

Chapter 12

Graphics:
The Pizza Panic Game

The pygame and livewires Packages
 pygame and livewires are sets of modules (called packages)

that give Python programmers access to multimedia classes.

 With these classes, you can create programs with graphics,
sound effects, music, animation. The packages allow input
from a variety of devices, including the mouse and keyboard.

 With these packages, you won’t have to worry about the
low-level hardware details. You can concentrate on the logic
and get to writing games fast.

 pygame let you write impressive multimedia programs in
Python. livewires takes advantage of the power of pygame
while reducing the complexity for the programmer. livewires
provides a simpler way to get started programming games
with graphics and sound. And even though you won’t directly
access pygame, it will work hard behind the scenes.

Installing Pygame and livewires

 Download pygame 1.9.4 cp37 cp37m win32.whl‑ ‑ ‑ ‑ from

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame

 Follow the instructions in the video clip

https://www.youtube.com/watch?v=ki_5uS4bOgQ

with Python 3.7 and pygame 1.9.4 cp37 cp37m win32.whl‑ ‑ ‑ ‑

Download livewires.zip from moodle and unzip it in your
Python/Scripts directory, then run setup.py

Alternative: pip install superwires

Pygame and superwires in anaconda
 In Anaconda, it becomes easier. Go to anaconda’s prompt

pip install pygame

pip install superwires

The New Graphics Window Program
The batch file: new_graphics_window.bat
new_graphics_window.py
pause

new_graphics_window.py
New Graphics Window
Demonstrates creating a graphics window

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

games.screen.mainloop()

Importing the games Module
 superwires is made up of several modules, including

games, containing objects & classes for game programming.

 You can import a specific module of a package by using the
from statement. To import a module, use from, then a
package name, then import, then a module name (or a list of
module names separated by commas).

from superwires import games

 Game Objects

 Game Classes

Initializing the Graphics Screen

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

 Call games.init() to create a new graphics screen.

 screen_width is the width of the screen, screen_height is
the height of the screen. fps (short for “frames per second”)
is the number of times of updating the screen every second.

Starting the Main Loop
games.screen.mainloop()

 screen is the games object that represents the graphics
screen. mainloop() is the workhorse of screen and updates
the graphics window, redrawing everything fps times/second.

 So this line keeps the graphics window open and updates
the screen 50 times per second.

 screen‘s property:

 screen‘s methods:

The Background Image Program

background_image.py
Background Image
Demonstrates setting the background image of a
graphics screen

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

wall_image = games.load_image("wall.jpg",
 transparent = False)
games.screen.background = wall_image

games.screen.mainloop()

The batch file: background_image.bat
background_image.py
pause

Loading an Image
 Before you can use an image, you have to load the image

into memory to create an image object.

wall_image = games.load_image("wall.jpg",
 transparent = False)

 games.load_image() loads the image, wall.jpg, into
memory and assigns it to wall_image.

 load_image() takes 2 arguments: a string for the file name
of the image and True or False for transparent.

 Always load a background image with transparent=False.

 load_image() works with many image file types, including
JPEG, BMP, GIF, PNG, PCX, and TGA.

Setting the Background

games.screen.background = wall_image

sets the background of the screen to wall_image.

The Graphics Coordinate System
 Think of a graphics screen as a grid, 640 columns across by

480 rows down. Each intersection of a column and a row is a
location on the screen, a pixelpixel.

 When you talk about a specific point on the screen, you
give 2 coordinates: x for the column, y for the row.

 The upper-leftmost point is (x,y)=(0,0). The point in the
lower-right corner (x,y)=(639,479).

 You can place graphics objects, like the image of a pizza or
the red-colored text “Game Over,” on the screen using the
coordinate system. The centercenter of a graphics object is placed
at the specified coordinates.

