

Chapter 13

Sound, Animation, And
Program Development:
The Astrocrash Game

Introducing the Read Key Program

read_key.py
Read Key
Demonstrates reading the keyboard

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Ship(games.Sprite): # A moving ship
 def update(self):
 """ Move ship based on keys pressed. """
 if games.keyboard.is_pressed(games.K_w):
 self.y -= 1
 if games.keyboard.is_pressed(games.K_s):
 self.y += 1
 if games.keyboard.is_pressed(games.K_a):
 self.x -= 1
 if games.keyboard.is_pressed(games.K_d):
 self.x += 1

def main():
 nebula_image = games.load_image("nebula.jpg",
 transparent = False)
 games.screen.background = nebula_image

 ship_image = games.load_image("ship.bmp")
 the_ship = Ship(image = ship_image,
 x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

 games.screen.mainloop()

main()
The batch file: read_key.bat
read_key.py
pause

Testing for Keystrokes
 We write a class for the ship. In update(), we check for

keystrokes and change the position of the ship accordingly:

class Ship(games.Sprite): # A moving ship
 def update(self):
 """ Move ship based on keys pressed. """
 if games.keyboard.is_pressed(games.K_w):
 self.y -= 1
 if games.keyboard.is_pressed(games.K_s):
 self.y += 1
 if games.keyboard.is_pressed(games.K_a):
 self.x -= 1
 if games.keyboard.is_pressed(games.K_d):
 self.x += 1

 We use the keyboard object from the games module. We
invoke the object’s is_pressed(), which returns True if the
key being tested for is pressed, and False if not.

 Use is_pressed() in if statements to test if any of the 4
keys—W, S, A, or D—is being pressed.

 If the W/S key is pressed, we decrease/increase the object’s
y by 1, moving the sprite up/down the screen by one pixel. If
the A/D key is pressed, we decrease/increase the object’s x
by 1, moving the sprite left/right.

 Since multiple calls to is_pressed() can read simultaneous
keypresses, the user can hold down multiple keys for a
combined effect.

 We use the games.K_w constant for the W key; games.K_s
for the S key; games.K_a for the A key; and games.K_d for
the D key.

 a quick way to figure out the name of most key constants:

 • All keyboard constants begin with games.K_.

 • For alphabetic keys, add the key letter, in lowercaselowercase, to
 the end of the constant name.

 • For numeric keys, add the key number to the end of the
 constant name, eg, games.K_1 for the 1 key.

 • For other keys, you can add their name in all capital
 letters to the end of the constant name, eg,
 games.K_SPACE for the spacebar.

 See the livewires/superwires documentation in Appendix B.

Wrapping Up the Program
Load the nebula background image, create a ship in the
middle of the screen, and invoke mainloop():

def main():
 nebula_image = games.load_image("nebula.jpg",
 transparent = False)
 games.screen.background = nebula_image

 ship_image = games.load_image("ship.bmp")
 the_ship = Ship(image = ship_image,
 x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

 games.screen.mainloop()

main()

Introducing the Rotate Sprite Program

rotate_sprite.py
Rotate Sprite
Demonstrates rotating a sprite

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Ship(games.Sprite):
 """ A rotating ship. """
 def update(self):
 """ Rotate based on keys pressed. """
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += 1
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= 1

The batch file: rotate_sprite.bat
rotate_sprite.py
pause

 if games.keyboard.is_pressed(games.K_1):
 self.angle = 0
 if games.keyboard.is_pressed(games.K_2):
 self.angle = 90
 if games.keyboard.is_pressed(games.K_3):
 self.angle = 180
 if games.keyboard.is_pressed(games.K_4):
 self.angle = 270

def main():
 nebula_image = games.load_image("nebula.jpg",
 transparent = False)
 games.screen.background = nebula_image

 ship_image = games.load_image("ship.bmp")
 the_ship = Ship(image = ship_image,
 x=games.screen.width/2, y=games.screen.height/2)
 games.screen.add(the_ship)
 games.screen.mainloop()

main()

Using a Sprite’s angle Property
 The angle property represents a sprite’s facing in degrees.

 In update(), we check if the right/left arrow key is pressed.
If yes, we add/subtract 1 to/from the object’s angle, which
rotates the sprite by 1 degree clockwise/counterclockwise.

 The next set of lines rotates the ship directly to a specific
angle by assigning a new value to angle.

 When the user presses the 1/2/3/4 key, the code assigns
0/90/180/270 to angle and the sprite jumps to a rotation of
0/90/180/270 degrees (its starting orientation).

Introducing the Explosion Program

explosion.py
Explosion
Demonstrates creating an animation

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

nebula_image = games.load_image("nebula.jpg",
 transparent = 0)
games.screen.background = nebula_image

explosion_files =["explosion1.bmp", "explosion2.bmp",
 "explosion3.bmp", "explosion4.bmp",
 "explosion5.bmp", "explosion6.bmp",
 "explosion7.bmp", "explosion8.bmp",
 "explosion9.bmp"]

The batch file: explosion.bat
explosion.py
pause

explosion =games.Animation(images =explosion_files,
 x = games.screen.width/2,
 y = games.screen.height/2,
 n_repeats = 0, repeat_interval = 5)

games.screen.add(explosion)

games.screen.mainloop()

Examining the Explosion Images
 An animation is a sequence of images (also called frames)

displayed in succession.

Creating a List of Image Files
 The constructor of the Animation class takes a list of

image file names or a list of image objects for the sequence
of images to display.

 So we create a list of image file names, which corresponds
to the images:

explosion_files =["explosion1.bmp", "explosion2.bmp",
 "explosion3.bmp", "explosion4.bmp",
 "explosion5.bmp", "explosion6.bmp",
 "explosion7.bmp", "explosion8.bmp",
 "explosion9.bmp"]

Creating an Animation Object
 Create an Animation object and add it to the screen:

explosion =games.Animation(images =explosion_files,
 x = games.screen.width/2,
 y = games.screen.height/2,
 n_repeats = 0, repeat_interval = 5)

games.screen.add(explosion)

games.screen.mainloop()

 The Animation class is derived from Sprite, so it inherits
all of Sprite’s attributes, properties, and methods.

 An animation is different from a sprite in that it has a list of
images that it cycles through. You must supply a list of image
file names as strings or a list of image objects for the images
to be displayed.

 An object’s n_repeats attribute represents how many times
the animation is displayed. 0 means that the animation will
loop forever. The default value of n_repeats is 0.

 An object’s repeat_interval attribute represents the delay
between successive images. A higher/lower number means a
longer/shorter delay between frames, resulting in a
slower/faster animation.

Introducing the Sound & Music Program

sound_and_music.py
Sound and Music
Demonstrates playing sound and music files

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

load a sound file
missile_sound = games.load_sound("missile.wav")

load the music file
games.music.load("theme.mid")

choice = None
while choice != "0":

The batch file: sound_and_music.bat
sound_and_music.py
pause

 print(
 """
 Sound and Music

 0 - Quit
 1 - Play missile sound
 2 - Loop missile sound
 3 - Stop missile sound
 4 - Play theme music
 5 - Loop theme music
 6 - Stop theme music
 """
)

 choice = input("Choice: ")
 print()

 # exit
 if choice == "0":
 print("Good-bye.")

 # play missile sound
 elif choice == "1":
 missile_sound.play()
 print("Playing missile sound.")

 # loop missile sound
 elif choice == "2":
 loop = int(input("Loop how many extra times?”+\
 “ (-1 = forever): "))
 missile_sound.play(loop)
 print("Looping missile sound.")

