

Chapter 9

Object-Oriented
Programming:

The Blackjack Game

Introducing the Alien Blaster Program

 The code instantiates a Player
object, hero, and an Alien object,
invader. When hero’s blast() is
invoked with invader as its
argument, hero invokes
invader’s die() method.

 It means that when a player
blasts an alien, the player sends
a message to the alien telling it to die.

alien_blaster.py
Alien Blaster
Demonstrates object interaction

class Player(object):
 """ A player in a shooter game. """
 def blast(self, enemy):
 print("The player blasts an enemy.\n")
 enemy.die()

class Alien(object):
 """ An alien in a shooter game. """
 def die(self):
 print("The alien gasps and says, 'Oh, this is it.”,
 “This is the big one. \nYes, it's getting”,
 “ dark now. Tell my 1.6 million larvae that”,
 “ I loved them... \nGood-bye, cruel universe.'")

main
print("\t\tDeath of an Alien\n")

hero = Player()
invader = Alien()
hero.blast(invader)

input("\n\nPress the enter key to exit.")

Sending a Message
 Before you can have one object send another object a

message, you need 2 objects! So, we create 2 in the main
part of the program.

 Create a Player object, hero, and an Alien object, invader.

 Through hero.blast(invader), we invoke hero’s blast() and
pass invader—the Alien object—as an argument.

 blast() accepts the object into its parameter enemy. So,
when blast() executes, enemy refers to the Alien object.

 Then blast() invokes the Alien object’s die() through
enemy.die().

 Essentially, the Player object is sending the Alien object a
message by invoking its die() method.

Receiving a Message
 The Alien object receives the message from the Player

object in the form of its die() being invoked. The Alien
object’s die() then displays a melodramatic good-bye.

Introducing the Playing Cards Program

playing_cards.py
Playing Cards
Demonstrates combining objects

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7","8", "9",
 "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + " "
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

main
card1 = Card(rank = "A", suit = "c")
print("Printing a Card object:")
print(card1)

card2 = Card(rank = "2", suit = "c")
card3 = Card(rank = "3", suit = "c")
card4 = Card(rank = "4", suit = "c")
card5 = Card(rank = "5", suit = "c")
print("\nPrinting the rest of the objects individually:")
print(card2)
print(card3)
print(card4)
print(card5)

my_hand = Hand()
print("\nPrinting my hand before I add any cards:")
print(my_hand)

my_hand.add(card1)
my_hand.add(card2)
my_hand.add(card3)
my_hand.add(card4)
my_hand.add(card5)
print("\nPrinting my hand after adding 5 cards:")
print(my_hand)

your_hand = Hand()
my_hand.give(card1, your_hand)
my_hand.give(card2, your_hand)
print("\nGave the 1st 2 cards to your hand.")
print("Your hand:")
print(your_hand)
print("My hand:")
print(my_hand)

my_hand.clear()
print("\nMy hand after clearing it:")
print(my_hand)

input("\n\nPress the enter key to exit.")

Creating the Card Class
 In the real world, interesting objects are usually made up

of other, independent objects. We can do the same thing in
coding. Combining objects allows you to create more
complex objects from simpler ones.

 Create a Card class for objects that represent playing card:
class Card(object):
 RANKS = ["A", "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

 Each Card object has a rank attribute, which represents
the rank of the card. The possible values are listed in the
class attribute RANKS.

 Each card also has a suit attribute, which represents the
suit of the card. The possible values for this attribute are
listed in the class attribute SUITS.

 __str__() simply returns the concatenation of the rank and
suit attributes so that an object can be printed.

Creating the Hand Class
 Create a Hand class for objects, a collection of Card objects

class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + " "
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

 A new Hand object has an attribute cards that is a list of
Card objects. So each single Hand object has an attribute
that is a list of other objects.

 __str__() returns a string that represents the entire hand.
clear() clears the list of cards by assigning an empty list to
an object’s cards. add() adds an object to the cards.

 give() removes an object from the Hand object and appends
it to another Hand object by using the other Hand object’s
add(). Or, the 1st Hand object sends the 2nd Hand object a
message to add a Card object.

