

Chapter 11

GUI Development:
The Mad Lib Program

Examining A GUI
 Define all of the GUI (Graphical User Interface) elements

you’ll meet in this chapter.

 To create a GUI with Python, we need to use a GUI toolkit.

 There are many to pick from, but we use Tkinter, or TK, a
popular cross-platform toolkit, here.

 We create GUI elements by instantiating objects from
classes of the tkinter module, part of the Tkinter toolkit.

 No need to memorize all of these tkinter classes.

Understanding Event-Driven Programming
 GUI programs are event-driven, meaning they respond to

actions regardless of the order in which they occur.

 For an event-driven program, you bind (associate) events
(things that can happen involving the program’s objects)
with event handlers (code that runs when the events occur).

 By defining all of your objects, events, and event handlers,
you establish how your program works. Then, you kick off
the program by entering an event loop, where the program
waits for the events to occur. When any of those events do
occur, the program handles them, just as you’ve laid out.

Introducing the Simple GUI Program
 The batch file: simple_gui.bat

simple_gui.py
pause

 In addition to the window just showed, Simple GUI may
generate another window (depending upon your system): the
familiar console window.

 On a Windows machine, the easiest way to suppress the
accompanying console window is to change the extension of
your program from py to pyw.

simple_gui.py
Simple GUI
Demonstrates creating a window

from tkinter import *

create the root window
root = Tk()

modify the window
root.title("Simple GUI")
root.geometry("200x100")

kick off the window's event-loop
root.mainloop()

Importing the tkinter Module

from tkinter import *

 The code imports all of tkinter directly into the program’s
global scope.

 Normally, you want to avoid doing something like this;
however, tkinter is designed to be imported in this way.

Creating a Root Window
 To create a root window, we instantiate an object of the

tkinter class Tk:

root = Tk()

 Notice that we didn’t have to prefix the module name,
tkinter, to the class name, Tk.

 In fact, we can now directly access any part of the tkinter
module, without having to use the module name. This saves a
lot of typing and makes code easier to read.

 You can have only one root window in a Tkinter program.

Modifying a Root Window
 Modify the root window using a few of its methods:

root.title("Simple GUI")
root.geometry("200x100")

 title() sets the title of the root window. All you have to do
is pass the title you want displayed as a string.

 geometry() sets the size of the root window, in pixels. The
method takes a string (and not integers) that represents the
window’s width and height, separated by the "x" character.

Entering a Root Window’s Event Loop
 Start up the window’s event loop by invoking root ’s

mainloop():

root.mainloop()

 As a result, the window stays open, waiting to handle
events.

Using Labels
 GUI elements are called widgets, short for window gadgets.

 The simplest widget is the Label widget, which is
uneditable text and/or icons.

 A Label widget labels part of a GUI. It’s often used to label
other widgets. And labels aren’t interactive.

Introducing the Labeler Program
 The batch file: labeler.bat

labeler.py
pause

labeler.py

Labeler
Demonstrates a label

from tkinter import *

create the root window
root = Tk()
root.title("Labeler")
root.geometry("200x50")

create a frame in the window to hold other widgets
app = Frame(root)
app.grid()

create a label in the frame
lbl = Label(app, text = "I'm a label!")
lbl.grid()

kick off the window's event loop
root.mainloop()

Creating a Frame
 A Frame is a widget that can hold other widgets (eg, Label

widget). You use it as a base on which to place other things:

app = Frame(root)

 When you create a new widget, you must pass its master
(the thing that will contain the widget) to the constructor of
the new object. Here, we pass root to the Frame constructor.

 Invoke the grid() method of the new object:

app.grid()

 grid() is a method that all widgets have. It’s associated
with a layout manager, which lets you arrange widgets.

Creating a Label
 create a Label widget by instantiating an object of the

Label class:

lbl = Label(app, text = "I'm a label!")

 By passing app to the Label object’s constructor, we make
the frame that app refers to the master of the Label widget.
As a result, the label is placed in the frame.