 # stop missile sound
 elif choice == "3":
 missile_sound.stop()
 print("Stopping missile sound.")

 # play theme music
 elif choice == "4":
 games.music.play()
 print("Playing theme music.")

 # loop theme music
 elif choice == "5":
 loop = int(input("Loop how many extra times?”+\
 “ (-1 = forever): "))
 games.music.play(loop)
 print("Looping theme music.")

 # stop theme music
 elif choice == "6":
 games.music.stop()
 print("Stopping theme music.")

 # some unknown choice
 else:
 print("\nSorry, but",choice,"isn't a valid choice.")

input("\n\nPress the enter key to exit.")

Loading a Sound
 Create a sound object for use in a program by loading a

WAV file, by using the games function load_sound():

missile_sound = games.load_sound("missile.wav")

 You can only load WAV files with load_sound().

 Load the music file:

games.music.load("theme.mid")

 Talk about this part later.

Playing a Sound
 Write a menu system:

choice = None
while choice != "0":
 print(
 """
 …

 """
)
 choice = input("Choice: ")
 print()

 if choice == "0":
 print("Good-bye.")

 If the user enters 0, the program says good-bye and exits.

 elif choice == "1":
 missile_sound.play()
 print("Playing missile sound.")

 To play the sound once, we invoke the sound object’s
play() method. When a sound plays, it takes up 1 of the 8
available sound channels.

 To play a sound, you need at least 1 open sound channel.
Once all 8 sound channels are in use, invoking a sound
object’s play() method has no effect.

Looping a Sound
You can loop a sound by passing the number of additional
times you want the sound played to the object’s play():

 elif choice == "2":
 loop = int(input("Loop how many extra times?”+\
 “ (-1 = forever): "))
 missile_sound.play(loop)
 print("Looping missile sound.")

Stopping a Sound
You stop a sound object from playing by invoking its stop()
method. This stops the particular sound on all channels that
it’s playing:

 elif choice == "3":
 missile_sound.stop()
 print("Stopping missile sound.")

Working with Music
 In livewires/superwires, music is handled differently than

sound.

 There is only one music channel, so only 1 file can be
designated as the current music file at any given time.

 The music channel accepts many different types of sound
files, including WAV, MP3, OGG, and MIDI.

 The code accesses music from games:

games.music.load("theme.mid")

 You load a music file by calling games.music.load() and
passing it the music file name as a string.

 You have only 1 available music track. So, if you load a new
music file, it replaces the current one.

Playing Music

 elif choice == "4":
 games.music.play()
 print("Playing theme music.")

As a result, the computer plays the music, theme.mid. If you
don’t pass any values to games.music.play(), the music
plays once.

Looping Music
Loop the music by passing the number of additional times
you want the music played to play():

 elif choice == "5":
 loop = int(input("Loop how many extra times?”+\
 “ (-1 = forever): "))
 games.music.play(loop)
 print("Looping theme music.")

Stopping Music

 elif choice == "6":
 games.music.stop()
 print("Stopping theme music.")

Stop the current music from playing by calling
games.music.stop().

Planning the Astrocrash Game
A list of features:

 • The ship rotates/thrusts forward based on keystrokes.

 • The ship fire missiles based on a keystroke.

 • Asteroids floats at different velocities. Smaller asteroids
 generally have higher velocities than larger ones.

 • The ship, any missiles, and any asteroids should “wrap
 around” the screen—if they move beyond a screen
 boundary, they should appear at the opposite boundary.

 • If a missile hits another object, it destroys the other
 object and itself in an explosion.

 • If the ship hits any other object on the screen, it destroy
 the other object and itself in an explosion.

 • If the ship is destroyed, the game is over.

 • If a large asteroid is destroyed, 2 new middle ones are
 produced. If a middle asteroid is destroyed, 2 new small
 ones are produced. If A small asteroid is destroyed, no
 new asteroids are produced.

 • Every time a player destroys an asteroid, his/her score
 increases. Smaller asteroids are worth more points than
 larger ones.

 • The player’s score is displayed in the upper-right corner
 of the screen.

 • Once all of the asteroids have been destroyed, a new,
 larger wave of asteroids should be created.

Game Classes
 • Ship

 • Missile

 • Asteroid

 • Explosion

Ship, Missile, and Asteroid will be derived from games.Sprite
while Explosion will be derived from games.Animation.

Game Assets
Since the game includes sound, music, sprites, animation, we
need to create some multimedia files:

 • An image file for the ship

 • An image file for the missiles

 • Three image files, one for each size of asteroid

 • A series of image files for an explosion

 • A sound file for the thrusting of the ship

 • A sound file for the firing of a missile

 • A sound file for the explosion of an object

 • A music file for the theme

Introducing the Astrocrash01 Program

astrocrash01.py
Astrocrash01
Get asteroids moving on the screen

import random
from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Asteroid(games.Sprite):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image(“big.bmp") }

 SPEED = 2

The batch file: astrocrash01.bat
astrocrash01.py
pause

 def __init__(self, x, y, size):
 """ Initialize asteroid sprite. """
 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 def update(self):
 """ Wrap around screen. """
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

def main(): # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 for i in range(8): # create 8 asteroids
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL,
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 games.screen.mainloop()
kick it off!
main()

The Asteroid Class
 The Asteroid class is used for creating moving asteroids:

class Asteroid(games.Sprite):
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 Images = {SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image(“big.bmp") }
 SPEED = 2

 Define class constants for the 3 different asteroid sizes:
SMALL, MEDIUM, and LARGE.

 Then create a dictionary with the sizes and corresponding
asteroid image objects. This way, we can use a size constant
to look up the corresponding image object.

The __init()__ Method
 def __init__(self, x, y, size):
 super(Asteroid, self).__init__(
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 size represents the size of the asteroid: Asteroid.SMALL,
Asteroid.MEDIUM, or Asteroid.LARGE.

 Based on size, the correct image for the new asteroid is
passed along to Sprite’s constructor. Same as x and y.

 The velocity components are random, but smaller asteroids
have the potential to move faster than larger ones.

The update() Method
 update() keeps an asteroid in play by wrapping it around

the screen:

 def update(self):

 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

The main() Function
 main() sets the nebula background and creates 8 asteroids

at random screen locations:

def main(): # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 for i in range(8): # create 8 asteroids
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL, \
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 games.screen.mainloop()
kick it off!
main()

Introducing the Astrocrash02 Program

astrocrash02.py
Astrocrash02
Get asteroids moving on the screen

import random
from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Asteroid(games.Sprite):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image("big.bmp") }

 SPEED = 2

The batch file: astrocrash02.bat
astrocrash02.py
pause

 def __init__(self, x, y, size):
 """ Initialize asteroid sprite. """
 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 def update(self):
 """ Wrap around screen. """
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

class Ship(games.Sprite):
 """ The player's ship. """
 image = games.load_image("ship.bmp")
 ROTATION_STEP = 3

 def update(self): # Rotate based on keys pressed.
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

def main(): # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 # create 8 asteroids
 for i in range(8):
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL,
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 # create the ship
 the_ship = Ship(image = Ship.image,
 x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

 games.screen.mainloop()

kick it off!
main()

The Ship Class
class Ship(games.Sprite):
 image = games.load_image("ship.bmp")
 ROTATION_STEP = 3

 def update(self):
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

This class is similar to the Rotate Sprite program. The
differences are

(1) we load the image of the ship and assign the resulting
 image object to the class variable image;

(2) we use the class constant ROTATION_STEP for the
 number of degrees by which the ship rotates.