Using Card Objects
 In the main part, we create and print 5 Card objects:

card1 = Card(rank = "A", suit = "c")
print("Printing a Card object:")
print(card1)

card2 = Card(rank = "2", suit = "c")
card3 = Card(rank = "3", suit = "c")
card4 = Card(rank = "4", suit = "c")
card5 = Card(rank = "5", suit = "c")
print("\nPrinting the rest of the objects individually:")
print(card2)
print(card3)
print(card4)
print(card5)

 The 1st Card object has a rank="A" and a suit="c". When
we print the object, it’s displayed as Ac. The remaining
objects follow the same pattern.

Combining Card Objects Using a Hand
Object
 Next, we create a Hand object, my_hand, and print it:

my_hand = Hand()
print("\nPrinting my hand before I add any cards:")
print(my_hand)

 Since the object’s cards attribute is an empty list, printing
the object displays the text <empty>.

 Add the 5 Card objects to my_hand and print it:

my_hand.add(card1)
my_hand.add(card2)
my_hand.add(card3)
my_hand.add(card4)
my_hand.add(card5)
print(my_hand)

 Then the text Ac 2c 3c 4c 5c is displayed.

 Create another Hand object, your_hand. Using my_hand’s
give() to transfer the 1st 2 cards from my_hand to your_hand:

your_hand = Hand()
my_hand.give(card1, your_hand)
my_hand.give(card2, your_hand)
print(your_hand)
print(my_hand)

 your_hand is displayed as Ac 2c while my_hand appears as
3c 4c 5c.

 Finally, invoke my_hand’s clear() and print my_hand:

my_hand.clear()
print(my_hand)

 The text <empty> is displayed.

Using Inheritance to Create New Classes
 Inheritance, one of the key elements of OOP, allows you to

base a new class on an existing one.

 By doing so, the new class automatically gets (or inherits)
all of the methods and attributes of the existing class.

 It’s possible to create a new class that directly inherits
from more than one class, ie, multiple inheritance.

 Inheritance is especially useful when you want to create a
more specialized version of an existing class.

 By inheriting from an existing class, a new class gets all of
the methods and attributes of the existing class.

 You can also add methods and attributes to the new class to
extend what objects of the new class can do.

the Playing Cards 2.0 Program

playing_cards2.py
Playing Cards 2.0
Demonstrates inheritance - class extension

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + "\t"
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

class Deck(Hand):
 def populate(self):
 for suit in Card.SUITS:
 for rank in Card.RANKS:
 self.add(Card(rank, suit))
 def shuffle(self):
 import random
 random.shuffle(self.cards)

 def deal(self, hands, per_hand = 1):
 for rounds in range(per_hand):
 for hand in hands:
 if self.cards:
 top_card = self.cards[0]
 self.give(top_card, hand)
 else:
 print("Out of cards!")

main
deck1 = Deck()
print("Created a new deck.")
print("Deck:")
print(deck1)

deck1.populate()
print("\nPopulated the deck.")
print("Deck:")
print(deck1)

deck1.shuffle()
print("\nShuffled the deck.")
print("Deck:")
print(deck1)

my_hand = Hand()
your_hand = Hand()
hands = [my_hand, your_hand]
deck1.deal(hands, per_hand = 5)
print("\nDealt 5 cards to my hand and your hand.")

print("My hand:")
print(my_hand)
print("Your hand:")
print(your_hand)
print("Deck:")
print(deck1)

deck1.clear()
print("\nCleared the deck.")
print("Deck:", deck1)

input("\n\nPress the enter key to exit.")

Inheriting from a Base Class
 The 1st 2 classes, Card and Hand, are the same as before.

 The next thing is to create the Deck class, based on Hand:

class Deck(Hand):

 Hand is called a base class because Deck is based on it.
Deck is a derived class because it derives part of its definition
from Hand.

 As a result of this relationship, Deck inherits all of Hand’s
methods.

 So without defining any new method, Deck objects would
still have all of the methods defined in Hand:

 • __init__() • __str__() • clear() • add() • give()

Extending a Derived Class
 You can extend a derived class by defining additional

methods in it. That’s what we do in the definition of Deck.

 So, in addition to all of the methods that Deck inherits, it
has the following new methods:

 • populate() • shuffle() • deal()

 As far as client code is concerned, any Deck method is as
valid as any other—whether it’s inherited from Hand or
defined in Deck.

Using the Derived Class
 In the main part we instantiate a new Deck object:

deck1 = Deck()

 We don’t have a constructor method in Deck. Deck inherits
the Hand constructor, so that method is automatically
invoked with the newly created Deck object.

 As a result, the new Deck object gets a cards attribute
initialized to an empty list, as any Hand object would get.

