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%}?\3 Objective: Al Research Training and Finding

NCKU, Tainan Taiwan

Help New Students to Start Their Researches!
Selected Topics:
1. Pure Al Related Research: Performance Improvement/Fast Learning
Applications in 3D and AR/VR Related Research
Intelligent Visualization: Autonomous Driving
AR/VR for medical applications
Other

vk wnN

Help New Students to Fill Their Research Gaps!

Teaching materials will depend on the requests of course students.
The teaching course will be the selected topics in intelligence visual
researches and advanced digital signal processing:

1. Advanced Linear Optimization

2. Adaptive Linear Optimization

3. Others (Requested by Students)
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:1_9&?\3 History of Deep Learning (Neural Networks 1986)
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Neural network
Back propagation

|
1986

e Solve general learning problems
e Tied with biological system

But it was given up...

e Hard to train

* Insufficient computational
resources

* Small training sets
* Does not work well

The linearization optimal (adaptive) problems for Weiner
solution have been changed to nonlinear problems!

:1_9&?\3 History of Deep Learning (machine Learhing before 2006)

NCKU, Tainan Taiwan
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Neural network
Back propagation

Machine Learning ¢
1986 2006
oL ie with biological m
« SVM Eolsle tie ; Ib ological systems
. . wm
* Boosting Sha _C:c_ ° he ds f 5 !
- . ificm r iti
« Decision tree Specific methods for specific tasks
— Hand crafted features (LBP, SIFT, HOG, .....)
* KNN . .
Deep Hierarchy Flat Processing Scheme
L]
> ; SAERERES  ERERERE
Machine learning uses many A H  AHHE
new features with reasonable ARARNAR
. . Level 54 Level 58 = | > % o x| |=
new processing techniques HiHHHEHEE
g g Level 4
followed by learnt classification
a ane Level 3
methods for object recognitions. —
Lovel 1 Some kind of Featurss
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% History of Deep Learning (2006 Deep Belief Net)

NCKU, Tainan Taiwan

% History of Deep Learning (2011 Art in'Speech)

Neural network Deep belief net
Back propagation Science‘ll

* Machine Learning

1986 2006

* Unsupervised & Layer-wised pre-training
* Better designs for modeling and training
(normalization, nonlinearity, dropout)

* Feature learning

* New development of computer architectures
- GPU
— Multi-core computer systems

Large scale databases

Deep network and large database for much better results!

NCKU, Tainan Taiwan
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Neural network Deep belief net Speech

Back propagation .  Science -
%
1986 2006 2011
deep learning results (error rate)
&«
task hours of DNN-HMM | GMM-HMM
training data with same data
Switchboard (test set 1) | 309 18.5 274
Switchboard (test set 2) 309 16.1 236
English Broadcast News | 50 17.5 188
Bing Voice Search 24 304 36.2
(Sentence error rates)
Google Voice Input 5,870 12.3
Youtube 1,400 47.6 523

A
Deep Networks Advance State of Art in Speech Ll;rt'r
Microsoft

Dieep Learming leads. 1o breskihrough bn speeh ecogaion of M52
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% History of Deep Learning
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Neural netw0r|'< Deep beliefnet Speech GOUS[C
Back propagation Science i
* Machine Learning ‘l’ Microsoft i!i i|i
1986 2006 2011 2012

Google

Trained on:

10,000,000 YouTube videos
1 frame from each (200x200)

How many computers to identify a Cat? 16000 CPU cores! ‘
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% History of Deep Learning

NCKU, Tainan Taiwan

gleulzal networll< Deep belief net Speech Gox JS[@
ack propagation ; . R
prop: g Science * ;'IH I M -.-G E b

Machine Learning

1986 2006 2011 2012
“Rank | Name | Errorrate | Descripion |
1 U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted
3 U. Oxford 0.26979 EgiliEe B
learning models.
4 Xerox/INRIA 0.27058

Bottleneck.

Object recognition over 1,000,000 images
and 1,000 categories (2 GPU)

Artificial Intelligence (Al) becomes the dominated
research topics in many application areas
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% Grading Policy

Research Motivations - An Introduction (Oral Presentation) --------------- 10%
The report powerpoint file should be sent to teacher one day before the
presentation (after 3 weeks of class begin) about March 2

Survey Reports — Past Existed Researches (Oral Presentation) -------------- 15%
The report powerpoint file should be sent to teacher one day before the
presentation (after another 3 weeks of class) about March 30

Research Designs — New Research Idea (Oral Presentation) ---------------—-- 20%
The report powerpoint file should be sent to teacher one day before the
presentation (after another 3 weeks of class) aabout April 27

Discussion and Question During Presentation 20%
During the other students’ reports, the student must raise at least one
question or suggestion, the scores are based on technical contributions

Final Report: (Course Summary) 35%
A final report WORD file in IEEE paper format and its powerpoint file should be
given after one week of course closing date: 1. Powerpoint file in Chinese

2. Word file in English (At least 4 pages like a conference paper)

Department of Electrical Engineering, National Cheng Kung University

ﬁ\? Course Outline
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BEREFEEEE R
Special Topics on Visual Intelligence with Deep Learning

