
  

Chapter 10

Introduction to 
NumPy and SciPy



  

Installation of NumPy & SciPy
 Go to Python’s subdirectory with pip, eg, …/Python/Scripts,

 With the internet being on, type the following commands in 
the prompt terminal:

pip install numpy

pip install scipy

 Documentation: http://docs.scipy.org

 In Anaconda’s environment,

conda install numpy

conda install scipy



  

NumPy Arrays
 NumPy is the fundamental Python package for scientific 

computing.

 It contains among other things:

   * a powerful N-dimensional array object
   * element-by-element operations (broadcasting)
   * tools for integrating C/C++ and Fortran code
   * core mathematical operations like linear algebra, Fourier 
      transform, and random number capabilities

 NumPy enables users to overcome the inefficiency of the 
Python lists by providing a data storage object, ndarray.

 ndarray is similar to lists, but only the same type of 
element can be stored in each column. Despite the limitation, 
ndarray wins when it comes to operation times, as the 
operations are sped up significantly.



  

import numpy as np

# Create an array with 10^7 elements.
arr = np.arange(1e7)

# Converting ndarray to list
larr = arr.tolist()

# Lists cannot by default broadcast, so a function is 
# coded to emulate what an ndarray can do.
def list_times(alist, scalar):
      for i, val in enumerate(alist):
            alist[i] = val * scalar
      return alist

# Using IPython's magic timeit command
timeit arr * 1.1
>>> 1 loops, best of 3: 76.9 ms per loop

timeit list_times(larr, 1.1)
>>> 1 loops, best of 3: 2.03 s per loop



  

 ndarray  is 25 faster than the Python loop in this example.

 If we need linear algebra operations, we can use matrix, 
which does not use the default broadcasting from ndarray.

 matrix objects can and only will be 2-dim.

import numpy as np

# Creating a 3D numpy array
arr = np.zeros((3,3,3))

# Trying to convert array to a matrix, which won’t work
mat = np.matrix(arr)

#"ValueError: shape too large to be a matrix."



  

Array Creation and Data Typing
# First we create a list and then
# wrap it with the np.array() function.
alist = [1, 2, 3]
arr = np.array(alist)

# Creating an array of zeros with five elements
arr = np.zeros(5)

# What if we want to create an array from 0 to 100?
arr = np.arange(100)

# Or 10 to 100?
arr = np.arange(10,100)

# If you want 100 steps from 0 to 1...
arr = np.linspace(0, 1, 100)



  

# Or if you want to generate an array from 1 to 10
# in log10 space in 100 steps...
arr = np.logspace(0, 1, 100, base=10.0)

# Creating a 5x5 array of zeros (an image)
image = np.zeros((5,5))

# Creating a 5x5x5 cube of 1's. The astype() method 
# sets the array with integer elements.
cube = np.zeros((5,5,5)).astype(int) + 1

# Or even simpler with 16-bit floating-point precision...
cube = np.ones((5, 5, 5)).astype(np.float16)

 If you are working with 32-/64-bit Python, then your 
elements in the arrays will default to 32-/64-bit precision.

 You can specify the size when creating arrays by setting 
the data type parameter (dtype) to int, numpy.float16, 
numpy.float32, or numpy.float64.



  

# Array of zero integers
arr = np.zeros(2, dtype=int)

# Array of zero floats
arr = np.zeros(2, dtype=np.float32)

 Once we have created arrays, we can reshape them:
# Creating an array with elements from 0 to 999
arr1d = np.arange(1000)

# Now reshaping the array to a 10x10x10 3D array
arr3d = arr1d.reshape((10,10,10))

# The reshape command can alternatively be called as
arr3d = np.reshape(arr1s, (10, 10, 10))

# Inversely, we can flatten arrays
arr4d = np.zeros((10, 10, 10, 10))
arr1d = arr4d.ravel()
print arr1d.shape
             (10000,)



  

Record Arrays
 Arrays can store more complex data structures where 

columns are composed of different data types.

# Creating an array of zeros and defining column types
recarr = np.zeros((2,), dtype=('i4,f4,a10'))
toadd = [(1,2.,'Hello'),(2,3.,"World")]
recarr[:] = toadd

 dtype defines the types designated for the 3 columns, i4: 
32-bit integer, f4: 32-bit float, a10: a 10-character string.