Introducing the Pizza Sprite Program

pizza_sprite.py
Pizza Sprite
Demonstrates creating a sprite

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

wall_image = games.load_image("wall.jpg",
 transparent = False)
games.screen.background = wall_image

pizza_image = games.load_image("pizza.bmp")
pizza = games.Sprite(image = pizza_image,
 x = 320, y = 240)
games.screen.add(pizza)

games.screen.mainloop()

 The batch file: pizza_sprite.bat
pizza_sprite.py
pause

Loading an Image for a Sprite
 Load a pizza image into memory to create an image object:

pizza_image = games.load_image("pizza.bmp")

 There is one difference in the way we load a background
image, ie, we didn’t include transparent. The default value is
True, so the image is loaded with transparency on.

 When an image is with transparency on, it’s displayed on a
graphics screen that the background image shows through
its transparent parts.

 The transparent parts of an image are defined by their
color. If an image is with transparency on, the color of the
point at the upper-left corner of the image is its transparent
color. All parts of the image that are this transparent color
will allow the background of the screen to show through.

 If we load this Swiss cheese image with transparency on,
every part that is pure white (the color taken from the pixel
in the image’s upper-left corner) will be transparent when
the sprite is displayed on a graphics screen.

 As a general rule, you’ll want to create
your sprite image on a solid color that is
not used in any other part of the image.

 Make sure your sprite image doesn’t also
contain the color you’re using for trans-
parency. Otherwise, those parts of the sprite
will become transparent too, making your
sprite look like it has small holes or tears in it as the
background image of the graphics screen shows through.

Creating a Sprite
 Create a pizza sprite:

pizza = games.Sprite(image = pizza_image, x = 320,
 y = 240)

 A new Sprite object, pizza, is created with the image of a
pizza and x- and y-coordinates of (320,240), which puts it
right in the middle of the screen.

 When you create a Sprite object, you should pass an
image, an x-coordinate, a y-coordinate to the class
constructor.

Adding a Sprite to the Screen

games.screen.add(pizza)

 add() simply adds a sprite to the graphics screen.

 Useful Sprite properties

 Useful Sprite methods

Introducing the Big Score Program

big_score.py

Big Score
Demonstrates displaying text on a graphics screen

from superwires import games, color

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

wall_image = games.load_image("wall.jpg",
 transparent = False)
games.screen.background = wall_image

Score=games.Text(value =”Score: 1756521”, size=50,
 color = color.black, x = 500, y = 30)
games.screen.add(score)

games.screen.mainloop()

The batch file: big_score.bat
big_score.py
pause

Importing the color Module
 livewires/superwires contains another module, color,

which defines a set of constants that represent different
colors.

 These colors can be used with certain graphics objects,
including any Text or Message object.

 See the livewires/superwires documentation in Appendix B
for a complete list of the predefined colors.

 To choose from a group of possible colors, we import the
color module:

from superwires import games, color

Creating a Text Object
 A Text object represents text on the graphics screen.

 Create a Text object and assign it to score:

score = games.Text(value =”Score: 1756521”, size =50,
 color = color.black, x = 500, y = 30)

 At a minimum, you should pass the constructor method for
a Text object, a value to be displayed as text, a font size, a
color, an x-coordinate, and a y-coordinate.

 A Text object will be displayed as the string representation
of whatever you pass value.

 size represents the height of the text in pixels.

Adding a Text Object to the Screen
 add the new object to the screen so it will be displayed:

games.screen.add(score)

 Text is a subclass of Sprite, so Text inherits all of Sprite’s
properties, attributes, and methods.

 2 additional Text properties that the class defines:

Introducing the You Won Program

you_won.py
You Won
Demonstrates displaying a message

from superwires import games, color

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
wall_image = games.load_image("wall.jpg",
 transparent = False)
games.screen.background = wall_image

won_message = games.Message(value = "You won!",
 size = 100, color = color.red,
 x=games.screen.width/2, y=games.screen.height/2,
 lifetime = 250, after_death = games.screen.quit)
games.screen.add(won_message)

games.screen.mainloop()

The batch file: you_won.bat
you_won.py
pause

Creating a Message Object
 Messages are created from the games class Message. A

message is a special kind of Text object that destroys itself
after a set period of time. A message can specify a method or
a function to be executed after the object destroys itself.