Topics:
Invited Talk: Al-based Multimedia Detection, Extraction, and Transformation
TR (E TR (Fundamental of Visual Signal Processing)
R MR R B E25 [ (Linear Algebra and Visual Feature Space)
T S 43 M B [0 B (Fundament of Visual Data Analyses and Regression)
4=t TR HEEE (Statistical Analyses and Inference)

H (B & & K7 (Adaptive Filtering for Target Optimization)
R ) = iR EE (Support Vector Machine Learning)
+E¥$Z<<<2%E%Z{§ﬁ1'§}%gﬂ Back Propagation Learning for Neural Networks)
VR LR R4 2278 (Deep Learning and Transfer Learning)
VEETERE T 445 (Deep Convolutional Neural Networks)
0. 7 FE 1L 48 4& 1Y [ FH (Application of Deep Neural Networks)
11,75 S a8 4845 2 i gt % =T (Designs of Deep Neural Networks)
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% Good Resources about Deep Learning

NCKU, Tainan Taiwan

. Webpages

Geoffrey E. Hinton'’s readings (with source code available for DBN)
http://www.cs.toronto.edu/~hinton/csc2515/deeprefs.html

— Notes on Deep Belief Networks http://www.quantumg.net/dbns.php

— MLSS Tutorial, October 2010, ANU Canberra, Marcus Frean
http://videolectures.net/mlss2010au_frean_deepbeliefnets/

— Deep Learning Tutorials http://deeplearning.net/tutorial/

— Hinton’s Tutorial, http://videolectures.net/mlss09uk_hinton_dbn/

— Fergus’s Tutorial,
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf

— CUHK MMiab project :
http://mmlab.ie.cuhk.edu.hk/project_deep_learning.html

. People

Geoffrey E. Hinton’s http://www.cs.toronto.edu/~hinton

— Andrew Ng http://www.cs.stanford.edu/people/ang/index.html

— Ruslan Salakhutdinov http://www.utstat.toronto.edu/~rsalakhu/

— Yee-Whye Teh http://www.gatsby.ucl.ac.uk/~ywteh/

— Yoshua Bengio www.iro.umontreal.ca/~bengioy

— Yann LeCun http://yann.lecun.com/

— Marcus Frean http://ecs.victoria.ac.nz/Main/MarcusFrean

— Rob Fergus http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php
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FTP Information for Materials Download

from Moodle
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Tainan Taiwan

Special Topics on Visual Intelligence with Deep Learning
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Part 1. Fundamental of Visual Signal Processing

5% ER -3

Jar-Ferr Yang

Institute of Computer and Communication Engineering,
Department of Electrical Engineering,
National Cheng Kung University, Tainan, Taiwan

ﬁ’! 1-D Signal and Its Spectral

NCKU, Tainan Taiwan

Continuous-Time Signal: .
x(@) _ e
Fourier
Transform
| ’ “
Discrete-Time Signal:
x[n] Fourier X(ei®)
] Transform
T‘»-THH L NN
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ﬁ’! 2-D Signal and Its Spectral
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Continuous-Time Signal: JQ,

1(x, y) > JjQ

Discrete-Time Signal: jo,

/ —> <& <

[
N~ ] (Dx

O
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1I(n, m)

%%9 3-D Signal and Its Spectral

NCKU, Tainan Taiwan

Continuous-Time Signal: jQ

I(x,, 1) | Fourier
Transform

) ) 72

y .
t JQ/
Jo,
X I """"""""" y
Discrete-Time Signal: (U
I | | f\l | Fourier )
fn,m, D) LT 1] Transfgrm "7 J O

7 t
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9§\’3 z-Transform of Discrete Signals
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9§\’3 Fourier Transform of Discrete Signals

dn]=>X(z)= ix{n]z_n,R(x: Region of Converge
Ml = X(z2)= > S almmil "z, ROC

11=—00 =00

Anm=X(z,z0,2)= >, > > aAdnmllz"z"z!, ROC

n=—00m=—o0l=—0

z-transform versus Fourier Transform (ROC o unit drauit )

X)) =X(2)|,_o = Zx{n]e‘f"”

X(ei(‘)',ej“)z)zX(zl,zz)|Z_e s Z Zx[n nile? e

N=—00M=—=00

X(,e/,e/) = X(21,2.23) .,

Jjo) 2 :eiwz ,Z; :e/'OB
0 . . . l
— Zx[n, m, l]eflml”e.‘l%meﬂc%
N—-o0

NCKU, Tainan Taiwan
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x[n] —— X(e’) = ix[n]e’j‘”"