 By passing "I'm a label!" to the text parameter, we set the
widget’s text option to that string.

 Invoke the object’s grid() method:

lbl.grid()

ensures that the label will be visible.

Introducing the Lazy Buttons Program
 The batch file: lazy.buttons.bat

lazy_buttons.py
pause

lazy_buttons.py
Lazy Buttons
Demonstrates creating buttons

from tkinter import *

create a root window
root = Tk()
root.title("Lazy Buttons")
root.geometry("200x85")

create a frame in the window to hold other widgets
app = Frame(root)
app.grid()

create a button in the frame
bttn1 = Button(app, text = "I do nothing!")
bttn1.grid()

create a second button in the frame
bttn2 = Button(app)
bttn2.grid()
bttn2.configure(text = "Me too!")

create a third button in the frame
bttn3 = Button(app)
bttn3.grid()
bttn3["text"]= "Same here!"

kick off the root window's event loop
root.mainloop()

Creating Buttons
 Create a Button widget by instantiating an object of the

Button class:

bttn1 = Button(app, text = "I do nothing!")
bttn1.grid()

 These lines create a new button with I do nothing! The
button’s master is the frame we created earlier, which means
that the button is placed in the frame.

 You can create a widget and set all of its options in one line
, or you can create a widget and set or alter its options later:

bttn2 = Button(app)
bttn2.grid()

 The only value we pass to the object’s constructor is app,
so all we have done is add a blank button to the frame.

 We can modify a widget after we create it, using the
object’s configure() method:

bttn2.configure(text = "Me too!")

 You can use a widget’s configure() for any widget option
(and any type of widget). You can even use the method to
change an option that you’ve already set.

 Create a 3rd button:

bttn3 = Button(app)
bttn3.grid()

 Set the button’s text option, using a different interface:

bttn3["text"]= "Same here!"

 We access the button’s text option through a dictionary-like
interface. I set the text option to "Same here!" , which puts
the text Same here! on the button.

Introducing the Lazy Buttons 2 Program
 The batch file: lazy.buttons2.bat

lazy_buttons2.py
pause

lazy_buttons2.py
Lazy Buttons 2
Demonstrates using a class with Tkinter

from tkinter import *

class Application(Frame):
 """ A GUI application with three buttons. """
 def __init__(self, master):
 """ Initialize the Frame. """
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 """ Create three buttons that do nothing. """
 # create first button
 self.bttn1 = Button(self, text = "I do nothing!")
 self.bttn1.grid()

 # create second button
 self.bttn2 = Button(self)
 self.bttn2.grid()
 self.bttn2.configure(text = "Me too!")

 # create third button
 self.bttn3 = Button(self)
 self.bttn3.grid()
 self.bttn3["text"] = "Same here!"

main
root = Tk()
root.title("Lazy Buttons 2")
root.geometry("200x85")
app = Application(root)
root.mainloop()

Defining the Application Class
 Create a new class, Application, based on Frame:

class Application(Frame):
 """ A GUI application with three buttons. """

 Instead of instantiating a Frame object, we’ll end up
instantiating an Application object to hold all of the buttons.

Defining a Constructor Method
 Define Application’s constructor:

 def __init__(self, master):
 """ Initialize the Frame. """
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 The 1st thing to do is call the superclass constructor. We
pass along the Application object’s master, so it gets set as
the master.

 Finally, we invoke the Application object’s create_widgets(),
defined next.

Defining a Method to Create the Widgets
 create_widgets() creates all three buttons:

 def create_widgets(self):
 # create first button
 self.bttn1 = Button(self, text = "I do nothing!")
 self.bttn1.grid()

 self.bttn2 = Button(self) # create 2nd button
 self.bttn2.grid()
 self.bttn2.configure(text = "Me too!")

 self.bttn3 = Button(self) # create 3rd button
 self.bttn3.grid()
 self.bttn3["text"] = "Same here!"

 Here bttn1, bttn2, bttn3 are attributes of an Application
object. And we use self as the master for the buttons so that
the Application object is their master.