 The constructor method for Message takes all of the
values you saw with Text, but adds 2 more: lifetime and
after_death. lifetime takes an integer value that represents
how long the message is displayed, measured in mainloop()
cycles. after_death can be passed a method or function to
be executed after the Message object destroys itself. The
default value for after_death is None.

 Our code instantiates a new Message with lifetime = 250.
So the object lives for about 5 seconds, because mainloop()
runs at 50 frames per second.

won_message = games.Message(value = "You won!",
 size = 100, color = color.red,
 x=games.screen.width/2, y=games.screen.height/2,
 lifetime = 250, after_death = games.screen.quit)

 After the 5 seconds, games.screen.quit() is called, since
we pass that method to after_death. At that point, the
screen and all of its associated objects are destroyed and the
program ends.

Using the Screen’s Width and Height
 The screen object has a width property, which represents

the width of the graphics screen, a height property, which
represents the height of the graphics screen.

 We pass values for the location of the new Message object,
with x = games.screen.width/2, y=games.screen.height/2.
By setting the x-coordinate to half of the screen width and
the y-coordinate to half of the screen height, we put the
object right in the middle of the screen.

 You can use this technique to put an object in the middle of
the graphics screen, independent of the actual screen width
and height.

Adding a Message Object to the Screen

games.screen.add(won_message)

 Message is a subclass of Text. So Message inherits all of
Text’s properties, attributes, and methods.

 2 additional Message attributes:

Introducing the Moving Pizza Program

moving_pizza.py
Moving Pizza
Demonstrates sprite velocities

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
wall_image = games.load_image("wall.jpg",
 transparent = False)
games.screen.background = wall_image

pizza_image = games.load_image("pizza.bmp")
the_pizza = games.Sprite(image = pizza_image,
 x = games.screen.width/2,
 y = games.screen.height/2, dx = 1, dy = 1)
games.screen.add(the_pizza)

games.screen.mainloop()

The batch file: moving_pizza.bat
moving_pizza.py
pause

Setting a Sprite’s Velocity Values
 All we have to do is modify the code that creates a new

sprite by providing additional values for dx and dy to the
constructor method:

the_pizza = games.Sprite(image = pizza_image,
 x = games.screen.width/2,
 y = games.screen.height/2, dx = 1, dy = 1)

 Every object based on Sprite has dx and dy properties for
the object’s velocity along the x and y axes, respectively.

 dx is the change in the object’s x-coordinate and dy is the
change in the object’s y-coordinate each time screen is
updated by mainloop().

 A positive value for dx/dy moves the sprite right/down,
while a negative value for dx/dy moves it left/up.

 dx and dy both have the default value of 0.

 For dx = 1 and dy = 1, every time the graphics window is
updated by mainloop(), the pizza’s x-coordinate is increased
by 1 and its y-coordinate is increased by 1, moving the sprite
right and down.

Introducing the Bouncing Pizza Program

bouncing_pizza.py
Bouncing Pizza
Demonstrates dealing with screen boundaries

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)
class Pizza(games.Sprite):
 """ A bouncing pizza. """
 def update(self):
 """ Reverse a velocity component at edge."""
 if self.right > games.screen.width or self.left < 0:
 self.dx = - self.dx

 if self.bottom>games.screen.height or self.top<0:
 self.dy = - self.dy

def main():
 wall_image = games.load_image("wall.jpg",
 transparent = False)
 games.screen.background = wall_image

 pizza_image = games.load_image("pizza.bmp")
 the_pizza = Pizza(image = pizza_image,
 x = games.screen.width/2,
 y = games.screen.height/2,
 dx = 1,
 dy = 1)
 games.screen.add(the_pizza)

 games.screen.mainloop()

kick it off!
main()

The batch file: bouncing_pizza.bat
bouncing_pizza.py
pause

Deriving a New Class from Sprite
 Want a sprite to do something it isn’t programmed to do:

bounce. So, we need to derive a new class from Sprite:

class Pizza(games.Sprite):
 """ A bouncing pizza. """

Overriding the update() Method
 We need to add just a single method to the Pizza class to

turn a moving pizza into a bouncing one.