x[n, m] X(efw Jo, )_ Z ZX[I’I m]e—/wn —jw,m

n=—w0 m=

x{n, m, 1] — X(&”,¢",e")=3 Y Sxnmlle e e

n=—om=—wl=—0w0

=1
w,- —)27Z'+a)i = ejw( =ej(w+27r) —e w‘g{n Cor —n , T 2r
| i
1 1
@O -
1 1
1-D LX) 2-D | B : e
Spectrum | L spectrum ' = N
p : : E Spectrum m /)\i @ Y
i 1 1 ]
: 1 1 i h
Y ‘ [y
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9§\’3 Discrete Fourier Transform (DFT)
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N-1 _ 2mkn
1D DFT:  xn]= X[k]= xnle ¥
n=0
1 N-1 27Tkn
1D IDFT: X[k]= x[n] —ZX
NS
N-1M-1 27[/01 jZT[Im
2D DFT: x[n,m]= X[k,I]1= x[n, m]e M
n=0 m=0
1 N-1M-1 JZT[kn +12nlm
2D IDFT: X[k,11= x[n,m]=—— Xlk,lle M
NM (=1
N-1M-1L-1 _ 2k zmpm 27l
3D DFT: x[n,m,1= X[k,p,q]=>.>. > x[nm,lle " N e M e L
n=0m=01[=0
N-IM-1L-1 Lk ompm gl
3D IDFT: X[k, p,q]= x[n,m,l]= 7222kaq Ne Me L
NML k=0 p=0¢g=0
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@"! DFT: Sampling of Fourier Transform
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Discrete-Frequency Fourier Transform

Continuous Time Discrete Time

x(7) (x[n]:x(nTZ)=x(t) |r;)
PN~ %

FT ‘ ET ‘
X

Continuous Time FT
(Continuous Freq. )

/\mp FT at s

| . [ . .
Periodic Fourier Series

Fourier Series
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ﬁ? Fourier Transform Versus DFT
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x(1)

x[n]
Al _ET |

discrete Time
(periodic sequence)

111 N -~ O S0 11 N[ )

T 2w
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% DFT: Computing Fourier Transform
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DFT x[n] X[k]
F.T rﬂ’h\m
0 ’ N-1 0 ’ N-1

Finite duration data : M-point nonzero data

9
X)) = Zx[n]ef-"”” (M=9)
16-point DFT n=0

N=1 _j 2mnk 9 _j 2mnk
X[k]= z x[nle N =z x[nle N
n=0 n=0
(N=16>M=10) =X()| om

N
Keep 9-point data by padding extra zeros
If N becomes larger, the frequency resolution becomes higher

Department of Electrical Engineering, National Cheng Kung University

#0e' Discrete Systems

NCKU, Tainan Taiwan

. System yin]
dn] hn]
Types of Systems:

1.Memory or Memoryless System?

2.Linear or Nonlinear System?
3.Time-variant or Time-invariant System?
4.Causal or Noncausal System:

5.Stable or Unstable System?

Department of Electrical Engineering, National Cheng Kung University MediaCore}

ﬁ? Discrete LTI Systems
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MmN me =S

Linear and Time-Invariant

h'[n’] If the system is causal,
h[n]=0forn<0

Nl 7 (2) = H(2)

) since

gcan be transferred to! 4 unit delays obtain gain,
| h[n) 7% in Fourier domain

LT | e )

0 8
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% Discrete LTI Systems
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x[n]

T LTI

System Characteristics:

1. Ah[n] : Impulse Response

H(z)= ih[n]zf”

N=-o00

2. H(¢/®) : Fourier transform of A[n]
3. H(z) : z transform of h[n]

Input and Output Relations:

1. Time domain: y[n]= h[n]* x[n]
2. Fourier domain: Y(e/®)= H(e/”)X (/)
3. Z-domain: Y(z)=H(2)X(2)
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% System and Its Stability
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BIBO Stable System:
x[n]|< B, < @ foralin

“ ‘y[n]‘g By < oo foralnm

For an LTI system (4[n] is given), if and only if

S = - Wk ROC must contain
k:Z_:OJ) [ ]‘<oo “

the unit circle

For realizable system, the causal condition gives the
“outward” ROC

The poles must be inside the unit circle to assure a
stable system.
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% Convolution of LTI Systems
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o[n] LTI h[n]

Unit impulse System Impulse Response
x[118[n—1] im - (1] A[n-1]
x[2]8[n-2] iy X[2] A[n-2]
x[k] 8[n—k] ime- (/] A[n—k]

+)
x[n]zkzx[k]5[n —k] i yInl= ix[k]h[n k]
=00 k=—0
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% Properties of Convolution Sum
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Convolution Sum:

Soy[n]= ki xlklh[n—k]= x[n]*h[n]

Convolution Integral:

(1) = ji x(Oh(t-t)dr = x(£) * h(t)
Facts:

1. By using convolution formula, this system should be
linear and time-invariant (LTT) -

2. But not assure if this system is memoryless or memory
/ causal or noncaual / stable or unstable?

Department of Electrical Engineering, National Cheng Kung University MediaCore




2%3 Well-known Systems (Filters)
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All-pole system:

&= B()

Minimum Phase system

zeros at { (), +oo} Az)=z"

If all zeros and poles are inside the unit circle
Maximum phase system

If all zeros are outside the unit circle
(poles much inside the unit circle)

Linear phase system: H(¢/?) = A(e/®) e ¢/ @)
Arg H(e’”) = ZH(e!”) = -0y
4 Jaret(e))

4

[~

-7
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2%3 1-D Convolution Procedures
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Convolution Sum:
yin]= ki x[kTi[n —k]= ki H[kIx[n - k]
Convolution Prc;c:dures: -
1. Reflecting A[k] about the origin to obtain A[—4].
2. Shifting the origin of the reflected sequence to k= n.
3. Multiplying x[k] and A[-k] and summing the results for all .