Instantiating a Ship Object
Instantiate a Ship object and add it to the screen in main():

 the_ship = Ship(image = Ship.image,
 x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

Introducing the Astrocrash03 Program

astrocrash03.py
Astrocrash03
Get ship moving

import math, random
from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Asteroid(games.Sprite):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image("big.bmp") }

 SPEED = 2

The batch file: astrocrash03.bat
astrocrash03.py
pause

 def __init__(self, x, y, size):
 """ Initialize asteroid sprite. """
 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 def update(self):
 """ Wrap around screen. """
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

class Ship(games.Sprite):
 """ The player's ship. """
 image = games.load_image("ship.bmp")
 sound = games.load_sound("thrust.wav")
 ROTATION_STEP = 3
 VELOCITY_STEP = .03

 def update(self):
 """ Rotate and thrust based on keys pressed. """
 # rotate based on left and right arrow keys
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

 # apply thrust based on up arrow key
 if games.keyboard.is_pressed(games.K_UP):
 Ship.sound.play()

 # change velocity components by ship's angle
 angle = self.angle * math.pi / 180 # to radians
 self.dx += Ship.VELOCITY_STEP * \
 math.sin(angle)
 self.dy += Ship.VELOCITY_STEP * \
 -math.cos(angle)

 # wrap the ship around screen
 if self.top > games.screen.height:
 self.bottom = 0
 if self.bottom < 0:
 self.top = games.screen.height
 if self.left > games.screen.width:
 self.right = 0
 if self.right < 0:
 self.left = games.screen.width

def main():
 # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 for i in range(8): # create 8 asteroids
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL,
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 # create the ship
 the_ship = Ship(image = Ship.image,
 x=games.screen.width/2, y=games.screen.height/2)
 games.screen.add(the_ship)
 games.screen.mainloop()

kick it off!
main()

Importing the math Module

import math, random

The math module contains a bunch of mathematical
functions and constants.

Adding Ship Class Variable and Constant
 Create a class constant, VELOCITY_STEP, for altering the

ship’s velocity:

 VELOCITY_STEP = .03

 A higher number would make the ship accelerate faster,
while a lower number would make the ship accelerate more
slowly.

 Add a new class variable, sound, for the thrusting sound of
the ship:

 sound = games.load_sound("thrust.wav")

Modifying Ship’s update() Method
 Add code to Ship’s update() to move the ship. Check to see

if the player is pressing the up arrow key. If so, play the
thrusting sound:

 if games.keyboard.is_pressed(games.K_UP):
 Ship.sound.play()

 Then alter the ship’s velocity components (the Ship object’s
dx and dy). Get the angle of the ship, converted to radians:

 angle = self.angle * math.pi / 180

 Figure out how much to change each velocity component
using the math module’s sin() and cos() functions:

 self.dx += Ship.VELOCITY_STEP * math.sin(angle)
 self.dy += Ship.VELOCITY_STEP * -math.cos(angle)

 Then handle the screen boundaries as we did with the
asteroids:

 # wrap the ship around screen
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

 Repeated chunks of code bloat programs and make them
harder to maintain. When you see repeated code, it’s often
time for a new function or class.

Introducing the Astrocrash04 Program

astrocrash04.py
Astrocrash04
Get ship firing missiles

import math, random
from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Asteroid(games.Sprite):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image("big.bmp") }

 SPEED = 2

The batch file: astrocrash04.bat
astrocrash04.py
pause

 def __init__(self, x, y, size):
 """ Initialize asteroid sprite. """
 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 def update(self):
 """ Wrap around screen. """
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

class Ship(games.Sprite):
 """ The player's ship. """
 image = games.load_image("ship.bmp")
 sound = games.load_sound("thrust.wav")
 ROTATION_STEP = 3
 VELOCITY_STEP = .03

 def update(self):
 """ Rotate and thrust based on keys pressed. """
 # rotate based on left and right arrow keys
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

 # apply thrust based on up arrow key
 if games.keyboard.is_pressed(games.K_UP):
 Ship.sound.play()

 # change velocity components by ship's angle
 angle = self.angle * math.pi / 180 # to radians
 self.dx += Ship.VELOCITY_STEP * \
 math.sin(angle)
 self.dy += Ship.VELOCITY_STEP * \
 -math.cos(angle)

 # wrap the ship around screen
 if self.top > games.screen.height:
 self.bottom = 0
 if self.bottom < 0:
 self.top = games.screen.height
 if self.left > games.screen.width:
 self.right = 0
 if self.right < 0:
 self.left = games.screen.width

 # fire missile if spacebar pressed
 if games.keyboard.is_pressed(games.K_SPACE):
 new_missile = Missile(self.x, self.y, self.angle)
 games.screen.add(new_missile)

class Missile(games.Sprite):
 """ A missile launched by the player's ship. """
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

 def __init__(self, ship_x, ship_y, ship_angle):
 """ Initialize missile sprite. """
 Missile.sound.play()

 # convert to radians
 angle = ship_angle * math.pi / 180

 # calculate missile's starting position
 buffer_x = Missile.BUFFER * math.sin(angle)
 buffer_y = Missile.BUFFER * -math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

 # calculate missile's velocity components
 dx = Missile.VELOCITY_FACTOR * \
 math.sin(angle)
 dy = Missile.VELOCITY_FACTOR * \
 -math.cos(angle)
 # create the missile
 super(Missile, self).__init__(image = \
 Missile.image, x = x, y = y, dx = dx, dy = dy)
 self.lifetime = Missile.LIFETIME

 def update(self): #Move the missile
 # if lifetime is up, destroy the missile
 self.lifetime -= 1
 if self.lifetime == 0:
 self.destroy()

 # wrap the missile around screen
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

def main():
 # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 # create 8 asteroids
 for i in range(8):
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL,
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 # create the ship
 the_ship = Ship(image = Ship.image,
 x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

 games.screen.mainloop()

kick it off!
main()

Modifying Ship’s update() Method
 Modify Ship’s update() so that a ship can fire missiles. If

the player presses the spacebar, a new missile is created:

 if games.keyboard.is_pressed(games.K_SPACE):
 new_missile = Missile(self.x, self.y, self.angle)
 games.screen.add(new_missile)

 in order to instantiate a new object from Missile(self.x,
self.y, self.angle), we need to write a Missile class.

The Missile Class
 The Missile class is for the missiles that the ship fires:

class Missile(games.Sprite):
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

 BUFFER represents the distance from the ship that a new
missile is created. VELOCITY_FACTOR affects how fast the
missile travels. LIFETIME represents how long the missile
exists before it disappears.

The __init__() Method

 def __init__(self, ship_x, ship_y, ship_angle):

 The method needs the values to determine 2 things: exactly
where the missile first appears and its velocity components.