 Print the new Deck object:

print(deck1)

 We didn’t define __str__() in Deck, but Deck inherits the
method from Hand. Since the deck is empty, the code
displays the text <empty>.

 A deck is a specialized type of hand. A deck can do
anything a hand can, plus more.

 We invoke the object’s populate(), which populates the
deck with the traditional 52 cards:

deck1.populate()

 Now the deck has done something a hand can’t because
populate() is a new method defined in the Deck class.

 populate() loops through the 52 possible combinations of
values of Card.SUITS and Card.RANKS. For each
combination, the method creates a new Card object that it
adds to the deck.

 Next, we print the deck again:

print(deck1)

 This time, all 52 cards are displayed, in an obvious order.

 We then shuffle the deck:

deck1.shuffle()

 In shuffle(), we imports the random module and then calls
random.shuffle() with the object’s cards.random.shuffle()
shuffles a list’s elements into a random order.

 Display the deck again to show its randomness:

print(deck1)

 Next, create 2 Hand objects and put them in a list, hands:

my_hand = Hand()
your_hand = Hand()
hands = [my_hand, your_hand]

 Deal each hand 5 cards:

deck1.deal(hands, per_hand = 5)

 deal() is a new method in Deck. It takes 2 arguments: a list
of hands and the number of cards to deal each hand. The
method gives a card from the deck to each hand. If the deck
is out of cards, Can’t continue deal. Out of cards! is printed.
The method repeats this process for the number of cards to
be dealt each hand.

 To see the results of the deal, print each hand and the deck

print("My hand:")
print(my_hand)
print("Your hand:")
print(your_hand)
print("Deck:")
print(deck1)

 You can see that each hand has 5 cards and the deck now
has only 42.

 Finally put the deck back to its initial state by clearing it:

deck1.clear()

 Then print the deck one last time to show its emptiness:

print("Deck:", deck1)

 You can extend a class by adding new methods to a derived
class. You can also redefine an inherited method of a base
class in a derived class, ie, overriding the method.

 When you override a base class method, you can either
create a method with completely new functionality, or you
can incorporate the functionality of the base class method
that you’re overriding.

Alter the Behavior of Inherited Methods

Introducing the Playing Cards 3 Program

playing_cards3.py
Playing Cards 3.0
Demonstrates inheritance - overriding methods

class Card(object):
 """ A playing card. """
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]

 def __init__(self, rank, suit):
 self.rank = rank
 self.suit = suit

 def __str__(self):
 rep = self.rank + self.suit
 return rep

class Unprintable_Card(Card):
 """A Card won't show its rank/suit when printed."""
 def __str__(self):
 return "<unprintable>"

class Positionable_Card(Card):
 """ A Card that can be face up or face down. """
 def __init__(self, rank, suit, face_up = True):
 super(Positionable_Card, self).__init__(rank, suit)
 self.is_face_up = face_up

 def __str__(self):
 if self.is_face_up:
 rep = super(Positionable_Card, self).__str__()
 else:
 rep = "XX"
 return rep

 def flip(self):
 self.is_face_up = not self.is_face_up

#main
card1 = Card("A", "c")
card2 = Unprintable_Card("A", "d")
card3 = Positionable_Card("A", "h")

print("Printing a Card object:")
print(card1)

print("\nPrinting an Unprintable_Card object:")
print(card2)

print("\nPrinting a Positionable_Card object:")
print(card3)
print("Flipping the Positionable_Card object.")
card3.flip()
print("Printing the Positionable_Card object:")
print(card3)

input("\n\nPress the enter key to exit.")

Overriding Base Class Methods
 Derive a new class for unprintable cards based on Card:

class Unprintable_Card(Card):
 """A Card won't show its rank/suit when printed."""
 def __str__(self):
 return "<unprintable>"

 Unprintable_Card inherits all of the methods of Card. But
we can change an inherited method by defining it in a
derived class.

 Unprintable_Card inherits __str__() from Card. But we
define a new __str__() in Unprintable_Card to override (or
replaces) the inherited one

 Any time you create a method in a derived class with the
same name as an inherited method, you override the
inherited method in the new class.

 So, when you print an Unprintable_Card object, the text
<unprintable> is displayed.

 A derived class has no effect on a base class. A base class
doesn’t care if you derive a new class from it, or if you
override an inherited method in the new class. The base
class still functions as it always has.

 So when you print a Card object, it will appear as it always
does.