4. Tryingall — o <n <

n | n

Department of Electrical Engineering, National Cheng Kung University

ﬁ"! 1D Convolution Procedures in Graphics
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rl= XAkl K]

Department of Electrical Engineering, National Cheng Kung University MediaCore}

% Convolution Examples (Two finite sequences)
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x[n] h[n]
g = 5] 222
— |1 "
B |
x[k]
1 1
| !
1
EEELAI - o
SN N8 B =S e
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% Convolution Examples (Two finite sequences)
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x[k]
N-point

(N+P-1)-point

4-3-2-1 01 2 3 456 7 8

Department of Electrical Engineering, National Cheng Kung University

% Practical Filtering Processes (P-point)
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N=1920

N=128
| |
1D Speech/Audio Data

M=1080 2D Image/Video

Filters inflate the data size to N+P-1 or M+P-111I

Filter coefficients (P=odd): {h, h,, h,, h3, hy},
normally with ay=h, , h,= h; (symmetrical)

Filter coefficients (P=even): {h,, h,, h,, 5},
normally with Ag=h , h,= h, (Symmetrical)

How to get the same size of data vector (matrix)? ‘

Department of Electrical Engineering, National Cheng Kung University

% Practical Filtering Processes (P-coefficients)
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Filter coefficients (P=odd): {h,, /|, h,, hs, hs},
normally with Ay=h, , h,= h; (Symmetrical)

symmetrical symmetrical
extension extension
|P: l:\i |x0 xN_1|erzijf3|
| B2 o (e S

Filter coefficients (P=even): {A, h,, h,, h3},
normally with Ay=h, , h,= h, (symmetrical)

symmetrical symmetrical
extension extension
X1 %o [ %o ol | xN—l| xzv-z|
 EEEESH | S EETESIN [

Proper data symmetrical extension
and process N points only

Department of Electrical Engineering, National Cheng Kung University MediaCore}

% 2-D Convolution — Expanded Size (Theory)
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m
m
NEIEK o
30-112 11 1” 14
_ oy
x[n’ m] h n, ml= _( s
32 2 [, m] RY, )
2111113
n

Find the 2-D convolution: y[n, m]=x[n, m] *h[n, m]=?

y[n,m] = x[n, m] ¢ h[n,m] = Nil Milx[k,l]h[n —k,m—1]

k=0 [=0

; m yln, m]

h[—k, ] x[k, 1] BEREEE 1 1

©.-h 3041 1 A

,,,,,, =p-p-1-}- 312122 6

-1.-1) Lo f2]1]1]3]«% >|2]0]2
2011023,
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% 2-D Convolution — Same Size (Practical Case)
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2%\3 2-D Convolution — Reduced Size (Al-Application)

NCKU, Tainan Taiwan

m
BENELE
3 [-1 1
A m= T
2113

Boundary
values by
symmetrical
padding

n

Find the 2-D convolution: y[n, m]=x[n, m] *h[n, m]=?

/
h[—k, -] x[k, I]
113 ]-1]1
©-D 3 30-1121
------ —t-f-14- 312122
-1,-1) (-1,0) 211113

"0,
i K .
h[n, m]= ’
[n, m] 1, )
m yin, m]
00 1
0
0|-2 2
02 0 "
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m
13 ]-1]1 00 4
Removed 2
3 |-1 1 S 1 P
x[n, ml= boundary _ 0
3120212 values hin, m] 11¢ .
2(1(1]3
n
Find the 2-D convolution: y[n, m]=x[n, m] *h[n, m]=?
h[—k, 1] ! m ]
s n,m
x[k, 1] 13 111 y
0,-1 -
R 3-1]2]1 2
—————— ~t-r-1-- 3121212 !
1,-1) o 20113« 21012
n
‘ The size of NxM image convolutes to a PxP filter will be reduced to (N-P)x(M-P)!