 Every time the graphics window is updated by mainloop(),
the following 2 things happen:

 • Each sprite’s position is updated based on its dx and dy
 • Each sprite’s update() method is called

 Each Sprite object has update(); it does nothing by default

 By overriding update() in Pizza, we can handle screen
boundary checking.

 In the method, we check to see if the sprite is about to go
beyond the screen limits in any direction. If so, we reverse
the responsible velocity:

 def update(self):
 """ Reverse a velocity component at edge."""
 if self.right > games.screen.width or self.left < 0:
 self.dx = -self.dx

 if self.bottom>games.screen.height or self.top<0:
 self.dy = -self.dy

 If the object’s right/bottom property, the x/y-coordinate of
its right/bottom edge, > games.screen.width/games.screen.
height, or if the object’s left/top property, the x/y-coordinate
of its left/top edge, < 0, then we reverse dx/dy, the pizza’s
horizontal/vertical velocity, to “bounce” the pizza off the
screen boundary.

Wrapping Up the Program
 We organize the rest of the code into a function main().

 One important difference is that we created an object from
the new Pizza class instead of Sprite. Because of this, the
object’s update() checks for screen boundaries and reverses
the velocities when necessary for a pizza that bounces!

Introducing the Moving Pan Program

moving_pan.py
Moving Pan
Demonstrates mouse input

from superwires import games

games.init(screen_width = 640, screen_height = 480,
 fps = 50)

class Pan(games.Sprite):
 """" A pan controlled by the mouse. """
 def update(self):
 """ Move to mouse coordinates. """
 self.x = games.mouse.x
 self.y = games.mouse.y

The batch file: moving_pan.bat
moving_pan.py
pause

def main():
 wall_image = games.load_image("wall.jpg",
 transparent = False)
 games.screen.background = wall_image

 pan_image = games.load_image("pan.bmp")
 the_pan = Pan(image = pan_image,
 x = games.mouse.x, y = games.mouse.y)
 games.screen.add(the_pan)

 games.mouse.is_visible = False

 games.screen.event_grab = True

 games.screen.mainloop()

kick it off!
main()

Reading Mouse x- and y-coordinates
 Create Pan for the pan sprite:

class Pan(games.Sprite):
 def update(self):
 self.x = games.mouse.x
 self.y = games.mouse.y

 The mouse object has an x/y property for its x/y-coordinate
. With them, we can read the current mouse location.

 In update() we assign the Pan object’s x/y the value of the
mouse object’s x/y. It moves the pan to the current location
of the mouse pointer.

 We then write a main() function that contains the type of
code you’ve seen before that sets the background image and
creates sprite objects:

def main():
 wall_image = games.load_image("wall.jpg",
 transparent = False)
 games.screen.background = wall_image

 pan_image = games.load_image("pan.bmp")
 the_pan = Pan(image = pan_image,
 x = games.mouse.x,
 y = games.mouse.y)
 games.screen.add(the_pan)

 By passing games.mouse.x to x and games.mouse.y to y,
the Pan object starts off at the mouse coordinates.

Setting Mouse Pointer Visibility
 use the mouse object’s is_visible property to set the

visibility of the mouse pointer:

 games.mouse.is_visible = False

 Setting the property to True means the mouse pointer will
be visible, while setting it to False means the pointer will not
be visible.

Grabbing Input to the Graphics Window
 Use the screen object’s event_grab property to grab all of

the input to the graphics screen:

 games.screen.event_grab = True

 Setting it to True means that all input will be focused on
the graphics screen. The benefit of this is that the mouse
won’t leave the graphics window.

 Setting the it to False means that all input is not focused on
the graphics screen and that the mouse pointer can leave the
graphics window.

 If you grab all of the input to the graphics screen, you
won’t be able to close the graphics window with the mouse.
However, you can always close the window by pressing the
Escape key.