Invoking Base Class Methods
 Sometimes when you override the method of a base class,

you want to incorporate the inherited method’s functionality.

 If we want to create a new type of playing card class based
on Card. We want an object of this new class to have a new
attribute to show if the card is face up.

 So we need to override the inherited constructor from Card
with a new constructor that creates a face up attribute. But
we still want the new constructor to create and set rank and
suit attributes, like the Card constructor does.

 Instead of retyping the code from the Card constructor, we
could invoke it from inside the new constructor. So it would
take care of creating and initializing rank and suit attributes
for an object of my new class.

 In the constructor of the new class, we could add the
attribute that indicates whether the card is face up:

class Positionable_Card(Card):
 def __init__(self, rank, suit, face_up = True):
 super(Positionable_Card, self).__init__(rank, suit)
 self.is_face_up = face_up

 super() invoked the method of a base class (ie superclass).
super(Positionable_Card, self).__init__(rank, suit) invokes
__init__() of Card (the superclass of Positionable_Card).

 The 1st argument to super(), Positionable_Card, is to
invoke a method of the superclass of Positionable_Card, ie,
Card. The 2nd argument, self, passes a reference to the newly
instantiated Positionable_Card object so that code in the
Card can add the rank and suit attributes to it.

 The next part of the statement, __init__(rank, suit), invokes
the constructor of Card and passes it rank and suit.

 The next method in Positionable_Card overrides a method
inherited from Card and invokes the overridden method:

 def __str__(self):
 if self.is_face_up:
 rep = super(Positionable_Card, self).__str__()
 else:
 rep = "XX"
 return rep

 This __str__() first checks if an object’s face_up attribute is
True. If so, the string for the card is set to the string from
Card’s __str__() called with the Positionable_Card object.

 So if the card is face up, the card prints out like any object
of the Card class. But if the card is not face up, the string
returned is "XX".

 The last method in the class is a new one:

 def flip(self):
 self.is_face_up = not self.is_face_up

 The method flips a card over by toggling the value of an
object’s face_up attribute.

Using the Derived Classes
 In the main part, we create 3 objects: one from Card, one

from Unprintable_Card, and the last from Positionable_Card:

card1 = Card("A", "c")
card2 = Unprintable_Card("A", "d")
card3 = Positionable_Card("A", "h")

 Print the Card object:

print(card1)

the text Ac is displayed.

 Print an Unprintable_Card object:

print(card2)

shows <unprintable> because the Unprintable_Card class
overrides its inherited __str__().

 Print a Positionable_Card object:

print(card3)

 Since the object’s face_up is True, the object’s __str__()
invokes Card’s __str__() and the text Ah is displayed.

 Invoke the Positionable_Card object’s flip():

card3.flip()

sets the face_up to False. Print the Positionable_Card object
again:

print(card3)

 This time XX is displayed because the face_up is False.

Understanding Polymorphism
 Polymorphism is the quality of being able to treat different

types of things the same and have those things each react in
their own way.

 In OOP, polymorphism means that you can send the same
message to objects of different classes related by inheritance
and achieve different and appropriate results.

 Unprintable_Card is derived from Card. When you invoke
__str__() of an Unprintable_Card object, you get a different
result than when you invoke __str__() of a Card object.

 The result of this polymorphic behavior is that you are able
to print an object even if you don’t know whether it’s an
Unprintable_Card or a Card object.

 Regardless of the class of the object, when printed, its
__str__() is invoked and the correct string of it is displayed.

Creating Modules
Creating your own modules provides important benefits:

 * By creating your own modules, you can reuse code, which
 can save you time and effort.

 * By breaking up a program into logical modules, large
 programs become easier to manage.

 * By creating modules, you can share your genius.

Introducing the Simple Game Program

games.py
Games
Demonstrates module creation

class Player(object):
 """ A player for a game. """
 def __init__(self, name, score = 0):
 self.name = name
 self.score = score

 def __str__(self):
 rep = self.name + ":\t" + str(self.score)
 return rep

def ask_yes_no(question):
 """Ask a yes or no question."""
 response = None
 while response not in ("y", "n"):
 response = input(question).lower()
 return response

def ask_number(question, low, high):
 """Ask for a number within a range."""
 response = None
 while response not in range(low, high):
 response = int(input(question))
 return response

if __name__ == "__main__":
 print("You ran this module directly.")
 input("\n\nPress the enter key to exit.")

