  y y

Least Square Estimation

Distance Measure 

iiβXy 

Testing PhaseTraining Phase

],...,,...,,[ ,,2,1, Nijiiii xxxxX 

  1

,
T T

LRC i i i i i


H X X X X

. . . .

1
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d
i j i j i j R   V G x

Vi,1 Vi,2 Vi,3Vi,2Vi,1

Transformation and Cascading
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Module Linear Regression Classification (MLRC)

 For the module LRC (MLRC) approach, each training image Vi,j ∈
Rp×q is segmented into M non-overlapped partitions as . Each
partitioned image is formed as a column vector , i = 1,2,…,C, j
=1,2,…,N, m=1,2,…, M.

74

Segmentation of a face image into M (M=16) modules.

,
m
i jx

,
m

i jV
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Module Linear Regression Classification
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Linear Model

Reconstructed Sample

Precomputation

mth module of Class-specific Model
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*
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Least Square Estimation

Distance Measure 
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Segmentation and Cascading
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Conclusions

 Histogram of Gradient (HOG)
 Scale Invariant Feature Transform (SIFT)
 Local Binary Pattern (LBP) 
 Multi-Scale Orientated Patches (MSOP)
 Whole Image: Linear Regression (Image vector)

 Linear Algebra: Vector and Matrix Operations
 Probability: Maximum Likelihood
 Machine Learning: Support Vector Machine
 Deep Learning: Convolution Neural Network

Features of Image:

Intelligent Visualization: (Classification and Recognition)

Image has been transformed to feature vector!

Smart Classification and Recognition by Using Data Vectors