Introducing the Slippery Pizza Program

slippery_pizza.py
Slippery Pizza Program
Demonstrates testing for sprite collisions

from superwires import games
import random

games.init(screen_width = 640, screen_height = 480,
 Fps = 50)

class Pan(games.Sprite):
 """" A pan controlled by the mouse. """
 def update(self):
 """ Move to mouse position. """
 self.x = games.mouse.x
 self.y = games.mouse.y
 self.check_collide()

 def check_collide(self):
 for pizza in self.overlapping_sprites:
 pizza.handle_collide()

class Pizza(games.Sprite):
 """" A slippery pizza. """
 def handle_collide(self):
 """ Move to a random screen location. """
 self.x = random.randrange(games.screen.width)
 self.y = random.randrange(games.screen.height)

def main():
 wall_image = games.load_image("wall.jpg",
 transparent = False)
 games.screen.background = wall_image
 pizza_image = games.load_image("pizza.bmp")
 pizza_x = random.randrange(games.screen.width)
 pizza_y = random.randrange(games.screen.height)
 the_pizza = Pizza(image = pizza_image,
 x = pizza_x, y = pizza_y)
 games.screen.add(the_pizza)

 pan_image = games.load_image("pan.bmp")
 the_pan = Pan(image = pan_image,
 x = games.mouse.x,
 y = games.mouse.y)
 games.screen.add(the_pan)

 games.mouse.is_visible = False

 games.screen.event_grab = True

 games.screen.mainloop()

kick it off!
main() The batch file: slippery_pizza.bat

slippery_pizza.py
pause

 Create a new Pan class by adding some code for the
collision detection:

class Pan(games.Sprite):
 def update(self):
 self.x = games.mouse.x
 self.y = games.mouse.y
 self.check_collide()

 def check_collide(self):
 for pizza in self.overlapping_sprites:
 pizza.handle_collide()

 check_collide() loops through the Pan object’s overlapping
_sprites property—a list of all of the objects that overlap it.

 Each object that overlaps the pan calls its handle_collide().
Basically, the pan tells any object that overlaps it to handle
the collision.

Detecting Collisions

Handling Collisions
 Create a new Pizza class:

class Pizza(games.Sprite):
 def handle_collide(self):
 self.x = random.randrange(games.screen.width)
 self.y = random.randrange(games.screen.height)

 handle_collide() generates random screen coordinates and
moves the Pizza object to this new location.

Introducing the Pizza Panic Game

Game Over

pizza_panic.py
Pizza Panic
Player must catch pizzas before they hit the ground

from superwires import games, color
import random

games.init(screen_width = 640, screen_height = 480,
 Fps = 50)

class Pan(games.Sprite):
 """A pan controlled by player to catch pizzas. """
 image = games.load_image("pan.bmp")

 def __init__(self):
 """ Initialize Pan object and Text for score. """
 super(Pan, self).__init__(image = Pan.image,
 x = games.mouse.x,
 bottom = games.screen.height)

 self.score = games.Text(value = 0, size = 25,
 color = color.black, top = 5,
 right = games.screen.width - 10)
 games.screen.add(self.score)

 def update(self):
 self.x = games.mouse.x # Move to mouse’s x.

 if self.left < 0:
 self.left = 0

 if self.right > games.screen.width:
 self.right = games.screen.width

 self.check_catch()

 def check_catch(self):
 for pizza in self.overlapping_sprites: # if catched
 self.score.value += 10
 self.score.right = games.screen.width - 10
 pizza.handle_caught()

class Pizza(games.Sprite):
 """ A pizza which falls to the ground. """
 image = games.load_image("pizza.bmp")
 speed = 1

 def __init__(self, x, y = 90):
 """ Initialize a Pizza object. """
 super(Pizza, self).__init__(image = Pizza.image,
 x = x, y = y, dy = Pizza.speed)

 def update(self):
 """ Check if bottom reached screen bottom. """
 if self.bottom > games.screen.height:
 self.end_game()
 self.destroy()

 def handle_caught(self):
 """ Destroy self if caught. """
 self.destroy()

 def end_game(self):
 """ End the game. """
 end_message=games.Message(value="Game Over",
 size = 90, color = color.red,
 x = games.screen.width/2,
 y = games.screen.height/2,
 lifetime = 5 * games.screen.fps,
 after_death = games.screen.quit)
 games.screen.add(end_message)

