

Chapter 8

Software Objects: The
Critter Caretaker Program

Understanding Object-Oriented Basics
 Object-oriented programming (OOP) is a different way of

thinking about programming. It’s a modern methodology
that’s been embraced by the software industry and is used in
the creation of the majority of new, commercial software.

 The basic building block in OOP is the software object—often
just called an object.

 OOP can represent real-life objects as software objects.
Like real-life objects, software objects have characteristics
(attributes) and behaviors (methods).

 Objects are created (instantiated) from a definition called a
class—code that can define attributes and methods.

 Classes are like blueprints. A class isn’t an object, it’s a
design for an object. One can create many objects from the
same class.

 As a result, each object (instance) instantiated from the
same class will have a similar structure.

 you can have 2 objects of the same class and give each its
own unique set of attribute values.

Introducing the Simple Critter Program

simple_critter.py
Simple Critter
Demonstrates a basic class and object

class Critter(object):
 """A virtual pet"""
 def talk(self):
 print("Hi. I'm an instance of class Critter.")

main
crit = Critter()
crit.talk()

input("\n\nPress the enter key to exit.")

Defining a Class

class Critter(object):

 The keyword class is followed by the class name.

 object is a fundamental, built-in type.

Defining a Method

 def talk(self):
 print("Hi. I'm an instance of class Critter.")

 Every instance method—a method that every object of a class
has—must have a special 1st parameter, called self by
convention.

 This parameter provides a way for a method to refer to the
object itself.

 If you create an instance method without any parameters,
you’ll generate an error when you invoke it.

Instantiating an Object
 After we wrote the class, instantiating a new object is:

crit = Critter()

 This line creates an object of the Critter class and assigns
it to the variable crit.

 Notice the parentheses after the class name Critter in the
assignment statement. It’s critical to use them if you want to
create a new object.

Invoking a Method
 Invoke this method talk() just like any other, using dot:

crit.talk()

the Constructor Critter Program

constructor_critter.py
Constructor Critter
Demonstrates constructors

class Critter(object):
 """A virtual pet"""
 def __init__(self):
 print("A new critter has been born!")

 def talk(self):
 print("\nHi. I'm an instance of class Critter.")

main
crit1 = Critter()
crit2 = Critter()

crit1.talk()
crit2.talk()
input("\n\nPress the enter key to exit.")

Creating a Constructor
 The constructor method (the initialization method) in the

class definition is:

 def __init__(self):
 print("A new critter has been born!")

 By naming the method __init__, we told Python that this is
the constructor method.

 As a constructor method, __init__() is automatically called
by any newly created Critter object right after the object
springs to life.

 Python has a collection of built-in “special methods” whose
names begin and end with 2 underscores, like __init__ , the
constructor method.

Creating Multiple Objects
crit1 = Critter()
crit2 = Critter()

 As a result, 2 objects are created. After each is instantiated
 it prints "A new critter has been born!" via its constructor.

 Each object is its very own full-fledged critter. We invoke
their talk() methods:

crit1.talk()
crit2.talk()

 Even though these 2 lines of code print the exact same
string, "\nHi. I’m an instance of class Critter." , each is the
result of a different object.

the Attribute Critter Program

handle_it.py
Attribute Critter
Demonstrates creating/accessing object attributes

class Critter(object):
 """A virtual pet"""
 def __init__(self, name):
 print("A new critter has been born!")
 self.name = name

 def __str__(self):
 rep = "Critter object\n"
 rep += "name: " + self.name + "\n"
 return rep

 def talk(self):
 print("Hi. I'm", self.name, "\n")

main
crit1 = Critter("Poochie")
crit1.talk()

crit2 = Critter("Randolph")
crit2.talk()

print("Printing crit1:")
print(crit1)

print("Directly accessing crit1.name:")
print(crit1.name)

input("\n\nPress the enter key to exit.")

Initializing Attributes
 In the constructor, it creates the attribute name for the

new object and sets it to the value of the parameter name:

 def __init__(self, name):
 print("A new critter has been born!")
 self.name = name

 So, in the main part: crit1 = Critter("Poochie") results
in the creation of a new Critter object with an attribute
name set to "Poochie". And the object is assigned to crit1.