Creating the Application Object
 In the main section of code, we create a root window:

root = Tk()
root.title("Lazy Buttons 2")
root.geometry("200x85")

 Then instantiate an Application object with the root window
as its master:

app = Application(root)

 The Application object’s constructor invokes the object’s
create_widgets(). This method then creates the 3 buttons,
with the Application object as their master.

 Finally, we invoke the root window’s event loop:

root.mainloop()

Introducing the Click Counter Program
 The batch file: click_counter.bat

click_counter.py
pause

click_counter.py
Click Counter
Demonstrates binding events with an event handler

from tkinter import *

class Application(Frame):
 """ GUI application which counts button clicks. """
 def __init__(self, master):
 """ Initialize the frame. """
 super(Application, self).__init__(master)
 self.grid()
 # the number of button clicks
 self.bttn_clicks = 0
 self.create_widget()

 def create_widget(self):
 """ Create button displaying number of clicks. """
 self.bttn = Button(self)
 self.bttn["text"]= "Total Clicks: 0"
 self.bttn["command"] = self.update_count
 self.bttn.grid()

 def update_count(self):
 """ Increase click count and display new total. """
 self.bttn_clicks += 1
 self.bttn["text"]= "Total Clicks: " \
 + str(self.bttn_clicks)
main
root = Tk()
root.title("Click Counter")
root.geometry("200x50")

app = Application(root)

root.mainloop()

Setting Up the Program
 start the Application class definition:

class Application(Frame):
 """ GUI application which counts button clicks. """
 def __init__(self, master):
 """ Initialize the frame. """
 super(Application, self).__init__(master)
 self.grid()
 self.bttn_clicks = 0 # the number of button clicks
 self.create_widget()

 We creates an object attribute self.bttn_clicks to keep track
of the number of times the user clicks the button.

Binding the Event Handler
 In the create_widget() method, we create a single button:

 def create_widget(self):
 """ Create button displaying number of clicks. """
 self.bttn = Button(self)
 self.bttn["text"]= "Total Clicks: 0"
 self.bttn["command"] = self.update_count
 self.bttn.grid()

 We set the Button widget’s command option to the
update_count() method. So when the user clicks the button,
the method is invoked.

 Technically, what we’ve done is bind an event (the clicking
of Button widget) to an event handler (ie, update_count()).

 In general, you set a widget’s command option to bind the
activation of the widget with an event handler.

Creating the Event Handler
 update_count() handles the event of the button being

clicked:

 def update_count(self):
 """ Increase click count and display new total. """
 self.bttn_clicks += 1
 self.bttn["text"]= "Total Clicks: " \
 + str(self.bttn_clicks)

 This method increments the total number of button clicks
and then changes the text of the button to reflect the new
total.

Wrapping Up the Program
 The main part of the code:

main
root = Tk()
root.title("Click Counter")
root.geometry("200x50")

app = Application(root)

root.mainloop()

 We create a root window and set its title and dimensions.
Then I instantiate a new Application object with the root
window as its master. Lastly, I start up the root window’s
event loop to bring the GUI to life on the screen.

Introducing the Longevity Program
 The batch file: longevity.bat

longevity.py
pause

longevity.py
Longevity
Demonstrates text, entry widgets, grid layout manager

from tkinter import *

class Application(Frame):
 """ GUI application reveals the secret of longevity. """
 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 # create instruction label
 self.inst_lbl = Label(self, text="Enter password”+\
 “ for the secret of longevity")
 self.inst_lbl.grid(row = 0, column = 0,
 columnspan = 2, sticky = W)

 # create label for password
 self.pw_lbl = Label(self, text = "Password: ")
 self.pw_lbl.grid(row = 1, column = 0, sticky = W)

 # create entry widget to accept password
 self.pw_ent = Entry(self)
 self.pw_ent.grid(row = 1, column = 1, sticky = W)

 # create submit button
 self.submit_bttn = Button(self, text = "Submit",
 command = self.reveal)
 self.submit_bttn.grid(row=2, column=0, sticky=W)