 Play the missile-firing sound effect:

 Missile.sound.play()

 Calculate to know the new missile’s starting location:

 angle = ship_angle * math.pi / 180

 buffer_x = Missile.BUFFER * math.sin(angle)
 buffer_y = Missile.BUFFER * -math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

 Calculate the missile’s velocity components:

 dx = Missile.VELOCITY_FACTOR * \
 math.sin(angle)
 dy = Missile.VELOCITY_FACTOR * \
 -math.cos(angle)

 Invoke the Sprite constructor for the object:

 super(Missile, self).__init__(image = \
 Missile.image, x = x, y = y, dx = dx, dy = dy)

 Give the Missile object a lifetime attribute so that the
object won’t be around forever:

 self.lifetime = Missile.LIFETIME

The update() Method
 def update(self):
 self.lifetime -= 1
 if self.lifetime == 0:
 self.destroy()

 Counts down the life of the missile. lifetime is decremented
. When it reaches 0, the Missile object destroys itself.

 Wrap the missile around the screen:

 if self.top > games.screen.height:
 self.bottom = 0
 if self.bottom < 0:
 self.top = games.screen.height
 if self.left > games.screen.width:
 self.right = 0
 if self.right < 0:
 self.left = games.screen.width

Introducing the Astrocrash05 Program

astrocrash05.py
Astrocrash05
Limiting missile fire rate

import math, random
from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Asteroid(games.Sprite):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image("big.bmp") }

 SPEED = 2

The batch file: astrocrash05.bat
astrocrash05.py
pause

 def __init__(self, x, y, size):
 """ Initialize asteroid sprite. """
 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 def update(self):
 """ Wrap around screen. """
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

class Ship(games.Sprite):
 """ The player's ship. """
 image = games.load_image("ship.bmp")
 sound = games.load_sound("thrust.wav")
 ROTATION_STEP = 3
 VELOCITY_STEP = .03
 MISSILE_DELAY = 25

 def __init__(self, x, y):
 """ Initialize ship sprite. """
 super(Ship, self).__init__(image = Ship.image,
 x = x, y = y)
 self.missile_wait = 0

 def update(self):
 """ Rotate and thrust based on keys pressed. """
 # rotate based on left and right arrow keys
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

 # apply thrust based on up arrow key
 if games.keyboard.is_pressed(games.K_UP):
 Ship.sound.play()

 # change velocity components by ship's angle
 angle = self.angle * math.pi / 180 # to radians
 self.dx += Ship.VELOCITY_STEP * \
 math.sin(angle)
 self.dy += Ship.VELOCITY_STEP * \
 -math.cos(angle)

 # wrap the ship around screen
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

 # decrease waiting until the ship can fire next
 if self.missile_wait > 0:
 self.missile_wait -= 1

 # fire missile if space pressed and wait is over
 if games.keyboard.is_pressed(games.K_SPACE) \
 and self.missile_wait == 0:
 new_missile = Missile(self.x, self.y, self.angle)
 games.screen.add(new_missile)
 self.missile_wait = Ship.MISSILE_DELAY

class Missile(games.Sprite):
 """ A missile launched by the player's ship. """
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

 def __init__(self, ship_x, ship_y, ship_angle):
 """ Initialize missile sprite. """
 Missile.sound.play()

 # convert to radians
 angle = ship_angle * math.pi / 180

 # calculate missile's starting position
 buffer_x = Missile.BUFFER * math.sin(angle)
 buffer_y = Missile.BUFFER * -math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

 # calculate missile's velocity components
 dx = Missile.VELOCITY_FACTOR * \
 math.sin(angle)
 dy = Missile.VELOCITY_FACTOR * \
 -math.cos(angle)

 # create the missile
 super(Missile, self).__init__(image = \
 Missile.image, x = x, y = y, dx = dx, dy = dy)
 self.lifetime = Missile.LIFETIME

 def update(self):
 """ Move the missile. """
 # if lifetime is up, destroy the missile
 self.lifetime -= 1
 if self.lifetime == 0:
 self.destroy()

 # wrap the missile around screen
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

def main(): # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 for i in range(8): # create 8 asteroids
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL,
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 # create the ship
 the_ship = Ship(x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

 games.screen.mainloop()

kick it off!
main()

 Add a class constant, MISSILE_DELAY, to Ship to force a
delay between missile firings. It represents the delay a
player must wait between missile firings:

 MISSILE_DELAY = 25

 Create a constructor method for the class:

 def __init__(self, x, y):
 super(Ship, self).__init__(image = Ship.image,
 x = x, y = y)
 self.missile_wait = 0

 The method accepts values for the x- and y-coordinates of
the new ship and passes those off to the superclass of Ship,
games.Sprite.

 missile_wait is used to count down the delay until the
player can fire the next missile.

Creating Ship’s Constructor Method

Modifying Ship’s update() Method
 Add some code to Ship’s update() to decrement an object’s

missile_wait, counting it down to 0:

 if self.missile_wait > 0:
 self.missile_wait -= 1

 Change the missile firing code to

 if games.keyboard.is_pressed(games.K_SPACE) \
 and self.missile_wait == 0:
 new_missile = Missile(self.x, self.y, self.angle)
 games.screen.add(new_missile)
 self.missile_wait = Ship.MISSILE_DELAY

 When the player presses the spacebar, the countdown must
be complete (missile_wait must be 0) before the ship will fire
a new missile. Once a missile is fired, we reset missile_wait
to MISSILE_DELAY to begin the countdown again.

Introducing the Astrocrash06 Program

astrocrash06.py
Astrocrash06
Handling collisions

import math, random
from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Asteroid(games.Sprite):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image("big.bmp") }

 SPEED = 2
 SPAWN = 2

The batch file: astrocrash06.bat
astrocrash06.py
pause

 def __init__(self, x, y, size):
 """ Initialize asteroid sprite. """
 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 def update(self):
 """ Wrap around screen. """
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

 def die(self):
 """ Destroy asteroid. """
 # if asteroid isn't small, replace with 2 smaller
 if self.size != Asteroid.SMALL:
 for i in range(Asteroid.SPAWN):
 new_asteroid = Asteroid(x= self.x, y= self.y,
 size = self.size - 1)
 games.screen.add(new_asteroid)
 self.destroy()

class Ship(games.Sprite):
 """ The player's ship. """
 image = games.load_image("ship.bmp")
 sound = games.load_sound("thrust.wav")
 ROTATION_STEP = 3
 VELOCITY_STEP = .03
 MISSILE_DELAY = 25

 def __init__(self, x, y):
 """ Initialize ship sprite. """
 super(Ship, self).__init__(image = Ship.image,
 x = x, y = y)
 self.missile_wait = 0

 def update(self):
 """ Rotate and thrust based on keys pressed. """
 # rotate based on left and right arrow keys
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

 # apply thrust based on up arrow key
 if games.keyboard.is_pressed(games.K_UP):
 Ship.sound.play()

 # change velocity components by ship's angle
 angle = self.angle * math.pi / 180 # to radians
 self.dx += Ship.VELOCITY_STEP * \
 math.sin(angle)
 self.dy += Ship.VELOCITY_STEP * \
 -math.cos(angle)

 # wrap the ship around screen
 if self.top > games.screen.height:
 self.bottom = 0
 if self.bottom < 0:
 self.top = games.screen.height
 if self.left > games.screen.width:
 self.right = 0
 if self.right < 0:
 self.left = games.screen.width

 # decrease wait until the ship can fire next
 if self.missile_wait > 0:
 self.missile_wait -= 1

 # fire if spacebar pressed and wait is over
 if games.keyboard.is_pressed(games.K_SPACE) \
 and self.missile_wait == 0:
 new_missile = Missile(self.x, self.y, self.angle)
 games.screen.add(new_missile)
 self.missile_wait = Ship.MISSILE_DELAY