 As the 1st parameter in every method, self automatically
receives a reference to the object invoking the method. This
means that, through self, a method can get at the object
invoking it and access the object’s attributes and methods.

 You shouldn’t name the 1st parameter in a method header
something other than self.

 self.name = name

creates the attribute name for the object and sets it to the
value of name, which is "Poochie".

crit2 = Critter("Randolph")

kicks off the same basic chain of events. But this time, a new
Critter object is created with its own attribute name set to
"Randolph". And the object is assigned to crit2.

Accessing Attributes
 Get the 1st critter to say hi by invoking its talk() method:

crit1.talk()

 talk() receives the automatically sent reference to the
object into its self parameter:

 def talk(self):
 print("Hi. I'm", self.name, "\n")

 By default, we can access and modify an object’s attributes
outside of its class. In the main part, we directly accessed
the name attribute of crit1:

print(crit1.name)

 Usually, you want to avoid directly accessing an object’s
attributes outside of its class definition.

Printing an Object
 If we were to print an object with print(crit1), Python

would come back with something like the cryptic:

<__main__.Critter object at 0x00A0BA90>

 This tells us that we’ve printed a Critter object, but doesn’t
give me any useful information about the object.

 By including the special method __str__() in a class
definition, we can create a string for the objects that will be
displayed whenever one is printed:

 def __str__(self):
 rep = "Critter object\n"
 rep += "name: " + self.name + "\n"
 return rep

 __str__() returns a string that includes the value of the
object’s name attribute. So

print(crit1)

gives

Critter object
name: Poochie

 Even if you never plan to print an object in your program,
creating a __str__() is still not a bad idea. You may find that
being able to see the values of an object’s attributes helps
you understand how a program is working (or not working).

 Through attributes, different objects of the same class can
each have their own, unique values.

 But you may have some information that relates not to
individual objects, but the entire class.

 Python offers a way to create a single value associated with
a class itself, called a class attribute.

 A method that’s associated with the class is called static
method. They’re often used to work with class attributes.

Using Class Attributes & Static Methods

Introducing the Classy Critter Program

classy_critter.py
Classy Critter
Demonstrates class attributes and static methods

class Critter(object):
 """A virtual pet"""
 total = 0

 @staticmethod
 def status():
 print("\nThe total No. of critters is", Critter.total)

 def __init__(self, name):
 print("A critter has been born!")
 self.name = name
 Critter.total += 1

#main
print("Accessing the attribute Critter.total:", end=" ")
print(Critter.total)

print("\nCreating critters.")
crit1 = Critter("critter 1")
crit2 = Critter("critter 2")
crit3 = Critter("critter 3")

Critter.status()

print("\nAccessing the class attribute through an \
object:", end= " ")
print(crit1.total)

input("\n\nPress the enter key to exit.")

Creating a Class Attribute
 total = 0

creates a class attribute total and assigns 0 to it.

 Any assignment statement like this—a variable assigned a
value outside of a method—creates a class attribute.

 The assignment statement is executed only once, when
Python first sees the class definition.

 Thus the class attribute exists even before a single object is
created.

 So you can use a class attribute without any objects of the
class in existence.

Accessing a Class Attribute
 In the main part:

print(Critter.total)

 In the static method status():

 print("\nThe total No. of critters is", Critter.total)

 In the constructor method:

 Critter.total += 1

 Every time a new object is instantiated, the value of the
attribute is incremented by 1.

 In general, to access a class attribute, type the class name,
followed by a dot, followed by the attribute name.

 Finally, you can access a class attribute through an object
of that class:

print(crit1.total)

 This line prints the value of the class attribute total and not
an attribute of the object itself.

 You can read the value of a class attribute through any
object that belongs to that class.

 Although you can use an object of a class to access a class
attribute, you can’t assign a new value to a class attribute
through an object.

 If you want to change the value of a class attribute, access
it through its class name.

Creating a Static Method
 def status():
 print("\nThe total No. of critters is", Critter.total)

the definition is part of creating a static method. Notice that
the definition doesn’t have self in its parameter list.