 # create text widget to display message
 self.secret_txt = Text(self, width = 35, height = 5,
 wrap = WORD)
 self.secret_txt.grid(row = 3, column = 0,
 columnspan = 2, sticky = W)

 def reveal(self):
 """ Display message based on password. """
 contents = self.pw_ent.get()
 if contents == "secret":
 message="Here's the secret to living to 100:”+\
 “ live to 99 and then be VERY careful."
 else:
 message = "That's not the correct password,”+\
 “so I can't share the secret with you."
 self.secret_txt.delete(0.0, END)
 self.secret_txt.insert(0.0, message)

main
root = Tk()
root.title("Longevity")
root.geometry("300x150")

app = Application(root)

root.mainloop()

Placing a Widget with the Grid Layout
Manager
 Start create_widgets() and create a label that provides

instructions to the user:

 def create_widgets(self):
 self.inst_lbl=Label(self, text="Enter password”+\
 “ for the secret of longevity")

 Use the grid layout manager to be specific about the
placement of this label:

 self.inst_lbl.grid(row = 0, column = 0,
 columnspan = 2, sticky = W)

 A widget object’s grid() method can take values for many
different parameters, but we only use 4 of them: row,
column, columnspan, and sticky.

 The row and column parameters take integers and define
where an object is placed within its master widget.

 Imagine the frame in the root window as a grid, divided
into rows and columns. At each row and column intersection
is a cell, where you can place a widget.

 For our Label widget, we pass
0 to row, 0 to column, which
puts the label in the upper-left
corner of the frame.

 If a widget is wide, you may
want to allow the widget to
span more than one cell so
that your other widgets are
correctly spaced.

 columnspan lets you span a widget over more than one
column. We pass 2 to this parameter to allow the long label
to span 2 columns.

 So the label takes up 2 cells, the one at row 0, column 0,
and the other at row 0, column 1.

 You can also use the rowspan parameter to allow a widget
to span more than one row.

 You can justify the widget within the cell by using sticky,
which takes directions as values, including N, S, E, and W.

 Since we pass W to sticky for the Label object, the label is
forced to the west (left).

 Create a label that appears in the next row, left-justified:

 self.pw_lbl = Label(self, text = "Password: ")
 self.pw_lbl.grid(row = 1, column = 0, sticky = W)

Creating an Entry Widget
 Create a new type of widget, an Entry widget:

 self.pw_ent = Entry(self)
 self.pw_ent.grid(row = 1, column = 1, sticky = W)

creates a text entry where the user can enter a password,
and position the Entry in the cell next to the password label.

 Create a button to submit the password:

 self.submit_bttn = Button(self, text = "Submit",
 command = self.reveal)
 self.submit_bttn.grid(row=2,column=0, sticky=W)

bind the activation of the button with reveal(), which reveals
the longevity secret, if the user has entered the correct
password. And place the button in the next row, all the way
to the left.

Creating a Text Widget
 Create a new type of widget, a Text widget:

 self.secret_txt = Text(self, width = 35, height = 5,
 wrap = WORD)
 self.secret_txt.grid(row = 3, column = 0,
 columnspan = 2, sticky = W)

 We pass values to width & height to set the text box. Then
we pass a value to the parameter wrap, which could be

 * WORD wraps entire words when you reach the right edge
 of the text box.
 * CHAR wraps character, meaning that when you get to the
 right edge of the text box, the next character simply
 appears on the following line.
 * NONE means no wrapping. As a result, you can only write
 text on the 1st line of the text box.

Getting and Inserting Text with Text-
Based Widgets
 reveal() tests if the user has entered the correct password.

If so, the method displays the secret to a long life. Otherwise
the user is told that the password is incorrect.

 Firstly get the text in the Entry widget by invoking its get()

 def reveal(self):
 contents = self.pw_ent.get()

 get() returns the text in the widget. Both Entry and Text
objects have a get() method.