class Chef(games.Sprite):
 """A chef moves left and right, dropping pizzas. """
 image = games.load_image("chef.bmp")

 def __init__(self, y=55, speed=2, odds_change = 200):
 """ Initialize the Chef object. """
 super(Chef, self).__init__(image = Chef.image,
 x = games.screen.width / 2, y = y, dx = speed)

 self.odds_change = odds_change
 self.time_til_drop = 0

 def update(self):
 """ Decide if direction needs to be reversed. """
 if self.left < 0 or self.right > games.screen.width:
 self.dx = -self.dx
 elif random.randrange(self.odds_change) == 0:
 self.dx = -self.dx

 self.check_drop()

 def check_drop(self):
 """Decrease countdown/drop pizza & reset. """
 if self.time_til_drop > 0:
 self.time_til_drop -= 1
 else:
 new_pizza = Pizza(x = self.x)
 games.screen.add(new_pizza)

 # set buffer to approx 30% of pizza height
 self.time_til_drop = int(new_pizza.height * 1.3 /
 Pizza.speed) + 1

def main():
 """ Play the game. """
 wall_image = games.load_image("wall.jpg",
 transparent = False)
 games.screen.background = wall_image

 the_chef = Chef()
 games.screen.add(the_chef)

 the_pan = Pan()
 games.screen.add(the_pan)

 games.mouse.is_visible = False

 games.screen.event_grab = True
 games.screen.mainloop()

start it up!
main()

The batch file: pizza_panic.bat
pizza_panic.py
pause

The Pan Class
 The Pan class is a blueprint for the pan sprite that the

player controls with the mouse. However, the pan will only
move left and right.

 Load a sprite image to a class variable, image, because
Pizza Panic has several classes, and loading an image in its
corresponding class definition is cleaner than loading all of
the images in main():

class Pan(games.Sprite):
 image = games.load_image("pan.bmp")

The __init__() Method
 Write the constructor to initialize a new Pan object:

 def __init__(self):
 """ Initialize Pan object and Text for score. """
 super(Pan, self).__init__(image = Pan.image,
 x = games.mouse.x,
 bottom = games.screen.height)

 self.score = games.Text(value = 0, size = 25,
 color = color.black, top = 5,
 right = games.screen.width - 10)
 games.screen.add(self.score)

 We use super() to make sure that Sprite.init() is called. And
we define an attribute score —a Text object—for the player’s
score, which begins at 0.

The update() Method
 update() moves the player’s pan:

 def update(self):
 self.x = games.mouse.x

 if self.left < 0:
 self.left = 0

 if self.right > games.screen.width:
 self.right = games.screen.width

 self.check_catch()

 update() assigns the mouse x-coordinate to the Pan object’s
x-coordinate, allowing the player to move the pan left and
right with the mouse.

 Use the object’s left/right to check if its left/right edge is
less/greater than 0/games.screen.width —meaning that part
of the pan is beyond the left/right edge of the graphics
window.

 If it is, we set the left/right edge to 0/games.screen.width
so that the pan is displayed at the left/right edge of the
window.

The check_catch() Method
 check_catch() checks if the player has caught any of the

falling pizzas:

 def check_catch(self):
 for pizza in self.overlapping_sprites:
 self.score.value += 10
 self.score.right = games.screen.width - 10
 pizza.handle_caught()

 For each object that overlaps the pan, check_catch()
increases the player’s score by 10.

 Then it ensures that the right edge of the Text object for
the score is always 10 pixels from the right edge of the
screen, no matter how many digits long the score gets.

The Pizza Class
 This class is for the falling pizzas that the player must

catch:

class Pizza(games.Sprite):
 image = games.load_image("pizza.bmp")
 speed = 1

 image for the pizza image and speed for the pizzas’ falling
speed.

 We set speed to 1 so that the pizzas fall at a slow speed.

The __init__() Method
 __init__() initializes a new Pizza object:

 def __init__(self, x, y = 90):
 super(Pizza, self).__init__(image = Pizza.image,
 x = x, y = y, dy = Pizza.speed)

 In this method we call the constructor of the super class of
Pizza.