Writing Modules
 Create a module the same way you write Python programs.

 When you create a module, you should build a collection of
related components, such as functions and classes, and store
them in a single file to be imported into a new program.

 This module is named games because we saved the file
with the name games.py. Programmer-created modules are
named (and imported) based on their file names.

 The next part of the program introduces a new idea related
to modules. The condition of the if statement,

__name__ == "__main__"

is true if the program is run directly. It’s false if the file is
imported as a module. So, if the games.py file is run directly,
a message is displayed telling the user that the file is meant
to be imported and not directly run.

simple_game.py

Simple Game
Demonstrates importing modules

import games, random

print("Welcome to the world's simplest game!\n")

again = None
while again != "n":
 players = []
 num = games.ask_number(question="How many ”,
 ”players? (2 - 5): ", low = 2, high = 5)
 for i in range(num):
 name = input("Player name: ")
 score = random.randrange(100) + 1
 player = games.Player(name, score)
 players.append(player)

 print("\nHere are the game results:")
 for player in players:
 print(player)

 again = games.ask_yes_no("\nPlay again? (y/n): ")

input("\n\nPress the enter key to exit.")

Importing Modules
 We import a programmer-created module the same way we

import a built-in module, with the import statement:

import games, random

 If a programmer-created module isn’t in the same directory
as the program that imports it, Python won’t be able to find
the module.

 Make sure that any module you want to import is in the
same directory as the programs that import it.

Using Imported Functions and Classes
 In a simple loop, we get the number of players by calling

ask_number() from the games module:

again = None
while again != "n":
 players = []
 num = games.ask_number(question="How many”, \
 ”players? (2 - 5): ", low = 2, high = 5)

 Just as with other imported modules, to call a function we
use dot notation, specifying first the module name, followed
by the function name.

 Next, for each player, we get the player’s name and
generate a random score between 1 – 100 by calling
randrange() from the random module.

 Then, we create a player object using this name and score.

 Since the Player class is defined in the games module, use
dot and put the module name before the class name.

 Append this new player object to a list of players:

 for i in range(num):
 name = input("Player name: ")
 score = random.randrange(100) + 1
 player = games.Player(name, score)
 players.append(player)

 Print each player in the game:

 for player in players:
 print(player)

 Finally, ask if the players want to play another game with
ask_yes_no() from the games module:

 again = games.ask_yes_no("\nPlay again? (y/n): ")

cards.py
Cards Module
Basic classes for a game with playing cards

class Card(object):
 RANKS = ["A", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "J", "Q", "K"]
 SUITS = ["c", "d", "h", "s"]
 def __init__(self, rank, suit, face_up = True):
 self.rank = rank
 self.suit = suit
 self.is_face_up = face_up

 def __str__(self):
 if self.is_face_up:
 rep = self.rank + self.suit
 else:
 rep = "XX"
 return rep

 def flip(self):
 self.is_face_up = not self.is_face_up

class Hand(object):
 """ A hand of playing cards. """
 def __init__(self):
 self.cards = []

 def __str__(self):
 if self.cards:
 rep = ""
 for card in self.cards:
 rep += str(card) + "\t"
 else:
 rep = "<empty>"
 return rep

 def clear(self):
 self.cards = []

 def add(self, card):
 self.cards.append(card)

 def give(self, card, other_hand):
 self.cards.remove(card)
 other_hand.add(card)

class Deck(Hand):
 """ A deck of playing cards. """
 def populate(self):
 for suit in Card.SUITS:
 for rank in Card.RANKS:
 self.add(Card(rank, suit))

 def shuffle(self):
 import random
 random.shuffle(self.cards)

 def deal(self, hands, per_hand = 1):
 for rounds in range(per_hand):
 for hand in hands:
 if self.cards:
 top_card = self.cards[0]
 self.give(top_card, hand)
 else:
 print("Out of cards!")

if __name__ == "__main__":
 print("This is a module for playing cards.")
 input("\n\nPress the enter key to exit.")

 To write the Blackjack game, this is the final cards module
based on the Playing Cards programs.

Designing the Classes
 Before you start coding a project with multiple classes, it

can help to map them out on paper. You might make a list
and include a brief description of each class.