 Check if the text is equal to "secret". If so, set message to
the string describing the secret to living to 100. Otherwise,
set message to the string that tells the user that he entered
the wrong password:

 if contents == "secret":
 message="Here's the secret to living to 100:”+\
 “ live to 99 and then be VERY careful."
 else:
 message = "That's not the correct password,”+\
 “so I can't share the secret with you."

 Now we have the string that we want to show to the user,
we need to insert it into the Text widget.

 Firstly, delete any text already in the Text widget by
invoking its delete():

 self.secret_txt.delete(0.0, END)

 delete() can delete text from text-based widgets. It can
take a single index, or a beginning and an ending point.

 Pass floating-point numbers to represent a row and column
number pair where the digit to the left of the decimal point is
the row number and the digit to the right of the decimal
point is the column number.

 Pass 0.0 as the starting point, meaning that the method
should delete text starting at row 0, column 0 (the absolute
beginning) of the text box.

 END means the end of the text. So, this line of code deletes
everything from the 1st position in the text box to the end.
Both Text and Entry widgets have a delete() method.

 Insert the string we want to display into the Text widget:

 self.secret_txt.insert(0.0, message)

 insert() inserts a string into a text-based widget. The
method takes an insertion position and a string.

 We pass 0.0 as the insertion position, meaning the method
should start inserting at row 0, column 0. We pass message
as the 2nd value, so that the appropriate message shows up in
the text box.

 Both Text and Entry widgets have an insert() method.

 insert() doesn’t replace the text in a text-based widget—it
simply inserts it. If you want to replace the existing text with
new text, first call the text-based widget’s delete() method.

Introducing the Movie Chooser Program
 The batch file: movie_chooser.bat

movie_chooser.py
pause

movie_chooser.py
Movie Chooser
Demonstrates check buttons

from tkinter import *

class Application(Frame):
 """ GUI Application for favorite movie types. """
 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 """ Create widgets for movie type choices. """
 # create description label
 Label(self,
 text = "Choose your favorite movie types"\
).grid(row = 0, column = 0, sticky = W)

 # create instruction label
 Label(self, text = "Select all that apply:"\
).grid(row = 1, column = 0, sticky = W)

 # create Comedy check button
 self.likes_comedy = BooleanVar()
 Checkbutton(self, text = "Comedy",
 variable = self.likes_comedy,
 command = self.update_text\
).grid(row = 2, column = 0, sticky = W)

 # create Drama check button
 self.likes_drama = BooleanVar()
 Checkbutton(self, text = "Drama",
 variable = self.likes_drama,
 command = self.update_text \
).grid(row = 3, column = 0, sticky = W)

 # create Romance check button
 self.likes_romance = BooleanVar()
 Checkbutton(self, text = "Romance",
 variable = self.likes_romance,
 command = self.update_text\
).grid(row = 4, column = 0, sticky = W)

 # create text field to display results
 self.results_txt = Text(self, width=40, height = 5,
 wrap = WORD)
 self.results_txt.grid(row=5, column=0,
 columnspan=3)

 def update_text(self):
 """ Update and display user's favorite movie. """
 likes = ""

 if self.likes_comedy.get():
 likes += "You like comedic movies.\n"

 if self.likes_drama.get():
 likes += "You like dramatic movies.\n"

 if self.likes_romance.get():
 likes += "You like romantic movies."

 self.results_txt.delete(0.0, END)
 self.results_txt.insert(0.0, likes)

main
root = Tk()
root.title("Movie Chooser")
app = Application(root)
root.mainloop()

Allowing a Widget’s Master to Be Its
Only Reference
● Create a label that describes the program:
 def create_widgets(self):
 Label(self, text="Choose your favorite movie types"\
).grid(row = 0, column = 0, sticky = W)

 The important difference between this label and the
earlier: we don’t assign the resulting Label object to a
variable. This would usually be a mistake, rendering the
object useless because it isn’t connected to the program in
any way.

 With tkinter, a Label object is connected to the program,
like all GUI elements, by its master.