Department of Electrical Engineering, National Cheng Kung University

9§\’3 General Linear Time-Invariant System
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2%3 Form-I Digital Filter Structure

NCKU, Tainan Taiwan

x[n]

LTI
h(n]

Mb &
P ()

[ I:ébkzk}X(z) - [1 - glakzk}Y(z)

Construct a Difference Equation from H(z):

kMgO bl x(2)]=Y(2)- kﬁl a7 (2)]

M N
ylnl= 2 bx[n—kl+ Za yln - k]
k=0 k=1
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1-Yazt X
k=1

N M
ylnl=Yayn—k]+ > bln—k]
k=1 k=0
b, y[n]
] DD
~1 1
z b 0 Z
An—1] . a M & 4yn-1]
a, 1z
D——1n-2]
271
Ay |
E%Hy[n—N+l]
Z71
W Tn-n]
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%\%«3 Linear Time-Invariant System
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LTI Sh o
(=2 _YE)
x[n] hln] | yln] 1-Yazt X

Y(z):[ Iibkzk}W(z) and X(z)z[l—?}lakzk}W(z)

Two Difference Equations:

Y(2)= kfo bl w(z)] and X(z)=w(2)- kﬁl a, [z W (2)]

A= fbkw[n _k] and x[n]=w{n]— %akw[n k]

Department of Electrical Engineering, National Cheng Kung University

%\%«3 Canonic Form Digital Filter
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y[n]:AZfbkw[n—k] and w[n]:x[n]+§aku{n—k]

M{n] 0 yln]

Jany 0 .o
X [”] N >
-1
z
a b,
M o . D
NP2 )
Ep
a
N 2 2 N
NP2 )
z7! i
: i i
a )
VLIS S G
Wy N
ay = -
N o

»
< >
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%\%«3 DSP Related Courses
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Mathematics Circuits Communication
Linear Algebra Theory Theorem

N\ l —

Digital Signal Processing

/ . \

Adaptive
Advanced ‘ High Speed DSP Chip Design ‘ Sigr;\al
Communication .
/ / \ \ Processing
Image Speech Video Advanced
Processing Processing Engineering DSP
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9@?"\3 Signal Processing Coverage
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Signal Processing can be further applied to:

Control system; System Identification;

Spectrum Estimation; Communications (Detection and Estimation) ;
Pattern Recognition Information Theorem and Coding;
Tomography; Medical Engineering

Media (Visual) Signal Processing:

Visual signal processing in 2D or 3D signals needs some processing
techniques (mathematics) to deal with operations or analysis of
signals.

Advanced Digital Signal Processing:

Present a series of relevant mathematical and statistical tools such
that we could use the so-called advanced visual signal processing
fundamentals to establish a solid backgrounds for advanced
researches and realization practices.

Department of Electrical Engineering, National Cheng Kung University MediaCore




%}?\3 Fundamentals for Advanced DSP

NCKU, Tainan Taiwan

Mathematical Topics for Signal Processing:
Linear System, Signal, Transformation;
Vector Spaces and Linear Algebra;
Probability and Stochastic Processes;
Optimization (Constrained);
Statistical Decision and Estimation Theorem
Iterative Methods

Mathematical Models:
Linear Signal Models:
Linear Discrete-time Models; Stochastic MA and AR Models;
Adaptive Filtering Models:
System Identification; Inverse System Identification;
Adaptive Predictors; Interference cancellation
Gaussian Random Models:
Random probability model: Normal, Poisson, ...
Hidden Markov Models:
Speech and text recognition, ...

Department of Electrical Engineering, National Cheng Kung University MediaCore}
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Special Topics on Visual Intelligence with Deep Learning
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Important Features for Visual Intelligence (HOG, SIFT, LBP)

Jar-Ferr Yang

Institute of Computer and Communication Engineering,
Department of Electrical Engineering,
National Cheng Kung University, Tainan, Taiwan

’ég‘? Histograms of Oriented Gradients (HOG)

NCKU, Tainan Taiwan

HOG is an edge orientation histograms based on the orientation
of the gradient in localized region that is called cells. Therefore, it
is easy to express the rough shape of the object and is robust to
variations in geometry and illumination changes. On the other
hand, rotation and scale changes are not supported.

HOG Feature Vector Extraction

1. Color image converted to grayscale

2. Luminance gradient calculated at each pixel

3. Create a histogram of gradient orientations I_.';-j
for each cell. o
v’ Feature quantity becomes robust to changes in form

4. Normalization and Descriptor Blocks
v’ Feature quantity becomes robust to changes in illumination

Department of Electrical Engineering, National Cheng Kung University MediaCore}

%)?\3 Gradient Computation
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Luminance gradient is calculated at each pixel

v" The luminance gradient is a vector with magnitude m(x,y) and
orientation &x,y) represented by the change in the luminance.

m(x,y) =(Lex+1,y) — Lx —Ly)) +(L(x,y +1) — L(x,y 1))’

L(x,y+1)—-L(x,y—-1
mmw=mn{(xy ) - L(x.y )j
L(x+1,y)-L(x-1y)
255
H H (xy+1)
——<f<— 0
2 2 (x-1.y) | (xy] {ng,sv
0
where L(x,y) denotes the luminance (xy-1)

value of pixel at (x,y).
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% HOG Feature Vector

NCKU, Tainan Taiwan

To create a histogram of gradient orientations for each cell (5x5

pixels) using the gradient magnitude and orientation of the
calculated.

v'The orientation bins are evenly spaced over 0°- 180° and divided
by nine of 20°. By adding the magnitude of the luminance
gradlent for each orientation, generation a histogram.