 That’s because it’s designed to be invoked through a class,
not an object. So, the method won’t be passed a reference to
an object and therefore won’t need a parameter, like self, to
receive such a reference.

 A decorator is put before the definition. This decorator
creates a static method with the same name:

 @staticmethod

 The class now has a static method, status(), showing the
Critter objects’ number by printing the class attribute total.

 To create your static method, begin with @staticmethod
decorator, followed by the class method definition. And since
the method is for the entire class, you won’t include the self
parameter, necessary only for object methods.

Invoking a Static Method
 Invoke the static method with:

Critter.status()

 notice that we are able to invoke the method without a
single object in existence.

 Since static methods are invoked through a class, no
objects of the class need to exist before you can invoke them.

 After creating 3 objects. We invoke status() again, which
prints a message stating that 3 critters exist.

 This works because, during the constructor method for
each object, the class attribute total is increased by 1.

Understanding Object Encapsulation
 For the function encapsulation, functions are encapsulated

and hide the details of their inner workings from the part of
your program that calls it (called the client of the function).

 The client of a well-defined function communicates with the
function only through its parameters and return values.

 Objects should be treated the same way. Client code should
avoid directly altering the value of an object’s attribute.

 Altering directly an object’s attribute by a careless client
could cause a catastrophic consequence. Employing a safe
method offered by the class instead can avoid the situation
from happening.

Introducing the Private Critter Program

private_critter.py
Private Critter
Demonstrates private variables and methods

class Critter(object):
 """A virtual pet"""
 def __init__(self, name, mood):
 print("A new critter has been born!")
 self.name = name # public attribute
 self.__mood = mood # private attribute

 def talk(self):
 print("\nI'm", self.name)
 print("Right now I feel", self.__mood, "\n")

 def __private_method(self):
 print("This is a private method.")

 def public_method(self):
 print("This is a public method.")
 self.__private_method()

main
crit = Critter(name = "Poochie", mood = "happy")
crit.talk()
crit.public_method()

input("\n\nPress the enter key to exit.")

Creating Private Attributes
 By default, all of an object’s attributes/methods are public,

ie, they can be directly accessed or invoked by a client.

 For encapsulation, attributes/methods can be defined as
private, ie, only other methods of the object itself can access
and invoke them.

 In the constructor method, we create 2 attributes, one
public and one private:

 self.name = name # public attribute
 self.__mood = mood # private attribute

 The 2 underscore characters that begin the 2nd attribute
name tell Python that this is a private attribute.

 To create a private attribute, including class attributes, just
begin the attribute name with 2 underscores.

Accessing Private Attributes
 It’s perfectly fine to access an object’s private attribute

inside the class definition of the object:

 def talk(self):
 print("\nI'm", self.name)
 print("Right now I feel", self.__mood, "\n")

 If we tried to access this attribute outside of the Critter
class definition, we’d have trouble:

>>> crit = Critter(name = "Poochie", mood = "happy")
A new critter has been born!
>>> print(crit.mood)
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 print(crit.mood)
AttributeError: 'Critter' object has no attribute 'mood'

 Another trial:

>>> print(crit.__mood)
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 print(crit.__mood)
AttributeError: 'Critter' object has no attribute '__mood'

 A private attribute is still accessible outside. Python hides
the attribute through a special naming convention:

>>> print(crit._Critter__mood)
happy

 Privacy is an indicator that the attribute or method is only
for an object’s internal use. In addition it helps prevent
inadvertent access to such an attribute or method. So don’t
try to directly access the private attributes or methods of an
object from outside of its class definition.

Creating Private Methods
 def __private_method(self):
 print("This is a private method.")

 This is a private method but it can easily be accessed by
any other method in the class.

 Like private attributes, private methods are meant only to
be accessed by an object’s own methods.