 So if we won’t need to directly access a widget, we don’t
need to assign the object to a variable. The main benefit of
this approach is shorter, cleaner code.

 So the master of the Label object is the only reference to it.

 Create another label in much the same way:

 # create instruction label
 Label(self, text = "Select all that apply:"\
).grid(row = 1, column = 0, sticky = W)

to provides instructions, telling the user that he can select as
many movie types as apply.

Creating Check Buttons
 Create the check buttons, one for each movie type.

 Every check button needs a special object associated with
it that automatically reflects the check button’s status.

 The special object must be an instance of the BooleanVar
class from the tkinter module. A Boolean variable is a special
kind of variable that can be only True or False.

 We instantiate a BooleanVar object and assign it to a new
object attribute, likes_comedy, before we create the Comedy
check button:

 self.likes_comedy = BooleanVar()

 Next, we create the check button itself:

 Checkbutton(self, text = "Comedy",
 variable = self.likes_comedy,
 command = self.update_text\
).grid(row = 2, column = 0, sticky = W)

creates a new check button with the text Comedy.

 By passing self.likes_comedy to variable, we associate the
check button’s status (selected or unchecked) with the
likes_comedy attribute.

 By passing self.update_text() to command, we bind the
activation of the check button with update_text(). Whenever
the user selects or clears the check button, the update_text()
method is invoked.

 We don’t assign the resulting Checkbutton object to a
variable because what we care about is the status of the
button, which I can access from the likes_comedy attribute.

 Create the next 2 check buttons in the same way:

 self.likes_drama = BooleanVar()
 Checkbutton(self, text = "Drama",
 variable = self.likes_drama,
 command = self.update_text\
).grid(row = 3, column = 0, sticky = W)

 self.likes_romance = BooleanVar()
 Checkbutton(self, text = "Romance",
 variable = self.likes_romance,
 command = self.update_text\
).grid(row = 4, column = 0, sticky = W)

 Whenever the user selects or clears the Drama or Romance
check buttons, update_text() is invoked.

 Even though we don’t assign the resulting Checkbutton
objects to any variables, we can always see the status of the
Drama/Romance check button through the likes_drama/
likes_romance attribute.

 Finally, we create the text box to show the results of the
user’s selections:

 # create text field to display results
 self.results_txt = Text(self, width = 40, height = 5,
 wrap = WORD)
 self.results_txt.grid(row=5,column=0,columnspan=3)

Getting the Status of a Check Button
 update_text() updates the text box to reflect the check

buttons the user has selected:

 def update_text(self):
 likes = ""

 if self.likes_comedy.get():
 likes += "You like comedic movies.\n"
 if self.likes_drama.get():
 likes += "You like dramatic movies.\n"
 if self.likes_romance.get():
 likes += "You like romantic movies."

 self.results_txt.delete(0.0, END)
 self.results_txt.insert(0.0, likes)

 You can’t access the value of a BooleanVar object directly.
Instead, you must invoke the object’s get() method.

 We use get() of the BooleanVar object referenced by
likes_comedy to get the object’s value.

 If the value evaluates to True, so the Comedy check button
is selected, and we add "You like comedic movies.\n" to the
string we are building to display in the text box.

 Perform similar operations based on the status of the
Drama and Romance check buttons.

 Delete all of the text in the text box and then insert the new
string, likes.

Introducing the Movie Chooser 2 Program
The batch file: movie_chooser2.bat

movie_chooser2.py
pause

movie_chooser2.py
Movie Chooser 2
Demonstrates radio buttons

from tkinter import *

class Application(Frame):
 """ GUI Application for favorite movie type. """
 def __init__(self, master):
 """ Initialize Frame. """
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 """ Create widgets for movie type choices. """
 # create description label
 Label(self, text = "Choose your favorite type of \
 movie").grid(row = 0, column = 0, sticky = W)