 There is a global function zip that will create a list of 
tuples like we see above for the toadd object:

# Creating an array of zeros and defining column types
recarr = np.zeros((2,), dtype=('i4,f4,a10'))

# Now creating the columns to put  in the recarray



  

col1 = np.arange(2) + 1
col2 = np.arange(2, dtype=np.float32)
col3 = ['Hello', 'World']

# Here we create a list of tuples that is
# identical to the previous toadd list.
toadd = zip(col1, col2, col3)

# Assigning values to recarr
recarr[:] = toadd

# Assigning names to each column, which
# are now by default called 'f0', 'f1', and 'f2'.

recarr.dtype.names = ('Integers' , 'Floats', 'Strings')

# If we want to access one of the columns by its name, 
# we can do the following.

recarr('Integers')
# array([1, 2], dtype=int32)



  

Indexing and Slicing
 Python index lists begin at 0 and the NumPy arrays follow:

alist=[[1,2],[3,4]]

# To return the (0,1) element we must index as below
alist[0][1]

 In NumPy, indexing follows a more convenient syntax.

# Converting the list defined above into an array
arr = np.array(alist)

# To return the (0,1) element we use ...
arr[0,1]

# Now to access the last column, we simply use ...
arr[:,1]



  

# Accessing the columns is achieved in the same way,
# which is the bottom row.
arr[1,:]

 If there are more complex indexing schemes required, the 
most commonly used type is numpy.where():

# Creating an array
arr = np.arange(5)

# Creating the index array
index = np.where(arr > 2)
print(index)
       (array([3, 4]),)

# Creating the desired array
new_arr = arr[index]



  

 If you want to remove specific indices, use numpy.delete()

# We use the previous array
new_arr = np.delete(arr, index)

 Instead of numpy.where, we can use a simple boolean 
array to return specific elements:

index = arr > 2
print(index)
       [False False False True True]
new_arr = arr[index]

 If speed is important, the boolean indexing is faster for a 
large number of elements.



  

Boolean Statements and NumPy Arrays
 Boolean statements are commonly used in combination 

with the and/or operator.

 When using NumPy arrays, one can only use & and | as 
this allows fast comparisons of boolean values:

# Creating an image
img1 = np.zeros((20, 20)) + 3
img1[4:-4, 4:-4] = 6
img1[7:-7, 7:-7] = 9
# See Plot A

# Let's filter out all values > 2 and < 6.
index1 = img1 > 2
index2 = img1 < 6
compound_index = index1 & index2



  

# The compound statement can alternatively be as
compound_index = (img1 > 3) & (img1 < 7)
img2 = np.copy(img1)
img2[compound_index] = 0
# See Plot B.

# Making the boolean arrays even more complex
index3 = img1 == 9
index4 = (index1 & index2) | index3
img3 = np.copy(img1)
img3[index4] = 0
# See Plot C.

 In a special case where you only want to operate on 
specific elements in an array:



  

import numpy as np
import numpy.random as rand

# Creating a 100-element array with random values
# from a standard normal distribution or, in other
# words, a Gaussian distribution.
# The sigma is 1 and the mean is 0.
a = rand.randn(100)

# Here we generate an index for filtering
# out undesired elements.
index = a > 0.2
b = a[index]

# We execute some operation on the desired elements.
b = b ** 2 – 2

# Then we put the modified elements back into the
# original array.
a[index] = b



  

Read and Write
 For text files:

# Opening the text file only allowing reading
f = open('somefile.txt', 'r')

# creates a list where each element  is one line
alist = f.readlines()

f.close()

# write the data with the 'w' option to a file
f = open('newtextfile.txt', 'w')

# Writing data to file
f.writelines(newdata)

f.close()



  

 If the file is large, then accessing or modulating the data 
will be cumbersome and slow. Getting the data directly into a 
numpy.ndarray would be the best option.

 If the data is structured with rows & columns, then loadtxt 
will work very well as long as all the data is of a similar type, 
i.e., integers or floats.