Accessing Private Methods
 Just as with private attributes, accessing an object’s private

methods within its class definition is simple:

 def public_method(self):
 print("This is a public method.")
 self.__private_method()

 Like private attributes, private methods aren’t meant to be
directly accessed by clients:

>>> crit.private_method
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 crit.private_method
AttributeError: 'Critter' object has no attribute
 'private_method'

 Another trial:

>>> crit.__private_method()
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 crit.__private_method()
AttributeError: 'Critter' object has no attribute
 '__private_method'

 Just as with private attributes, it is technically possible to
access private methods from anywhere in a program:

>>> crit._Critter__private_method()
This is a private method.

 A client should never attempt to directly access an object’s
private methods.

 You can create a private static method by beginning the
method’s name with 2 underscores.

Respecting an Object’s Privacy
In the main part, we create an object and invoke its 2 public
methods, without prodding into the object’s private
attributes or methods:

main
crit = Critter(name = "Poochie", mood = "happy")
crit.talk()
crit.public_method()

input("\n\nPress the enter key to exit.")

Understanding When to Implement Privacy
 Make private any method you don’t want a client to invoke.

If it’s critical that an attribute never be directly accessed by
a client, you can make it private.

 The philosophy among many Python programmers is to
trust that clients will use an object’s methods and not
directly alter its attributes.

 When you write a class:
 * Create methods to reduce the need for clients to directly
 access an object’s attributes.
 * Use privacy for those attributes and methods that are
 completely internal to the operation of objects.

 When you use an object:
 * Minimize the direct reading of an object’s attributes.
 * Avoid directly altering an object’s attributes.
 * Never attempt to directly access an object’s private
 attributes or methods.

Introducing the Property Critter Program

property_critter.py
Property Critter
Demonstrates properties

class Critter(object):
 """A virtual pet"""
 def __init__(self, name):
 print("A new critter has been born!")
 self.__name = name

 @property
 def name(self):
 return self.__name

 @name.setter
 def name(self, new_name):
 if new_name == "":
 print("A critter's name can't be empty.")

 else:
 self.__name = new_name
 print("Name change successful.")

 def talk(self):
 print("\nHi, I'm", self.name)

main
crit = Critter("Poochie")
crit.talk()

print("\nMy critter's name is:", end= " ")
print(crit.name)

print("\nTrying my critter's name to Randolph...")
crit.name = "Randolph"
print("My critter's name is:", end= " ")
print(crit.name)

print("\nTrying to change the name to be empty...")
crit.name = ""
print("My critter's name is:", end= " ")
print(crit.name)

input("\n\nPress the enter key to exit.")

Creating Properties
 One way to control access to a private attribute is to create

a property—an object with methods that allow indirect access
to attributes and often impose restriction on that access:

 @property
 def name(self):
 return self.__name

 We create the property by writing a method that returns
the value I want to provide indirect access to and precede
the method definition with the @property decorator.

 The property has the same name as the method—in this
case, name. Now we can use the name property of any
Critter object to get the value of the object’s private __name
attribute, inside or outside the class definition using the
familiar dot notation.

 To create a property, write a method that returns the value
you want to provide indirect access to and precede the
method definition with the @property decorator. The
property will have the same name as the method.

 By creating a property, you can provide read access to a
private attribute. A property can also provide write access—
and even impose some limits on that access:

 @name.setter
 def name(self, new_name):
 if new_name == "":
 print("A critter's name can't be empty.")
 else:
 self.__name = new_name
 print("Name change successful.")

 @name.setter accesses the setter attribute of the name
property.

 It means that the following method definition will provide a
way to set the value of the property name.

 You can create your own decorator for setting a property
value: start with the @ symbol, followed by the name of the
property, followed by a dot (.), followed by setter.

 This method is called name just like the property; it has to
be. When establishing a setter method in this way, the
method must have the same name as the property.

 When you create a method for setting the value of a
property, the method definition must have a parameter to
receive the new value.

Accessing Properties
 By creating the name property, I can get the name of a

critter through dot notation:

 def talk(self):
 print("\nHi, I'm", self.name)

main
crit = Critter("Poochie")
crit.talk()

 The code self.name accesses the name property and
indirectly calls the method that returns __name.