 # check if ship overlaps any other object
 if self.overlapping_sprites:
 for sprite in self.overlapping_sprites:
 sprite.die()
 self.die()

 def die(self):
 """ Destroy ship. """
 self.destroy()

class Missile(games.Sprite):
 """ A missile launched by the player's ship. """
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

 def __init__(self, ship_x, ship_y, ship_angle):
 """ Initialize missile sprite. """
 Missile.sound.play()

 # convert to radians
 angle = ship_angle * math.pi / 180

 # calculate missile's starting position
 buffer_x = Missile.BUFFER * math.sin(angle)
 buffer_y = Missile.BUFFER * -math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

 # calculate missile's velocity components
 dx = Missile.VELOCITY_FACTOR * \
 math.sin(angle)
 dy = Missile.VELOCITY_FACTOR * \
 -math.cos(angle)

 # create the missile
 super(Missile, self).__init__(image = \
 Missile.image, x = x, y = y, dx = dx, dy = dy)
 self.lifetime = Missile.LIFETIME

 def update(self):
 """ Move the missile. """
 # if lifetime is up, destroy the missile
 self.lifetime -= 1
 if self.lifetime == 0:
 self.destroy()

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

 # check if missile overlaps any other object
 if self.overlapping_sprites:
 for sprite in self.overlapping_sprites:
 sprite.die()
 self.die()

 def die(self):
 """ Destroy the missile. """
 self.destroy()

def main(): # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 for i in range(8): # create 8 asteroids
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL,
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 # create the ship
 the_ship = Ship(x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

 games.screen.mainloop()

kick it off!
main()

Modifying Missile’s update() Method

 if self.overlapping_sprites:
 for sprite in self.overlapping_sprites:
 sprite.die()
 self.die()

 If a missile overlaps any other objects, the other objects
and the missile all have their die() called.

 die() is a new method added to Asteroid, Ship, and Missile.

Adding Missile’s die() Method
 Missile, like any class in this game, needs a die() method:

 def die(self):
 self.destroy()

 When a Missile object’s die() is invoked, the object destroys
itself.

Modifying Ship’s update() Method
 Add the following code to the Ship’s update() method:

 if self.overlapping_sprites:
 for sprite in self.overlapping_sprites:
 sprite.die()
 self.die()

 If the ship overlaps any other objects, the other objects and
the ship all have their die() called.

 This exact code also appears in Missile’s update() method.

 When you see duplicate code, you should think about how
to consolidate it.

Adding Ship’s die() Method
 This method is the same as Missile’s die() method:

 def die(self):
 self.destroy()

 When a Ship object’s die() method is invoked, the object
destroys itself.

Adding Asteroid’s die() Method
 Add class constant, SPAWN, to Asteroid. It is the number of

new asteroids that an asteroid spawns when destroyed:

 SPAWN = 2

 Asteroid’s die() method is more involved than the others:

 def die(self):
 if self.size != Asteroid.SMALL:
 for i in range(Asteroid.SPAWN):
 new_asteroid = Asteroid(x = self.x, y = self.y,
 size = self.size - 1)
 games.screen.add(new_asteroid)
 self.destroy()

 The method checks if the asteroid being destroyed isn’t
small. If not, 2 new smaller asteroids are created at the
current location. With/without new asteroids, the current
asteroid destroys itself.

Introducing the Astrocrash07 Program

astrocrash07.py
Astrocrash07
Add explosions

import math, random
from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Wrapper(games.Sprite):
 """ A sprite that wraps around the screen. """
 def update(self): #Wrap sprite around screen.
 if self.top > games.screen.height:
 self.bottom = 0
 if self.bottom < 0:
 self.top = games.screen.height
 if self.left > games.screen.width:
 self.right = 0
 if self.right < 0:
 self.left = games.screen.width

The batch file: astrocrash07.bat
astrocrash07.py
pause

 def die(self):
 """ Destroy self. """
 self.destroy()

class Collider(Wrapper):
 """ A Wrapper that collide with another object. """
 def update(self):
 """ Check for overlapping sprites. """
 super(Collider, self).update()

 if self.overlapping_sprites:
 for sprite in self.overlapping_sprites:
 sprite.die()
 self.die()

 def die(self):
 """ Destroy self and leave explosion behind. """
 new_explosion = Explosion(x = self.x, y = self.y)
 games.screen.add(new_explosion)
 self.destroy()

class Asteroid(Wrapper):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image("big.bmp") }

 SPEED = 2
 SPAWN = 2

 def __init__(self, x, y, size): # Initialize asteroid
 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.size = size

 def die(self):
 """ Destroy asteroid. """
 # if not small, replace with 2 smaller asteroids
 if self.size != Asteroid.SMALL:
 for i in range(Asteroid.SPAWN):
 new_asteroid =Asteroid(x = self.x, y = self.y,
 size = self.size - 1)
 games.screen.add(new_asteroid)

 super(Asteroid, self).die()

class Ship(Collider):
 """ The player's ship. """
 image = games.load_image("ship.bmp")
 sound = games.load_sound("thrust.wav")
 ROTATION_STEP = 3
 VELOCITY_STEP = .03
 MISSILE_DELAY = 25

 def __init__(self, x, y):
 """ Initialize ship sprite. """
 super(Ship, self).__init__(image = Ship.image,
 x = x, y = y)
 self.missile_wait = 0

 def update(self):
 """ Rotate, thrust, fire based on keys pressed. """
 super(Ship, self).update()

 # rotate based on left and right arrow keys
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

 # apply thrust based on up arrow key
 if games.keyboard.is_pressed(games.K_UP):
 Ship.sound.play()

 # change velocity components by ship's angle
 angle = self.angle * math.pi / 180 # to radians
 self.dx += Ship.VELOCITY_STEP * \
 math.sin(angle)
 self.dy += Ship.VELOCITY_STEP * \
 -math.cos(angle)

 # decrease wait until the ship can fire next
 if self.missile_wait > 0:
 self.missile_wait -= 1

 # fire if spacebar pressed and wait is over
 if games.keyboard.is_pressed(games.K_SPACE) \
 and self.missile_wait == 0:
 new_missile = Missile(self.x, self.y, self.angle)
 games.screen.add(new_missile)
 self.missile_wait = Ship.MISSILE_DELAY

class Missile(Collider):
 """ A missile launched by the player's ship. """
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

 def __init__(self, ship_x, ship_y, ship_angle):
 """ Initialize missile sprite. """
 Missile.sound.play()

 # convert to radians
 angle = ship_angle * math.pi / 180

 # calculate missile's starting position
 buffer_x = Missile.BUFFER * math.sin(angle)
 buffer_y = Missile.BUFFER * -math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

 # calculate missile's velocity components
 dx = Missile.VELOCITY_FACTOR * \
 math.sin(angle)
 dy = Missile.VELOCITY_FACTOR * \
 -math.cos(angle)

 # create the missile
 super(Missile, self).__init__(image = \
 Missile.image, x = x, y = y, dx = dx, dy = dy)
 self.lifetime = Missile.LIFETIME

 def update(self):
 """ Move the missile. """
 super(Missile, self).update()