 We can save the data through numpy.savetxt as easily and 
quickly as with numpy.readtxt:

import numpy as np

arr = np.loadtxt('somefile.txt')

np.savetxt('somenewfile.txt')



  

 If each column is different in formatting, loadtxt can still 
read the data, but the column types need to be predefined:

# example.txt file looks like the following
#
# XR21 32.789 1
# XR22 33.091 2

table = np.loadtxt('example.txt',
                  dtype='names': ('ID', 'Result', 'Type'),
                  'formats': ('S4', 'f4', 'i2'))

# array([('XR21', 32.78900146484375, 1),
#            ('XR22', 33.090999603271484, 2)],
# dtype=[('ID', '|S4'), ('Result', '<f4'), ('Type', '<i2')])



  

Binary Files
 Binary files are harder to deal with, as formatting, 

readability, portability are trickier. But they have 2 notable 
advantages: file size and read/write speeds. This is especially 
important when working with big data.

 Files can be accessed in binary format using numpy.save 
and numpy.load:

import numpy as np

# Creating a large array
data = np.empty((1000, 1000))

# Saving the array with numpy.save
np.save('test.npy', data)

# For large files use numpy.savez. It compresses files.
np.savez('test.npz', data)



  

# Loading the data array
newdata = np.load('test.npy')

 numpy.save and numpy.savez have no issues saving 
numpy.recarray objects. Hence, working with complex and 
structured arrays is no issue if portability beyond the Python 
environment is not of concern.



  

Math
 If you try to use math.cos (from the math module) on a 

NumPy array, it will not work, as the math functions are 
meant to operate on elements and not on lists or arrays. 
Hence, NumPy comes with its own set of math tools.

 When transposing or a dot multiplication are needed, you 
can use the built-in numpy.dot and numpy.traspose to do 
such operations.

 Compare advantages/disadvantages between numpy.array 
and numpy.matrix

                                       ⇒

      AX = B  ⇒  X = A-1B

     



  

import numpy as np

# Defining the matrices
A = np.matrix([[3, 6, -5],
                         [1, -3, 2],
                         [5, -1, 4]])

B = np.matrix([[12],
                         [ -2],
                         [10]])

# Solving for the variables, where we invert A
X = A ** (-1) * B
print(X)

# matrix([[ 1.75],
#              [ 1.75],
#              [ 0.75]])



  

 Do the same operations without using numpy.matrix:

import numpy as np

a = np.array([[3, 6, -5],
                      [1, -3, 2],
                      [5, -1, 4]])

# Defining the array
b = np.array([12, -2, 10])

# Solving for the variables, where we invert A
x = np.linalg.inv(a).dot(b)
print(x)

# array([ 1.75, 1.75, 0.75])

 The numpy.matrix method is the simplest. However, the 
numpy.array method is the most practical and faster.



  

SciPy
 SciPy is a package that utilizes NumPy arrays and mani-

pulations to take on standard problems, eg, integration, 
determining a function’s maxima or minima, finding eigen-
vectors for large sparse matrices, etc.



  

Optimization and Minimization
 The optimization package in SciPy allows us to solve 

minimization problems easily and quickly.

 Some classic examples are performing linear regression, 
finding a function’s minimum/maximum values, determining 
the root of a function, finding where 2 functions intersect.

 To fit data with a linear regression, we will use curve_fit, 
which is a χ2-based method.

 we generate data from a known function with noise, and 
then fit the noisy data with curve_fit. The function we will 
model in the example is a simple linear equation, f(x)=ax+b:

import numpy as np
from scipy.optimize import curve_fit



  

# Creating a function to model and create data
def func(x, a, b):
      return a * x + b

# Generating clean data
x = np.linspace(0, 10, 100)
y = func(x, 1, 2)

# Adding noise to the data
yn = y + 0.9 * np.random.normal(size=len(x))

# Executing curve_fit on noisy data
popt, pcov = curve_fit(func, x, yn)

# popt returns the best fit values for parameters of
# the given model (func).

print(popt)



  



  

 Do a least-squares fit to a Gaussian profile, a non-linear 
function:

# Creating a function to model and create data
def func(x, a, b, c):
      return a*np.exp(-(x-b)**2/(2*c**2))

# Generating clean data
x = np.linspace(0, 10, 100)
y = func(x, 1, 5, 2)

# Adding noise to the data
yn = y + 0.2 * np.random.normal(size=len(x))

# Executing curve_fit on noisy data
popt, pcov = curve_fit(func, x, yn)

# popt returns the best-fit values.
print(popt)

f ( x)=a e
−

(x−μ)
2

2 σ
2

⇐ a : scalar μ : mean
σ : standard deviation



  



  

 fit a one-dim dataset with multiple Gaussian profiles:

# Two-Gaussian model
def func(x, a0, b0, c0, a1, b1,c1):
      return a0 * np.exp(-(x - b0) ** 2/(2 * c0 ** 2))\
              + a1 * np.exp(-(x - b1) ** 2/(2 * c1 ** 2))

# Generating clean data
x = np.linspace(0, 20, 200)
y = func(x, 1, 3, 1, -2, 15, 0.5)

# Adding noise to the data
yn = y + 0.2 * np.random.normal(size=len(x))

# Since we are fitting a more complex function,
# need better guesses to get a better fitting.

guesses = [1, 3, 1, 1, 15, 1]
# Executing curve_fit on noisy data
popt, pcov = curve_fit(func, x, yn, p0=guesses)



  



  

Solutions to Functions
 Let’s start by solving for the root of an equation

from scipy.optimize import fsolve
import numpy as np

line = lambda x : x + 3

solution = fsolve(line, -2)

print(solution)



  

 Find the intersection points between 2 equations

from scipy.optimize import fsolve
import numpy as np

# Defining function to simplify intersection solution
def findIntersection(func1, func2, x0):
      return fsolve(lambda x : func1(x) - func2(x), x0)

# Defining functions that will intersect
funky = lambda x : np.cos(x / 5) * np.sin(x / 2)
line = lambda x : 0.01 * x - 0.5

# Define range and get solutions on intersection points
x = np.linspace(0,45,10000)
result = findIntersection(funky, line, [15, 20, 30, 35, 
40, 45])

# Printing out results for x and y
print(result, line(result))



  



  

Interpolation
 Given a set of sample data, obtaining the intermediate 

values between the points is useful to understand and 
predict what the data will do in the non-sampled domain.

 Univariate interpolation is used when the sampled data is  
led by one independent variable, multivariate interpolation 
assumes there is more than one independent variable.

 2 basic methods of interpolation: 

  (1) Fit one function to an entire dataset

  (2) fit different parts of the dataset with several functions 
       where the joints of each function are joined smoothly 
       --- spline interpolation.

 Using scipy.interpolate.interp1d to interpolate a 
sinusoidal function with different fitting parameters.



  

import numpy as np
from scipy.interpolate import interp1d

# Setting up fake data
x = np.linspace(0, 10 * np.pi, 20)
y = np.cos(x)

# Interpolating data
fl = interp1d(x, y, kind='linear')
fq = interp1d(x, y, kind='quadratic')

# x.min and x.max are used to make sure we do not
# go beyond the boundaries of the data for the
# interpolation.
xint = np.linspace(x.min(), x.max(), 1000)
yintl = fl(xint)
yintq = fq(xint)



  



  

 Interpolate noisy data by using a spline-fitting function 
called scipy.interpolate.UnivariateSpline.

import numpy as np
import matplotlib.pyplot as mpl
from scipy.interpolate import UnivariateSpline

# Setting up fake data with artificial noise
sample = 30
x = np.linspace(1, 10 * np.pi, sample)
y = np.cos(x) + np.log10(x) + \    
      np.random.randn(sample) / 10

# Interpolating the data
f = UnivariateSpline(x, y, s=1)

# x.min/x.max are used to make sure not to go beyond 
# the boundaries of the data for the interpolation.
xint = np.linspace(x.min(), x.max(), 1000)
yint = f(xint)



  

 The option s is the smoothing factor, which should be used 
when fitting data with noise. If instead s=0, then the 
interpolation will go through all points while ignoring noise. 