Orientation bin is [9+2J+Hx9

o <0< I Magnitude
2 2

EIEN
A4 xA

L3
*
Sy

% Normalization of HOG Feature Vector

NCKU, Tainan Taiwan

' DEmim
0 4 5 6 7 8

3
—  Department of Electrical Engineering, National C Orientation

Normalization and Descriptor Blocks
BLOCK CELL

|”|I||I| bl |.||||||| || sl
R ol o il el
> (k) |+1 i mm
= |”|I||I| I.|.||.|| qulm |.||||||| ne

v(n) denotes the nt" accumulated Lﬂ”ﬂ " L]uﬂ“ﬂﬂ”l]ﬂL |]J]uuﬂuhuu uu“}nn "

magnitudes for each bin direction

v" Normalization is performed by:

Block (3 x 3 cells) is performed by moving one cell to the
entire region.
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% Pictorial Examples

NCKU, Tainan Taiwan

(a) (0 (2)
(a) average gradient image over training examples
(b) each “pixel” shows max positive SVM weight in the block centered on that
pixel
(c) same as (b) for negative SVM weights
(d) test image
(e) its HOG descriptor
(f) HOG descriptor weighted by positive SVM weights
(g) HOG descriptor weighted by negative SVM weights

% Scale Invariant Feature Transform(SIFT)

NCKU, Tainan Taiwan
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Image content is transformed into local SIFT feature
coordinates that are invariant to translation, rotation, scale,
and other imaging parameters

Scale Selection Principle
In the absence of other evidence, assume that a scale level, at which
combination of normalized derivatives assumes a local maximum over scales,

can be treated as reflecting a characteristic length of a corresponding
structure in the data.

=» Maxima/minima of Difference of Gaussian

Lﬁ M

Radius
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Qd?*? Finding Keypoints — Scale, Location

NCKU, Tainan Taiwan

# of scales/octave

L = | T el
Scale ﬁw =ttt}
(next ﬁ N N O O
octave) ﬁ —;E !ﬁ

i
Down | e
sample
scale Find extrema
(first .
octave) in 3D
DoG space
Convolve =
with <
Gaussian Difference of
Gaussian Gaussian (DOG) D(z,y,0)
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Qd?“? Difference of Gaussian (1/2)

NCKU, Tainan Taiwan

Estimate the Gaussian difference of different o
D(xay’a) = (G(xayako-)_G(xayaa))*](xay)
:L(-x9yak0)_L(xayao-)

- —p=- > .
Scale > W /ﬁﬁ

Ml ——eamm, 4
i ==, “

y =

P e

e jxfﬁff/
Scale “%//}f//}/?jl : = —i/

_.f"ﬁ//j’fﬁ// ," R

>aussian Gaussian (DOG

P

¥

54

Department of Electrical Engineering, National Cheng Kung University MediaCore

Qd?“? Difference of Gaussian (2/2)

NCKU, Tainan Taiwan

Diffeiffiece rafeGafUGsiassizindnyadgesges

55
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%?*_? Check- Local Minima and Maxima

NCKU, Tainan Taiwan

Find the local minima and maxima
and check if X is the minima and maxima

The local minima and maxima binary images
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56




% Discard Low-contrast Feature Points

MNCKU, Tainan Taiwan

The real extrema

L

Detected extrema
1 | |

@ Taylor Expansion of DoG:

T 2
D(x):D+aD x+leaD
ox 2

@ Let D(x) = 0, the offset X is :

A 2 -1 A
x= _(6 D2 )(a—D) remove |x|> T
ox ox ’
A T N A
D(x) = D+l(8D )x remove|D(x)| < T,
2 0Ox '
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& Related Work — Scale-Invariant Feature Transform

NCKU, Tainan Taiwan

Eliminate edge responses

i H D\'\‘ Drr
Hessian matrix H=| " x
D-‘T D.n'

Tr(H)=D,.+D, =a+p
Det(H)=D,D, D} =ap

XYy

Principal curvature R: leta =y

poTr(H) _(@+p) _(B+p) _(r+1)

Del(H)  off B Y
. +1)° i
Remove the edge point by R> Py D" VWithigirrad 10
Vi
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% Feature Point Orientations

NCKU, Tainan Taiwan

The gradient magnitude m(x, y) and orientation 0 (x, y)

m(x,y) =(L(x+1,)~ L(x=1,»))* +(L(x,y + 1)~ L(x, y=1))’

O(x,y)= tan™' (L(x,y+)—L(x,y—-1),L(x+1,y)—-L(x—-1,y))

als]

gradient magnitude weighted by 2D weighted by 2D orientation
Gaussian kernel gradient magnitude
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% Generate the Descriptor of SIFT

NCKU, Tainan Taiwan

Form an orientation histogram with 8 bits (45 degree per bit)

ML R e | Ak \}\, N
FCRENNEONEEEERE SN T~ | [N <
A TSR RS TN A l
[T el Ae LAl [ 7N e [ . 1 "
e Ft e |\ B —td T ||| L [ 1 el BN Vg /
DR N | K| K K
Al A PR RN 2T ' >
AN =0 f"-‘-«(a-—{'\;ﬂﬁﬂ . B
TR ST SR L T B Zal PR Vo DR 2 N Vg
IS INDN MEJOSTWN NN |7
o [5] DANCORDENS 1
\.-n/\r}"/-—/"\a—'h"{‘ .. . 1.
TR RS J 1 J
ONSENEON SOns SO bz ool v o + E{T
SO TR AT ‘ : «