 We set the default value for y to 90, which puts each new
pizza right at the chef’s chest level.

The update() Method
 update() handles screen boundary checking:

 def update(self):
 if self.bottom > games.screen.height:
 self.end_game()
 self.destroy()

 update() checks if a pizza has reached the bottom of the
screen. If it has, the method invokes the object’s end_game()
and then the object removes itself from the screen.

The handle_caught() Method
 handle_caught() is invoked by the Pan object when the

Pizza object collides with it:

 def handle_caught(self):
 self.destroy()

 When a pizza collides with a pan, the pizza is considered
“caught” and simply ceases to exist. So, the Pizza object
invokes its own destroy() and the pizza literally disappears.

The end_game() Method
● end_game() ends the game. It’s invoked when a pizza
reaches the bottom of the screen:
 def end_game(self):
 end_message=games.Message(value="Game Over",
 size = 90, color = color.red,
 x = games.screen.width/2,
 y = games.screen.height/2,
 lifetime = 5 * games.screen.fps,
 after_death = games.screen.quit)
 games.screen.add(end_message)

 It creates a Message object that declares game over. After
~5 seconds, the message disappears and the window closes.

 end_game() is called when a pizza reaches the bottom.
Since “Game Over” lasts ~ 5 seconds, it’s likely for another
pizza to reach the bottom before the graphics window closes
—resulting in multiple “Game Over” messages.

The Chef Class
 The Chef class is used to create the crazy chef who throws

the pizzas off the restaurant rooftop:

class Chef(games.Sprite):
 image = games.load_image("chef.bmp")

 Define a class attribute, image, for the chef image.

The __init__() Method

 def __init__(self, y=55, speed=2, odds_change = 200):
 super(Chef, self).__init__(image = Chef.image,
 x = games.screen.width / 2, y = y, dx = speed)

 self.odds_change = odds_change
 self.time_til_drop = 0

 Call the constructor of the super class of Chef. Pass image
the class attribute Chef.image. Pass x to put the chef in the
middle. y=55 puts the chef on top of the brick wall. dx is
passed speed, determining the chef’s horizontal velocity as
he moves along the rooftop. The default value is 2.

 odds_change represents the odds that the chef changes his
direction. If odds_change=200, then there’s a 1/200 chance
that every time the chef moves, he’ll reverse direction.

 time_til_drop represents the amount of time, in mainloop()
cycles, until the chef drops his next pizza. We set it to 0
initially, meaning that when a Chef object springs to life, it
should immediately drop a pizza.

The update() Method
 def update(self):
 if self.left < 0 or self.right > games.screen.width:
 self.dx = -self.dx
 elif random.randrange(self.odds_change) == 0:
 self.dx = -self.dx

 self.check_drop()

 A chef slides along the rooftop in one direction until he
either reaches the edge of the screen or “decides,” at
random, to switch directions.

 update() checks if the chef has moved beyond the left or
right edge. If he has, then he reverses direction with the
code self.dx = - self.dx. Or the chef has a 1/odds_change
chance of changing direction.

The check_drop() Method
 The method is invoked every mainloop() cycle:

 def check_drop(self):
 if self.time_til_drop > 0:
 self.time_til_drop -= 1
 else:
 new_pizza = Pizza(x = self.x)
 games.screen.add(new_pizza)
 self.time_til_drop = int(new_pizza.height * 1.3 /
 Pizza.speed) + 1

 time_til_drop represents a countdown. If time_til_drop > 0 ,

then 1 is subtracted from it. Or a new Pizza object is created
and time_til_drop is reset.

 The new time_til_drop is set so that the pizza is dropped
when the distance from the previous one is about 30% of the
pizza height, independent of how fast the pizzas are falling.

The main() Function
def main():
 wall_image = games.load_image("wall.jpg",
 transparent = False)
 games.screen.background = wall_image

 the_chef = Chef()
 games.screen.add(the_chef)

 the_pan = Pan()
 games.screen.add(the_pan)

 games.mouse.is_visible = False

 games.screen.event_grab = True
 games.screen.mainloop()

start it up!
main()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