  

 scipy.interpolate.griddata is used for its capacity to deal 
with unstructured N-dim data:
import numpy as np
from scipy.interpolate import griddata

# Defining a function
ripple=lambda x,y:np.sqrt(x**2+y**2)+np.sin(x**2+y**2)

# Generating gridded data. The complex number
# defines how many steps the grid data should have.
# Without the complex number mgrid would only create
# a grid data structure with 5 steps.
grid_x, grid_y = np.mgrid[0:5:1000j, 0:5:1000j]

# Generating sample that interpolation function will see
xy = np.random.rand(1000, 2)
sample = ripple(xy[:,0] * 5 , xy[:,1] * 5)

# Interpolating data with a cubic
grid_z0 = griddata( xy * 5, sample, (grid_x, grid_y), 
method='cubic')



  



  

 Employ another multivariate spline interpolation, 
scipy.interpolate.SmoothBivariateSpline: 

import numpy as np
from scipy.interpolate import SmoothBivariateSpline \ 
as SBS

# Defining a function
ripple=lambda x,y:np.sqrt(x**2+y**2)+np.sin(x**2+y**2)

# Generating sample that interpolation function will see
xy= np.random.rand(1000, 2)
x, y = xy[:,0], xy[:,1]
sample = ripple(xy[:,0] * 5 , xy[:,1] * 5)

# Interpolating data
fit = SBS(x * 5, y * 5, sample, s=0.01, kx=4, ky=4)
interp=fit(np.linspace(0,5,1000),np.linspace(0,5,1000))



  



  

Analytic Integration

       

import numpy as np
from scipy.integrate import quad

# Defining function to integrate
func = lambda x: np.cos(np.exp(x)) ** 2

# Integrating function with upper and lower
# limits of 0 and 3, respectively
solution = quad(func, 0, 3)
print(solution)

# The first element is the desired value
# and the second is the error.
# (1.296467785724373, 1.397797186265988e-09)



  



  

Numerical Integration
import numpy as np
from scipy.integrate import quad, trapz

# Setting up fake data
x = np.sort(np.random.randn(150) * 4 + 4).clip(0,5)
func = lambda x: np.sin(x) * np.cos(x ** 2) + 1
y = func(x)

# Integrating function with upper/lower limits = 0 / 5
fsolution = quad(func, 0, 5)
dsolution = trapz(y, x=x)

print('fsolution = '+str(fsolution[0])) # 5.10034506754
print('dsolution = ' + str(dsolution))  # 5.04201628314
print('The difference is ' + str(np.abs(fsolution[0] – \ 
dsolution)))                                         #5.04201628314



  



  

Statistics
 In NumPy there are basic statistical functions like mean, 

std, median, argmax, and argmin. numpy.arrays have 
built-in methods that allow us to use most of the NumPy 
statistics easily:

import numpy as np

# Constructing a random array with 1000 elements
x = np.random.randn(1000)

# Calculating several of the built-in methods
# that numpy.array has
mean = x.mean()
std = x.std()
var = x.var()

 SciPy offers an extended collection of statistical tools such 
as distributions (continuous or discrete) and functions.



  

Continuous and Discrete Distributions
 20 of the continuous functions are shown in the figures as 

probability density functions (PDFs) to give an impression of 
what the scipy.stats package provides.



  



  

 When we call a distribution from scipy.stats, we can 
extract its information in several ways: probability density 
functions (PDFs), cumulative distribution functions (CDFs), 
random variable samples (RVSs), percent point functions 
(PPFs), and more.

 For the classic normal function
import numpy as np
import scipy.stats import norm

x = np.linspace(-5,5,1000)    # Set up the sample range

# Normal Dist: loc: mean, scale: standard deviation.
dist = norm(loc=0, scale=1)

# Retrieving norm's PDF and CDF
pdf = dist.pdf(x)
cdf = dist.cdf(x)

# Here we draw out 500 random values from the norm.
sample = dist.rvs(500) 

PDF=e
−

x2
/2

√2 π



  

 The probability mass function (PMF) of the geometric 
distribution.

import numpy as np
from scipy.stats import geom

# Set up the parameters for the geometric distribution.
p = 0.5
dist = geom(p)

# Set up the sample range.
x = np.linspace(0, 5, 1000)

# Retrieving geom's PMF and CDF
pmf = dist.pmf(x)
cdf = dist.cdf(x)

# Here we draw out 500 random values.
sample = dist.rvs(500)

PMF=(1 − p)(k−1 ) p


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