Image gradient Key-point descriptor

H angle histogram
0 2n
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% Finding Keypoints — Scale, Location

NCKU, Tainan Taiwan

B Sub-pixel Localization

U Fit Tri-variate quadratic to find sub-pixel extrema

B Eliminating edges Py~
.. . X Data points
U Similar to Harris corner detector A 2 setual inimum

Tr(H)2  (r+1)?
Det(H) = r

Department of Electrical Engineering, National Cheng Kung University

% Finding Keypoints — Scale, Location

NCKU, Tainan Taiwan

€ Key issue: Stability (Repeatability)

@ Alternatives
v Multi-scale Harris corner detector

v’ Harris-Laplacian
v’ Kadir & Brady Saliency Detector
Vo
v Uniform grid sampling
v" Random sampling
| Descriptor || Grid | Random | Saliency [4]] DoG [7] |
11 x 11 Pixel 64.0% 47.5% 45.5% N/A
128-dim Sift 65.2% 60.7% 53.1% 52.5%

** Important Note ** Their application was scene classification
NOT correspondence matching

Department of Electrical Engineering, National Cheng Kung University

% Finding Keypoints — Scale, Location

NCKU, Tainan Taiwan

Harris-Laplacian? scale o~ c
i i . ©
Find local maximum of: ‘S
Laplacian in scale B LQ"_
Harris corner detector in Y P S
space (image coordinates) J
< Harris —> X
e SIFT2 scale D
Find local maximum of: T
. . O
— Difference of Gaussians A~ 8
in space and scale Y e 1
<« DoG — X
1K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. [JCV 2004
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% Finding Keypoints — Orientation

M NCKU, Tainan Taiwan

B Create histogram of local
gradient directions computed
at selected scale

B Assign canonical orientation
at peak of smoothed
histogram

B Each key specifies stable 2D

coordinates (x,y, scale, [T 7S
orientation) :

B Assign dominant orientation as s
the orientation of the keypoint ey
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% Creating Signature

NCKU, Tainan Taiwan

B Thresholded image gradients are sampled over 16x16
array of locations in scale space

B Create array of orientation histograms
B 8 orientations x 4x4 histogram array = 128 dimensions

L%
K|k

Image gradients Keypoint descriptor

Department of Electrical Engineering, National Cheng Kung University

# dimension => empirically

% Comparison with HOG

NCKU, Tainan Taiwan

B Histogram of Oriented Gradients

B General object class recognition (Human)
U Engineered for a different goal

B Uniform sampling

B Larger cell (6-8 pixels)

B Fine orientation binning
U 9 bins/180° vs. 8 bins/360°

B Both are well engineered

Department of Electrical Engineering, National Cheng Kung University

% More about SIFT

NCKU, Tainan Taiwan

Comparison with MOPS:

€ Multi-lmage Matching using Multi-Scale Orientated Patches
(CVPR’05)

@ Simplified SIFT
v" Multi-scale Harris corner
v No Histogram in orientation selection

v" Smoothed image patch as descriptor
€ Good performance for panorama stitching

Conclusion about SIFT:

B Histogram of Oriented Gradients are becoming more
popular
B SIFT may not be optimal for general object classification

Department of Electrical Engineering, National Cheng Kung University MediaCore}

% Local Binary Pattern (LBP)

NCKU, Tainan Taiwan

Why LBP for Visual Description?
Object can be seen as a composition of micro-patterns
which can be well described by LBP operator.

Basic LBP operator

The LBP operator was originally designed for texture description.
The operator assigns a label to every pixel of an image by
thresholding the 3x3-neighborhood of each pixel with the center
pixel value and considering the result as a binary number.

The histogram of the labels used as a texture descriptor.

85| 99 :1TI oo 1|10
weshold ary: 110010

= 54| 54| 86| ——=| 1 1 Binary Flﬁou\lull
Decimal: 203

5711213 1/10|0|f
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% Uniform LBP Patterns and Histogram of LBP

NCKU, Tainan Taiwan

% LBP Operators for Different Scales

NCKU, Tainan Taiwan

w2

Notation for LBP Operator: LBP Uniform Pattern:
A local binary pattern is called uniform if the binary pattern contains at most
B Extended LBP operators to use larger neighborhoods of two bitwise transitions from 0 to 1 or vice versa when the bit pattern is
different sizes, where 12 stands for using only uniform considered circular. The patterns with 00000000 (0 transitions), 01110000 (2
patterns and the subscript (P. R) represents using the transitions) and 11001111 (2 transitions) are uniform. The patterns with

operator in a neighborhood with P points and R radius 11001001 (4 transitions) and 01010011 (6 transitions) are not uniform.