 In addition to describing your classes in words, you might
want to draw a family tree of sorts to visualize how your
classes are related:

Pseudocode for
the Game Loop

Deal each player and dealer initial 2 cards
For each player
 While the player asks for a hit and is not busted
 Deal the player an additional card
If there are no players still playing
 Show the dealer’s 2 cards
Otherwise
 While the dealer must hit and the dealer is not busted
 Deal the dealer an additional card
 If the dealer is busted
 For each player who is still playing
 The player wins
 Otherwise
 For each player who is still playing
 If the player’s total > the dealer’s total
 The player wins
 Otherwise, if the player’s total< the dealer’s total
 The player loses
 Otherwise
 The player pushes

Introducing the Blackjack Game

blackjack.py
Blackjack
From 1 to 7 players compete against a dealer

import cards, games

class BJ_Card(cards.Card):
 """ A Blackjack Card. """
 ACE_VALUE = 1

 @property
 def value(self):
 if self.is_face_up:
 v = BJ_Card.RANKS.index(self.rank) + 1
 if v > 10:
 v = 10
 else:
 v = None
 return v

class BJ_Deck(cards.Deck):
 """ A Blackjack Deck. """
 def populate(self):
 for suit in BJ_Card.SUITS:
 for rank in BJ_Card.RANKS:
 self.cards.append(BJ_Card(rank, suit))

class BJ_Hand(cards.Hand):
 """ A Blackjack Hand. """
 def __init__(self, name):
 super(BJ_Hand, self).__init__()
 self.name = name

 def __str__(self):
 rep=self.name+":\t"+super(BJ_Hand,self).__str__()
 if self.total:
 rep += "(" + str(self.total) + ")"
 return rep

 @property
 def total(self):
 # if a card in the hand = None, then total = None
 for card in self.cards:
 if not card.value:
 return None
 t = 0 # add up card values, treat each Ace as 1
 for card in self.cards:
 t += card.value

 # determine if hand contains an Ace
 contains_ace = False
 for card in self.cards:
 if card.value == BJ_Card.ACE_VALUE:
 contains_ace = True

 # if total is low, treat Ace = 11
 if contains_ace and t <= 11:
 t += 10 # add only 10 since we add 1 to Ace
 return t

 def is_busted(self):
 return self.total > 21

class BJ_Player(BJ_Hand):
 def is_hitting(self):
 response = games.ask_yes_no("\n" + self.name +
 ", do you want a hit? (Y/N): ")
 return response == "y"

 def bust(self):
 print(self.name, "busts.")
 self.lose()

 def lose(self):
 print(self.name, "loses.")

 def win(self):
 print(self.name, "wins.")

 def push(self):
 print(self.name, "pushes.")

class BJ_Dealer(BJ_Hand):
 """ A Blackjack Dealer. """
 def is_hitting(self):
 return self.total < 17

 def bust(self):
 print(self.name, "busts.")

 def flip_first_card(self):
 first_card = self.cards[0]
 first_card.flip()

class BJ_Game(object):
 """ A Blackjack Game. """
 def __init__(self, names):
 self.players = []
 for name in names:
 player = BJ_Player(name)
 self.players.append(player)

 self.dealer = BJ_Dealer("Dealer")

 self.deck = BJ_Deck()
 self.deck.populate()
 self.deck.shuffle()

 @property
 def still_playing(self):
 sp = []
 for player in self.players:
 if not player.is_busted():
 sp.append(player)
 return sp

 def __additional_cards(self, player):
 while not player.is_busted() and player.is_hitting():
 self.deck.deal([player])
 print(player)
 if player.is_busted():
 player.bust()

 def play(self):
 # deal initial 2 cards to everyone
 self.deck.deal(self.players + [self.dealer],
 per_hand=2)
 self.dealer.flip_first_card() # hide dealer 1st card
 for player in self.players:
 print(player)
 print(self.dealer)

 # deal additional cards to players
 for player in self.players:
 self.__additional_cards(player)

 self.dealer.flip_first_card() # reveal dealer's first

 if not self.still_playing:
 # All players have busted, show the dealer's
 print(self.dealer)
 else:
 print(self.dealer) # deal extra cards to dealer
 self.__additional_cards(self.dealer)

 if self.dealer.is_busted():
 # everyone still playing wins
 for player in self.still_playing:
 player.win()
 else:
 # compare the player still playing to dealer
 for player in self.still_playing:
 if player.total > self.dealer.total:
 player.win()
 elif player.total < self.dealer.total:
 player.lose()
 else:
 player.push()

 # remove everyone's cards
 for player in self.players:
 player.clear()
 self.dealer.clear()

def main():
 print("\t\tWelcome to Blackjack!\n")

 names = []
 number = games.ask_number("How many players?,\
 “ (1 - 7): ", low = 1, high = 8)
 for i in range(number):
 name = input("Enter player name: ")
 names.append(name)
 print()

 game = BJ_Game(names)

 again = None
 while again != "n":
 game.play()
 again=games.ask_yes_no("\nWant to play again?:")

main()
input("\n\nPress the enter key to exit.")