 # if lifetime is up, destroy the missile
 self.lifetime -= 1
 if self.lifetime == 0:
 self.destroy()

class Explosion(games.Animation):
 """ Explosion animation. """
 sound = games.load_sound("explosion.wav")
 images = ["explosion1.bmp", "explosion2.bmp",
 "explosion3.bmp", "explosion4.bmp",
 "explosion5.bmp", "explosion6.bmp",
 "explosion7.bmp", "explosion8.bmp",
 "explosion9.bmp"]

 def __init__(self, x, y):
 super(Explosion, self).__init__(images = \
 Explosion.images, x = x, y = y,
 repeat_interval = 4, n_repeats = 1,
 is_collideable = False)
 Explosion.sound.play()

def main():
 # establish background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 # create 8 asteroids
 for i in range(8):
 x = random.randrange(games.screen.width)
 y = random.randrange(games.screen.height)
 size = random.choice([Asteroid.SMALL,
 Asteroid.MEDIUM, Asteroid.LARGE])
 new_asteroid = Asteroid(x = x, y = y, size = size)
 games.screen.add(new_asteroid)

 # create the ship
 the_ship = Ship(x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(the_ship)

 games.screen.mainloop()

kick it off!
main()

The Wrapper Class
 Start with the behind-the-scenes work. Create a new class,

Wrapper, based on games.Sprite. Wrapper‘s update()
automatically wraps an object around the screen:

class Wrapper(games.Sprite):
 def update(self):
 if self.top > games.screen.height:
 self.bottom = 0

 if self.bottom < 0:
 self.top = games.screen.height

 if self.left > games.screen.width:
 self.right = 0

 if self.right < 0:
 self.left = games.screen.width

 We’ve seen this code several times already. It wraps a
sprite around the screen. Now, if we base the other classes
in the game on Wrapper, its update() can keep instances of
those other classes on the screen—and the code only has to
exist in one place!

 Finish the class up with die() that destroys the object:

 def die(self):
 self.destroy()

The Collider Class
 Both Ship and Missile share the same collision handling, so

we create Collider (based on Wrapper) for objects that wrap
around the screen and that can collide with other objects:

class Collider(Wrapper):
 def update(self):
 super(Collider, self).update()

 if self.overlapping_sprites:
 for sprite in self.overlapping_sprites:
 sprite.die()
 self.die()

 The 1st thing is to invoke its superclass’s update(), ie,
Wrapper’s update(), to keep the object on the screen.

 Then check for collisions. If the object overlaps any others,
call die() for the other objects and for the object.

The die() Method
 Have a die() method for the class, since all Collider objects

will do the same thing when they die—create an explosion
and destroy themselves:

 def die(self):
 new_explosion = Explosion(x = self.x, y = self.y)
 games.screen.add(new_explosion)
 self.destroy()

 Explosion is a new class whose objects are explosion
animations.

Modifying the Asteroid Class
 Modify Asteroid so that the class is based on Wrapper:

class Asteroid(Wrapper):

 Asteroid now inherits update() from Wrapper, so we cut
Asteroid’s own update().

 The only other thing is to change Asteroid’s die(). We
replace self.die() with

 super(Asteroid, self).die()

 if we ever change Wrapper’s die(), Asteroid will
automatically reap the benefits.

Modifying the Ship Class
 Modify Ship so that the class is based on Collider:

class Ship(Collider):

 In Ship’s update(), we add

 super(Ship, self).update()

 Since Collider’s update() handles collision, we cut the code
for collision detection from Ship’s update(). Since Collider’s
update() invokes Wrapper’s update(), we cut the screen
wrapping code from Ship’s update(), too. We also cut Ship’s
die(), as the class inherits Collider’s version.

Modifying the Missile Class
 Modify Missile so that the class is based on Collider:

class Missile(Collider):

 In Missile’s update(), we add

 super(Missile, self).update()

 Since Collider’s update() handles collision, we cut the code
for collision detection from Missile’s update(). Collider’s
update() invokes Wrapper’s update() method, so we cut the
screen wrapping code from Missile’s update(), too. We also
cut Missile’s die(), as the class inherits Collider’s version.

The Explosion Class
 Since we want to create animated explosions, we write an

Explosion class based on games.Animation:

class Explosion(games.Animation):
 """ Explosion animation. """
 sound = games.load_sound("explosion.wav")
 images = ["explosion1.bmp", "explosion2.bmp",
 "explosion3.bmp", "explosion4.bmp",
 "explosion5.bmp", "explosion6.bmp",
 "explosion7.bmp", "explosion8.bmp",
 "explosion9.bmp"]

 Define sound for the sound effect of an explosion. Define
images for the list of image file names for the 9 frames of the
explosion animation.

 The Explosion constructor:

 def __init__(self, x, y):
 super(Explosion, self).__init__(images = \
 Explosion.images, x = x, y = y,
 repeat_interval = 4, n_repeats = 1,
 is_collideable = False)
 Explosion.sound.play()

 x and y represent the screen coordinates for the explosion.

 Pass 1 to n_repeats so that the animation plays just once.

 pass 4 to repeat_interval so that the speed of the animation
looks right.

 Pass False to is_collideable so that the explosion animation
doesn’t count as a collision for other sprites that might
happen to overlap it.

 Play the explosion sound effect with Explosion.sound.play()
at the end.

Introducing the Astrocrash08 Program

astrocrash08.py
Astrocrash08
Add Game object for complete program

import math, random
from superwires import games, color

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Wrapper(games.Sprite):
 """ A sprite that wraps around the screen. """
 def update(self): #Wrap sprite around screen.
 if self.top > games.screen.height:
 self.bottom = 0
 if self.bottom < 0:
 self.top = games.screen.height
 if self.left > games.screen.width:
 self.right = 0
 if self.right < 0:
 self.left = games.screen.width

 def die(self):
 """ Destroy self. """
 self.destroy()

class Collider(Wrapper):
 """ A Wrapper that collide with another object. """
 def update(self):
 """ Check for overlapping sprites. """
 super(Collider, self).update()

 if self.overlapping_sprites:
 for sprite in self.overlapping_sprites:
 sprite.die()
 self.die()

 def die(self):
 """ Destroy self and leave explosion behind. """
 new_explosion = Explosion(x = self.x, y = self.y)
 games.screen.add(new_explosion)
 self.destroy()

class Asteroid(Wrapper):
 """ An asteroid which floats across the screen. """
 SMALL = 1
 MEDIUM = 2
 LARGE = 3
 images={SMALL : games.load_image("small.bmp"),
 MEDIUM : games.load_image("med.bmp"),
 LARGE : games.load_image("big.bmp") }

 SPEED = 2
 SPAWN = 2
 POINTS = 30

 total = 0

 def __init__(self, game, x, y, size):
 """ Initialize asteroid sprite. """
 Asteroid.total += 1

 super(Asteroid, self).__init__(\
 image = Asteroid.images[size], x = x, y = y,
 dx = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size,
 dy = random.choice([1, -1]) * Asteroid.SPEED \
 * random.random()/size)

 self.game = game
 self.size = size

 def die(self):
 """ Destroy asteroid. """
 Asteroid.total -= 1

 self.game.score.value += \
 int(Asteroid.POINTS / self.size)
 self.game.score.right = games.screen.width - 10

 # if not small, replace with two smaller asteroids
 if self.size != Asteroid.SMALL:
 for i in range(Asteroid.SPAWN):
 new_asteroid = Asteroid(game = self.game,
 x = self.x, y = self.y, size = self.size - 1)
 games.screen.add(new_asteroid)