 # create instruction label
 Label(self, text = "Select one:"\
).grid(row = 1, column = 0, sticky = W)

 # variable for single, favorite type of movie
 self.favorite = StringVar()
 self.favorite.set(None)

 # create Comedy radio button
 Radiobutton(self, text = "Comedy",
 variable = self.favorite, value = "comedy.",
 command = self.update_text\
).grid(row = 2, column = 0, sticky = W)

 # create Drama radio button
 Radiobutton(self, text = "Drama",
 variable = self.favorite, value = "drama.",
 command = self.update_text\
).grid(row = 3, column = 0, sticky = W)

 # create Romance radio button
 Radiobutton(self, text = "Romance",
 variable=self.favorite, value="romance.",
 command = self.update_text\
).grid(row = 4, column = 0, sticky = W)

 # create text field to display result
 self.results_txt = Text(self, width=40, height=5,
 wrap = WORD)
 self.results_txt.grid(row=5, column=0,
 columnspan=3)

 def update_text(self):
 """ Update & display user's favorite movie type"""
 message = "Your favorite type of movie is "
 message += self.favorite.get()

 self.results_txt.delete(0.0, END)
 self.results_txt.insert(0.0, message)

main
root = Tk()
root.title("Movie Chooser 2")
app = Application(root)
root.mainloop()

Creating Radio Buttons
 Since only one radio button in a group can be selected at

one time, there’s no need for each radio button to have its
own status variable, as required for check buttons.

 A group of radio buttons share one, special object that
reflects which of the radio buttons is selected. This object
can be an instance of the StringVar class from the tkinter
module, which allows a string to be stored and retrieved.

 Before we create the radio buttons, we create a single
StringVar object for all of the radio buttons to share, assign
it to the attribute favorite, and set its initial value to None
using the object’s set() method:

 self.favorite = StringVar()
 self.favorite.set(None)

 Create the Comedy radio button:

 Radiobutton(self, text = "Comedy",
 variable = self.favorite, value = "comedy.",
 command = self.update_text\
).grid(row = 2, column = 0, sticky = W)

 A radio button’s variable option defines the special variable
associated with the radio button, while a radio button’s value
option defines the value to be stored by the special variable
when the radio button is selected.

 By setting this radio button’s variable to self.favorite and
its value to "comedy." , we’re saying that when the Comedy
radio button is selected, the StringVar referenced by
self.favorite should store the string "comedy."

 Create the other 2 radio buttons:

 Radiobutton(self, text = "Drama",
 variable = self.favorite, value = "drama.",
 command = self.update_text\
).grid(row = 3, column = 0, sticky = W)

 Radiobutton(self, text = "Romance",
 variable = self.favorite, value="romance.",
 command = self.update_text\
).grid(row = 4, column = 0, sticky = W)

 By setting the Drama/Romance radio button’s variable to
self.favorite and its value to "drama."/"romance.", when the
Drama/Romance radio button is selected, the StringVar
referenced by self.favorite should store "drama."/"romance."

 Create the text box to display the results:

 self.results_txt = Text(self, width = 40, height = 5,
 wrap = WORD)
 self.results_txt.grid(row=5,column=0,columnspan=3)

Getting a Value from a Group of Radio
Buttons
 Getting a value from a group of radio buttons is to invoke

the get() method of the StringVar object that they all share:

 def update_text(self):
 message = "Your favorite type of movie is "
 message += self.favorite.get()

 When the Comedy/Drama/Romance radio button is
selected, self.favorite.get() returns "comedy."/"drama."/
"romance.".

 Delete any text in the text box and insert the string which
declares the user’s favorite movie type:

 self.results_txt.delete(0.0, END)
 self.results_txt.insert(0.0, message)

Introducing the Mad Lib Program
The batch file: mad_lib.bat
mad_lib.py
pause

mad_lib.py
Mad Lib
Create a story based on user input

from tkinter import *

class Application(Frame):
 """ GUI app creates a story based on user input. """
 def __init__(self, master):
 """ Initialize Frame. """
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 """Create widgets for story info & display. """
 # create instruction label
 Label(self, text="Enter information for a new story"\
).grid(row=0,column=0,columnspan=2,sticky=W)