Importing the cards and games Modules
 In the first part of the Blackjack (BJ) program, we import

the 2 modules, cards and games:

import cards, games

 We created the games module in the Simple Game
program, earlier in this chapter.

The BJ_Card Class
 The BJ_Card class extends the definition of what a card is

by inheriting from cards.Card. In BJ_Card, we create a new
property, value, for the point value of a card:

class BJ_Card(cards.Card):
 """ A Blackjack Card. """
 ACE_VALUE = 1

 @property
 def value(self):
 if self.is_face_up:
 v = BJ_Card.RANKS.index(self.rank) + 1
 if v > 10:
 v = 10
 else:
 v = None
 return v

 The method returns a number between 1 and 10, which
represents the value of a blackjack card.

 The 1st part of the calculation is computed through

 v = BJ_Card.RANKS.index(self.rank) + 1

 This expression takes rank of an object (say "6") and finds
its corresponding index number in BJ_Card.RANKS through
the list method index() (for "6" this would be 5).

 1 is added to the result since the code starts counting at 0.

 since rank attributes of "J", "Q", and "K" result in numbers
larger than 10, any value greater than 10 is set to 10.

 If an object’s face_up attribute is False, this whole process
is skipped and a value of None is returned.

The BJ_Deck Class
 The BJ_Deck class creates a deck of BJ cards. The class is

almost exactly the same as its base class, cards.Deck

 The only difference is that we override cards.Deck‘s
populate() so that a new BJ_Deck object gets populated with
BJ_Card objects:

class BJ_Deck(cards.Deck):
 """ A Blackjack Deck. """
 def populate(self):
 for suit in BJ_Card.SUITS:
 for rank in BJ_Card.RANKS:
 self.cards.append(BJ_Card(rank, suit))

The BJ_Hand Class
 The BJ_Hand class, based on cards.Hand, is used for BJ

hands. We override the cards.Hand constructor and add a
name attribute to represent the the hand owner:

class BJ_Hand(cards.Hand):
 def __init__(self, name):
 super(BJ_Hand, self).__init__()
 self.name = name

 Override the inherited __str__() to display the total point
value of the hand:

 def __str__(self):
 rep=self.name+":\t"+super(BJ_Hand,self).__str__()
 if self.total:
 rep += "(" + str(self.total) + ")"
 return rep

 We concatenate the object’s name with the string returned
from cards.Hand.__str__() for the object.

 If the object’s total property isn’t None, we concatenate the
string representation of the value of total.

 We then create a property called total, which represents
the total point value of a BJ hand.

 If a BJ hand has a face-down card in it, then its total
property is None.

 Otherwise, the value is calculated by adding the point
values of all the cards in the hand:

 @property
 def total(self):
 # if a card in the hand = None, then total = None
 for card in self.cards:
 if not card.value:
 return None
 t = 0 # add up card values, treat each Ace as 1
 for card in self.cards:
 t += card.value

 # determine if hand contains an Ace
 contains_ace = False
 for card in self.cards:
 if card.value == BJ_Card.ACE_VALUE:
 contains_ace = True

 # if total is low, treat Ace = 11
 if contains_ace and t <= 11:
 t += 10 # add only 10 since we add 1 to Ace
 return t

 The 1st part of this method checks if any card in the BJ
hand has a value equal to None (which means that the card
is face-down). If so, the method returns None.

 The next part sums the point values of all the cards in the
hand. The next part determines if the hand contains an ace.
If so, the last part of the method determines if the card’s
point value should be 11 or 1.

 The last method in BJ_Hand is is_busted(). It returns True if
the object’s total > 21. Otherwise, it returns False:

 def is_busted(self):
 return self.total > 21

 This kind of method, which returns either True or False, is
used to represent a condition of an object with 2 possibilities
, such as “on” or “off.” It results in a more elegant method.