 # if all asteroids are gone, advance to next level
 if Asteroid.total == 0:
 self.game.advance()

 super(Asteroid, self).die()

class Ship(Collider): # The player's ship
 image = games.load_image("ship.bmp")
 sound = games.load_sound("thrust.wav")
 ROTATION_STEP = 3
 VELOCITY_STEP = .03
 VELOCITY_MAX = 3
 MISSILE_DELAY = 25

 def __init__(self, game, x, y):
 """ Initialize ship sprite. """
 super(Ship, self).__init__(image = Ship.image,
 x = x, y = y)
 self.game = game
 self.missile_wait = 0

 def update(self):
 """ Rotate, thrust, fire based on keys pressed. """
 super(Ship, self).update()

 # rotate based on left and right arrow keys
 if games.keyboard.is_pressed(games.K_LEFT):
 self.angle -= Ship.ROTATION_STEP
 if games.keyboard.is_pressed(games.K_RIGHT):
 self.angle += Ship.ROTATION_STEP

The batch file: astrocrash08.bat
astrocrash08.py
pause

 # apply thrust based on up arrow key
 if games.keyboard.is_pressed(games.K_UP):
 Ship.sound.play()

 # change velocity components by ship's angle
 angle = self.angle * math.pi / 180 # to radians
 self.dx += Ship.VELOCITY_STEP * \
 math.sin(angle)
 self.dy += Ship.VELOCITY_STEP * \
 -math.cos(angle)

 # cap velocity in each direction
 self.dx = min(max(self.dx,
 -Ship.VELOCITY_MAX), Ship.VELOCITY_MAX)
 self.dy = min(max(self.dy,
 -Ship.VELOCITY_MAX), Ship.VELOCITY_MAX)

 # decrease wait until the ship can fire next
 if self.missile_wait > 0:
 self.missile_wait -= 1

 # fire if spacebar pressed & missile wait is over
 if games.keyboard.is_pressed(games.K_SPACE) \
 and self.missile_wait == 0:
 new_missile = Missile(self.x, self.y, self.angle)
 games.screen.add(new_missile)
 self.missile_wait = Ship.MISSILE_DELAY

 def die(self):
 """ Destroy ship and end the game. """
 self.game.end()
 super(Ship, self).die()

class Missile(Collider):
 """ A missile launched by the player's ship. """
 image = games.load_image("missile.bmp")
 sound = games.load_sound("missile.wav")
 BUFFER = 40
 VELOCITY_FACTOR = 7
 LIFETIME = 40

 def __init__(self, ship_x, ship_y, ship_angle):
 """ Initialize missile sprite. """
 Missile.sound.play()

 # convert to radians
 angle = ship_angle * math.pi / 180

 # calculate missile's starting position
 buffer_x = Missile.BUFFER * math.sin(angle)
 buffer_y = Missile.BUFFER * -math.cos(angle)
 x = ship_x + buffer_x
 y = ship_y + buffer_y

 # calculate missile's velocity components
 dx = Missile.VELOCITY_FACTOR * \
 math.sin(angle)
 dy = Missile.VELOCITY_FACTOR * \
 -math.cos(angle)

 # create the missile
 super(Missile, self).__init__(image = \
 Missile.image, x = x, y = y, dx = dx, dy = dy)
 self.lifetime = Missile.LIFETIME

 def update(self): # Move the missile.
 super(Missile, self).update()

 # if lifetime is up, destroy the missile
 self.lifetime -= 1
 if self.lifetime == 0:
 self.destroy()

class Explosion(games.Animation):
 """ Explosion animation. """
 sound = games.load_sound("explosion.wav")
 images = ["explosion1.bmp", "explosion2.bmp",
 "explosion3.bmp”, "explosion4.bmp",
 "explosion5.bmp", "explosion6.bmp",
 "explosion7.bmp", "explosion8.bmp",
 "explosion9.bmp"]

 def __init__(self, x, y):
 super(Explosion, self).__init__(images = \
 Explosion.images, x= x, y= y, repeat_interval = 4,
 n_repeats = 1, is_collideable = False)
 Explosion.sound.play()

class Game(object):
 """ The game itself. """
 def __init__(self):
 """ Initialize Game object. """
 self.level = 0 # set level

 # load sound for level advance
 self.sound = games.load_sound("level.wav")

 # create score
 self.score = games.Text(value = 0, size = 30,
 color = color.white, top = 5,
 right = games.screen.width – 10,
 is_collideable = False)
 games.screen.add(self.score)

 # create player's ship
 self.ship = Ship(game = self,
 x = games.screen.width/2,
 y = games.screen.height/2)
 games.s creen.add(self.ship)

 def play(self):
 """ Play the game. """
 # begin theme music
 games.music.load("theme.mid")
 games.music.play(-1)

 # load and set background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 # advance to level 1
 self.advance()

 # start play
 games.screen.mainloop()

 def advance(self):
 """ Advance to the next game level. """
 self.level += 1

 # preserve space near ship if creating asteroids
 BUFFER = 150

 # create new asteroids
 for i in range(self.level):
 # calculate (x, y) BUFFER from the ship

 # choose min distance along x-axis and y-axis
 x_min = random.randrange(BUFFER)
 y_min = BUFFER - x_min

 # choose components based on min distance
 x_distance = random.randrange(x_min,
 games.screen.width - x_min)
 y_distance = random.randrange(y_min,
 games.screen.height – y_min)

 # calculate location based on distance
 x = self.ship.x + x_distance
 y = self.ship.y + y_distance

 # wrap around screen, if necessary
 x %= games.screen.width
 y %= games.screen.height

 # create the asteroid
 new_asteroid = Asteroid(game = self,
 x = x, y = y, size = Asteroid.LARGE)
 games.screen.add(new_asteroid)

 # display level number
 level_message = games.Message(value= "Level" \
 + str(self.level), size = 40, color = color.yellow,
 x = games.screen.width/2,
 y = games.screen.width/10,
 lifetime = 3 * games.screen.fps,
 is_collideable = False)
 games.screen.add(level_message)

 # play new level sound (except at first level)
 if self.level > 1:
 self.sound.play()

 def end(self): # End the game
 # show 'Game Over' for 5 seconds
 end_message = games.Message(value = \
 "Game Over", size = 90, color = color.red,
 x = games.screen.width/2,
 y = games.screen.height/2,
 lifetime = 5 * games.screen.fps,
 after_death = games.screen.quit,
 is_collideable = False)
 games.screen.add(end_message)

def main():
 astrocrash = Game()
 astrocrash.play()

kick it off!
Main()

Importing the color Module
 Along with games, import color from livewires/superwires:

from livewires import games, color

 Need the color module so that the “Game Over” message
can be displayed in a nice, bright red color.

The Game Class
 The Game class—a new class for an object that represents

the game itself.

 The game itself could certainly be an object with methods
like play() to start the game, advance() to move the game to
the next level, and end() to end the game.

 Designing the game as an object makes it easy for other
objects to send the game messages.

 Much of the code that was in main() has been incorporated
into Game.