B Defining the local neighborhood as a set of sampling points Histogram of LBP:

evenly spaced on a circle centered at the pixel to be abled to B For the LBP histogram, uniform patterns are used so that the histogram

allow any radius and number of sampling points. has a separate bin for every uniform pattern and all non-uniform patterns
B |f a sampling point does not fall in the center of a pixel using are assigned to a single bin.
Bilinear interpolation. B OQjala et al. noticed that in their experiments with texture images, uniform
| patterns account for a bit less than 90 % of all patterns when using the
g P _ a2 (8,1) neighborhood and for around 70 % in the
HEDN . o [o] Te B (16,2) neighborhood. We have found that 90.6 % of the patterns in the
md 1} < (8,1) neighborhood and 85.2 % of the patterns in the (8,2) neighborhood
are uniform in case of preprocessed FERET facial images.
(8,1) (16,2) (8,2)
Department of Electrical Engineering, National Cheng Kung University —_  Department of Electrical Engineering, National Cheng Kung University
% Histogram of LBP Bins % Image Data Vectors
T T NCKU, Tainan Taiwan ¥ rean " NCKU, Tainan Taiwan
e e o [ L1 L1 PR ® Assume there are C subjects characterized by training facial
=" arava I images used for identity recognition. For C identities, the it"
== 3 identity is with N training facial images in size of pxq pixels and
T R II ll the kth channel of jth face image of ith identity is represented by
A 1 ,,]:,1.:->”m’"M”lc 0 7 Hlnfﬁii::zﬁx;l” Tnd’ Vi,/‘,k ER,i=1,2,..,C j=12,..., Nand k=12, .. K.
o7 [ 92|45 o} faiffs '

¢ To achieve subspace-based classification, the facial image, ¥, €
Rr*a*K is further reformed by converting it to grayscale domain
and cascading its ¢ column vectors into a larger column vector,
x,; € R™1, where d = pxgq.

LBP versus Gradient:

€ Two same gradients may correspond to
rather different local structures, thus

ambiguous. N
(a) )
@ The unexpected noises will drastically degrade the performance. Only Grayscale Transformation and Cascading:
gradient is insufficient to judge useful points and outliers. The “uniform LBP”
provides the possibility to effectively remove outliers. Vij e RPK Gij cR” X, € R
@ The gradient typically drops color information, for it is difficult to define a ’ ’ ’

metric for colors similar to intensity gradient.
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% Linear Regression Classification (LRC)

NCKU, Tainan Taiwan

Training Phase

Testing Phase

-

b" Vil "*" Vi ' i

Linear Model

[ y=Xp

Transformation and Cascading

Least Square Estimation

dxl A T -1 T
[ V., >G> x,;€R ] \..[ Birci :(Xi Xi) Xy ]
’ I’
™

Class-specific Model Reconstructed Sample

X, = [xi,l’xi,Z""’xi,j""’xi,N] [ j/LRC,i = XiﬂLRC,i = HLRC,iy
7 J
- N - y

Precomputation Distance Measure
-1 o . A .
[ H,., :X[(X,-TX,-) X7 ] [ [ :argmt_ln||y—yLRCJ|,1:1,2,...,C ]
7 L r
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% Module Linear Regression Classification (MLRC)

NCKU, Tainan Taiwan

¢ For the module LRC (MLRC) approach, each training image 7;; €
Rr¥a is segmented into M non-overlapped partitions as ¥, Each
partitioned image is formed as a column vector x/;i=1.2,....C, j
=1,2,...,.N, m=1.2,..., M.

EREN
1L
LELs
EEEN

Segmentation of a face image into M (M=16) modules.

74— Department of Electrical Engineering, National Cheng Kung University

% Module Linear Regression Classification

NCKU, Tainan Taiwan

Training Phase

Testing Phase

h’f Vii '?*' Via i

Linear Model

[ V' =X'B"

Segmentation and Cascading

Least Square Estimation

m m m d'x1
|V, V>G> xR

[ Bl = (XY XY (XY

7

m'™" module of Class-specific Model\

Reconstructed Sample

[ X! :[xir,nl’xir,nz"“’xrj"“’er] [ j’A”/l[LRc,i :Ximﬂ]\,;LRC,i :HA”/;LRC,iym ]
L ¢’
. R £ - b

Precomputation Distance Measure

-1 - . . o
([ H =X (0 xr) x| ._[ iyype = argmin(min[y” — 57, [) |
J >
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% Conclusions

NCKU, Tainan Taiwan

Features of Image:
€ Histogram of Gradient (HOG)
@ Scale Invariant Feature Transform (SIFT)
@ Local Binary Pattern (LBP)
€@ Multi-Scale Orientated Patches (MSOP)
€ Whole Image: Linear Regression (Image vector)

‘ Image has been transformed to feature vector! ‘

Intelligent Visualization: (Classification and Recognition)
B Linear Algebra: Vector and Matrix Operations
B Probability: Maximum Likelihood
B Machine Learning: Support Vector Machine
B Deep Learning: Convolution Neural Network

Smart Classification and Recognition by Using Data Vectors
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