 # create a label & text entry for the person’s name.
 Label(self, text = "Person: "\
).grid(row = 1, column = 0, sticky = W)
 self.person_ent = Entry(self)
 self.person_ent.grid(row = 1, column=1, sticky = W)

 # create a label and text entry for a plural noun
 Label(self, text = "Plural Noun:"\
).grid(row = 2, column = 0, sticky = W)
 self.noun_ent = Entry(self)
 self.noun_ent.grid(row = 2, column = 1, sticky = W)

 # create a label and text entry for a verb
 Label(self, text = "Verb:"\
).grid(row = 3, column = 0, sticky = W)
 self.verb_ent = Entry(self)
 self.verb_ent.grid(row = 3, column = 1, sticky = W)

 # create a label for adjectives check buttons
 Label(self, text = "Adjective(s):"\
).grid(row = 4, column = 0, sticky = W)

 # create itchy check button
 self.is_itchy = BooleanVar()
 Checkbutton(self,text="itchy",variable=self.is_itchy\
).grid(row = 4, column = 1, sticky = W)

 # create joyous check button
 self.is_joyous = BooleanVar()
 Checkbutton(self, text = "joyous",
 variable = self.is_joyous\
).grid(row = 4, column = 2, sticky = W)

 # create electric check button
 self.is_electric = BooleanVar()
 Checkbutton(self, text = "electric",
 variable = self.is_electric\
).grid(row = 4, column = 3, sticky = W)

 # create a label for body parts radio buttons
 Label(self, text = "Body Part:"\
).grid(row = 5, column = 0, sticky = W)

 # create variable for single, body part
 self.body_part = StringVar()
 self.body_part.set(None)

 # create body part radio buttons
 body_parts = ["bellybutton", "big toe",
 "medulla oblongata"]
 column = 1
 for part in body_parts:
 Radiobutton(self, text=part,
 variable=self.body_part, value=part).grid(row=5,
 column=column, sticky=W)
 column += 1

 # create a submit button
 Button(self, text = "Click for story",
 command = self.tell_story\
).grid(row = 6, column = 0, sticky = W)
 self.story_txt=Text(self,width=75,height=10,
 wrap=WORD)
 self.story_txt.grid(row=7,column=0, columnspan=4)

 def tell_story(self):
 """Fill text box with story based on user input. """
 # get values from the GUI
 person = self.person_ent.get()
 noun = self.noun_ent.get()
 verb = self.verb_ent.get()
 adjectives = ""
 if self.is_itchy.get():
 adjectives += "itchy, "
 if self.is_joyous.get():
 adjectives += "joyous, "
 if self.is_electric.get():
 adjectives += "electric, "
 body_part = self.body_part.get()

 # create the story
 story = "The famous explorer "
 story += person
 story += " had nearly given up a life-long quest” + \
 “ to find The Lost City of "
 story += noun.title()

 story += " when one day, the "
 story += noun
 story += " found "
 story += person + ". "
 story += "A strong, "
 story += adjectives
 story +="weird feeling overwhelmed the explorer. "
 story +="After all this time, the quest was “ +\
 “finally over. A tear came to "
 story += person + "'s "
 story += body_part + ". "
 story += "And then, the "
 story += noun
 story += " promptly devoured "
 story += person + ". The "
 story += "moral of the story? Be careful what you"
 story += verb
 story += " for."

 # display the story
 self.story_txt.delete(0.0, END)
 self.story_txt.insert(0.0, story)

main
root = Tk()
root.title("Mad Lib")
app = Application(root)
root.mainloop()

The Application Class’s tell_story()

 This class creates all of the widgets in the GUI. The only
new thing is to create all 3 radio buttons in a loop by moving
through a list of strings for each radio button’s text and
value options. (See codes.)

 In this method, we get the values the user has entered and
use them to create the one, long string for the story. Then,
we delete any text in the text box and insert the new string
to show the user the story he or she created. (See codes.)

The Application Class’s create_widgets()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