The BJ_Player Class
 The BJ_Player class, derived from BJ_Hand, is for BJ player:

class BJ_Player(BJ_Hand):
 def is_hitting(self):
 response = games.ask_yes_no("\n" + self.name +\
 ", do you want a hit? (Y/N): ")
 return response == "y"

 def bust(self):
 print(self.name, "busts.")
 self.lose()

 def lose(self):
 print(self.name, "loses.")

 def win(self):
 print(self.name, "wins.")

 def push(self):
 print(self.name, "pushes.")

 is_hitting() returns True if the player wants another hit and
returns False if the player doesn’t.

 bust() announces that a player busts and invokes the
object’s lose(). lose() announces that a player loses.

 win() announces that a player wins. And push() announces
that a player pushes.

 These simple methods form a great skeleton structure to
handle the more complex issues that arise when players are
allowed to bet.

The BJ_Dealer Class
 The BJ_Dealer class, derived from BJ_Hand, is used for the

game’s BJ dealer:

class BJ_Dealer(BJ_Hand):
 def is_hitting(self):
 return self.total < 17

 def bust(self):
 print(self.name, "busts.")

 def flip_first_card(self):
 first_card = self.cards[0]
 first_card.flip()

 is_hitting() checks whether the dealer takes additional
cards. Since a dealer must hit on any hand totaling 17 or
less, the method returns True if the object’s total property is
less than 17; otherwise, it returns False.

The BJ_Game Class
 The BJ_Game class is used to create a single object that

represents a blackjack game.

 The mechanics of the game are complex enough that we
create a few elements outside the method, including an
__additional_cards() method that takes care of dealing
additional cards to a player and a still_playing property that
returns a list of all players still playing in the round.

The __init__() Method
The constructor receives a list of names and creates a player
for each name, and also a dealer and a deck:

class BJ_Game(object):
 """ A Blackjack Game. """
 def __init__(self, names):
 self.players = []
 for name in names:
 player = BJ_Player(name)
 self.players.append(player)

 self.dealer = BJ_Dealer("Dealer")

 self.deck = BJ_Deck()
 self.deck.populate()
 self.deck.shuffle()

The still_playing Property
still_playing returns a list of all the players that are still
playing (those that haven’t busted this round):

 @property
 def still_playing(self):
 sp = []
 for player in self.players:
 if not player.is_busted():
 sp.append(player)
 return sp

The __additional_cards() Method
 __additional_cards() deals additional cards to either a player

or the dealer.

 The method receives an object into its player parameter,
which can be either BJ_Player or BJ_Dealer. The method
continues while the object’s is_busted() returns False and its
is_hitting() returns True. If the object’s is_busted() returns
True, then the object’s bust() is invoked:

 def __additional_cards(self, player):
 while not player.is_busted() and player.is_hitting():
 self.deck.deal([player])
 print(player)
 if player.is_busted():
 player.bust()

 Polymorphism is at work here in 2 method calls.
player.is_hitting() works equally well whether player refers
to a BJ_Player object or a BJ_Dealer object.

 __additional_cards() never has to know which type of object
it’s working with. The same is true in the line player.bust(),
since BJ_Player and BJ_Dealer each defines its own bust().

The play() Method
 play() is where the game loop is defined and bears a

resemblance to the earlier pseudocode (see the code).

 Each player and dealer is dealt the initial 2 cards. The
dealer’s 1st card is flipped to hide its value. Next, all of the
hands are displayed. Then, each player is given cards as long
as the player requests additional cards and hasn’t busted.

 If all players have busted, the dealer’s 1st card is flipped
and the dealer’s hand is printed. Otherwise, play continues.

 The dealer gets cards as long as the dealer hand total < 17.
If the dealer busts, all remaining players win. Otherwise,
each remaining player’s hand is compared with the dealer’s.

 If the player’s total > the dealer’s, the player wins. If the
player’s total is less, the player loses. If the two totals are
equal, the player pushes.

The main() Function
main() gets the names of all the players, puts them in a list,
and creates a BJ_Game object, using the list as an argument.
Next, the function invokes the object’s play() and will
continue to do so until the players no longer want to play:

def main():
 names = []
 number = games.ask_number("How many players?”,\
 “ (1 - 7): ", low = 1, high = 8)
 for i in range(number):
 name = input("Enter player name: ")
 names.append(name)
 print()
 game = BJ_Game(names)
 again = None
 while again != "n":
 game.play()
 again=games.ask_yes_no("\nWant to play again?:")

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