The __init__() Method
class Game(object):
 def __init__(self):
 self.level = 0 # set level

 self.sound = games.load_sound("level.wav")

 # create score
 self.score = games.Text(value = 0, size = 30,
 color = color.white, top = 5,
 right = games.screen.width – 10,
 is_collideable = False)
 games.screen.add(self.score)

 # create player's ship
 self.ship = Ship(game = self,
 x = games.screen.width/2,
 y = games.screen.height/2)
 games.screen.add(self.ship)

 level is an attribute for the current game level number.
sound is an attribute for the level-advance sound effect.
score is an attribute for the game score—it’s a Text object
that appears in the upper-right corner of the screen.

 The object’s is_collideable property is False, which means
that the score won’t register in any collisions—so the
player’s ship won’t “crash into” the score and explode!

 ship is an attribute for the player’s ship.

The play() Method
 def play(self):
 games.music.load("theme.mid")
 games.music.play(-1)

 # load and set background
 nebula_image = games.load_image("nebula.jpg")
 games.screen.background = nebula_image

 self.advance()

 games.screen.mainloop()

 The method loads the theme music and plays it so that it
will loop forever. It loads the nebula image and sets it as the
background. Then the method calls the Game object’s own
advance(), which advances the game to the next level. Then,
play() invokes games.screen.mainloop() to kick off the whole
game!

The advance() Method
 advance() moves the game to the next level. It increments

the level number, creates a new wave of asteroids, displays
the level number, and plays the level-advance sound.

 Increase the level number firstly:

 def advance(self):
 self.level += 1

 Each level starts with the number of asteroids equal to the
level number. So, the 1st level starts with only 1 asteroid, the
2nd with 2, and so on.

 Need to make sure that no new asteroid is created right on
top of the ship. BUFFER is a constant for the amount of safe
space around the ship.:

 BUFFER = 150

 # create new asteroids
 for i in range(self.level):
 # calculate (x, y) BUFFER from the ship

 # choose min distance along x-axis and y-axis
 x_min = random.randrange(BUFFER)
 y_min = BUFFER - x_min

 # choose components based on min distance
 x_distance = random.randrange(x_min,
 games.screen.width - x_min)
 y_distance = random.randrange(y_min,
 games.screen.height – y_min)

 # calculate location based on distance
 x = self.ship.x + x_distance
 y = self.ship.y + y_distance

 # wrap around screen, if necessary
 x %= games.screen.width
 y %= games.screen.height

 # create the asteroid
 new_asteroid = Asteroid(game = self,
 x = x, y = y, size = Asteroid.LARGE)
 games.screen.add(new_asteroid)

 Start a loop. In each iteration, create a new asteroid at a
safe distance from the ship.

 x_min/y_min is the min distance the new asteroid should be
from the ship along the x-/y-axis. We add variation by using
the random module, but x_min+y_min will be total BUFFER.

 x_distance/y_distance is the distance from the ship for the
new asteroid along the x-/y-axis. It is a randomly selected
number that ensures that the new asteroid will be at least
x_min/y_min distance from the ship.

 x/y is the x-/y-coordinate for the new asteroid. We calculate
it by adding the ship’s x/y to x_distance/y_distance. Then I
make sure x/y won’t put the asteroid off the screen by
“wrapping it around” the screen with the modulus operator.

 Since each asteroid should be able to call a method of the
Game object, each Asteroid object needs a reference to the
Game object. We pass self to the parameter game, which the
Asteroid constructor will use as an attribute for the game.

 Display the new level number and play the level-up sound:

 # display level number
 level_message = games.Message(value= "Level" \
 + str(self.level), size = 40, color = color.yellow,
 x = games.screen.width/2,
 y = games.screen.width/10,
 lifetime = 3 * games.screen.fps,
 is_collideable = False)
 games.screen.add(level_message)

 # play new level sound (except at first level)
 if self.level > 1:
 self.sound.play()

The end() Method
 end() displays the message “Game Over” in the middle of

the screen in big, red letters for about 5 seconds. After that,
the game ends and the graphics screen closes:

 def end(self):
 """ End the game. """
 # show 'Game Over' for 5 seconds
 end_message = games.Message(value = \
 "Game Over", size = 90, color = color.red,
 x = games.screen.width/2,
 y = games.screen.height/2,
 lifetime = 5 * games.screen.fps,
 after_death = games.screen.quit,
 is_collideable = False)
 games.screen.add(end_message)

Adding an Asteroid Class Variable and
Constant
 Add a class constant:

 POINTS = 30

 The constant will act as a base value for the number of
points an asteroid is worth. The actual point value will be
modified according to the size of the asteroid—smaller
asteroids will be worth more than larger ones.

 In order to change levels, the program needs to know when
all of the asteroids on the current level are destroyed.

 Keep track of the total number of asteroids with a new
class variable, total:

 total = 0

Modifying Asteroid’s Constructor Method
 Add a line to increment Asteroid.total In the constructor:

 Asteroid.total += 1

 We want any asteroid to be able to send the Game object a
message, so we give each Asteroid object a reference to the
Game object:

 def __init__(self, game, x, y, size):

 The game parameter accepts the Game object, and is used
to create an attribute for the new Asteroid object:

 self.game = game

 So, each new Asteroid object has an attribute game to refer
to the game itself. Through game, an Asteroid object can call
a method of the Game object, such as advance().

Modifying Asteroid’s die() Method
 Decrement Asteroid.total:

 Asteroid.total -= 1

 Increase the score based on Asteroid.POINTS and the size
of the asteroid. Also make sure the score is flush right:

 self.game.score.value += \
 int(Asteroid.POINTS / self.size)
 self.game.score.right = games.screen.width - 10

 When we create each of the 2 new asteroids, we need to
pass a reference to the Game object, by modifying the call to
the Asteroid constructor:

 new_asteroid = Asteroid(game = self.game,

 Test Asteroid.total to see if all the asteroids have been
destroyed. If so, the final asteroid invokes the Game object’s
advance(), which advances the game to the next level and
creates a new group of asteroids:

 if Asteroid.total == 0:
 self.game.advance()

Modifying Ship’s Constructor Method
 Create a class constant, VELOCITY_MAX, to limit the max

velocity of the player’s ship:

 VELOCITY_MAX = 3

 a Ship object needs to have access to the Game object so it
can invoke a Game object method:

 def __init__(self, game, x, y):

 The new parameter, game, is used to create an attribute for
the Ship object:

 self.game = game

 Each Ship object has an attribute game that refers to the
game itself. Through game, a Ship object can call a method
of the Game object, like end().

Modifying Ship’s update() Method
 Cap the individual velocity components of a Ship object, dx

and dy, using the class constant MAX_VELOCITY:

 self.dx = min(max(self.dx,
 -Ship.VELOCITY_MAX), Ship.VELOCITY_MAX)
 self.dy = min(max(self.dy,
 -Ship.VELOCITY_MAX), Ship.VELOCITY_MAX)

 The code ensures that dx and dy > –Ship.VELOCITY_MAX
and < Ship.VELOCITY_MAX.

 min() returns the min of 2 numbers, while max() returns
the max of 2 numbers.

 Cap the ship’s speed to avoid several potential problems,
including the ship running into its own missiles.

Adding Ship’s die() Method
 When the player’s ship is destroyed, the game is over:

 def die(self):
 """ Destroy ship and end the game. """
 self.game.end()
 super(Ship, self).die()

The main() Function
 Create a Game object and invoke the object’s play() to put

the game in action:

def main():
 astrocrash = Game()
 astrocrash.play()

kick it off!
main()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158