 Not only can we use the name property of an object inside
its class definition, but we can also use it outside the
definition:

print("\nMy critter's name is:", end= " ")
print(crit.name)

 Although this code is outside the Critter class, the code
crit.name accesses the name property of the Critter object
and indirectly calls the method that returns __name.

crit.name = "Randolph"

accesses the name property of the object and indirectly calls
the method that attempts to set __name.

 Display the critter’s name using the name property:

print("My critter's name is:", end= " ")
print(crit.name)

gives My critter's name is Randolph.

 Attempt to change the critter’s name to the empty string:

print("\nTrying to change the name to be empty...")
crit.name = ""

gives A critter's name can't be the empty string and the
object’s __name attribute remains unchanged.

 Finally, check if the critter’s name hasn’t been changed to
the empty string:

print("My critter's name is:", end= " ")
print(crit.name)

Introducing the Critter Caretaker Program

critter_caretaker.py
Critter Caretaker
A virtual pet to care for

class Critter(object):
 """A virtual pet"""
 def __init__(self, name, hunger = 0, boredom = 0):
 self.name = name
 self.hunger = hunger
 self.boredom = boredom

 def __pass_time(self):
 self.hunger += 1
 self.boredom += 1

 @property
 def mood(self):
 unhappiness = self.hunger + self.boredom
 if unhappiness < 5:
 m = "happy"
 elif 5 <= unhappiness <= 10:
 m = "okay"
 elif 11 <= unhappiness <= 15:
 m = "frustrated"
 else:
 m = "mad"
 return m

 def talk(self):
 print("I'm", self.name, "and I feel", self.mood,
 "now.\n")
 self.__pass_time()

 def eat(self, food = 4):
 print("Brruppp. Thank you.")
 self.hunger -= food
 if self.hunger < 0:
 self.hunger = 0
 self.__pass_time()

 def play(self, fun = 4):
 print("Wheee!")
 self.boredom -= fun
 if self.boredom < 0:
 self.boredom = 0
 self.__pass_time()

def main():
 crit_name = input("What’s your critter’s name?:")
 crit = Critter(crit_name)

 choice = None
 while choice != "0":
 print \
 ("""
 Critter Caretaker

 0 - Quit
 1 - Listen to your critter
 2 - Feed your critter
 3 - Play with your critter
 """)
 choice = input("Choice: ")
 print()

 # exit
 if choice == "0":
 print("Good-bye.")

 # listen to your critter
 elif choice == "1":
 crit.talk()

 # feed your critter
 elif choice == "2":
 crit.eat()

 # play with your critter
 elif choice == "3":
 crit.play()

 # some unknown choice
 else:
 print("\nSorry,", choice, "isn't a valid choice.")

main()
("\n\nPress the enter key to exit.")

The Constructor Method
The constructor method of the class initializes the 3 public
attributes of a Critter object: name, hunger, boredom. Notice
that hunger and boredom have default values of 0, allowing a
critter to start off in a very good mood:

class Critter(object):
 """A virtual pet"""
 def __init__(self, name, hunger = 0, boredom = 0):
 self.name = name
 self.hunger = hunger
 self.boredom = boredom

The __pass_time() Method
 __pass_time() is a private method that increases a critter’s

hunger and boredom levels.

 It’s invoked at the end of each method where the critter
does something (eats, plays, or talks) to simulate the passage
of time:

 def __pass_time(self):
 self.hunger += 1
 self.boredom += 1

The mood Property
 mood represents a critter’s mood. It adds the values of a

Critter object’s hunger and boredom attributes and, based
on the total, returns "happy", "okay", "frustrated", or "mad".

 mood doesn’t provide access to a private attribute because
the string representing a critter’s mood is not a part of the
Critter object, but is calculated on the fly:
 @property
 def mood(self):
 unhappiness = self.hunger + self.boredom
 if unhappiness < 5:
 m = "happy"
 elif 5 <= unhappiness <= 10:
 m = "okay"
 elif 11 <= unhappiness <= 15:
 m = "frustrated"
 else:
 m = "mad"
 return m

The talk() Method
 talk() announces a critter’s mood by accessing the Critter

object’s mood property. Then it invokes __pass_time():

 def talk(self):
 print("I'm", self.name, "and I feel", self.mood,
 "now.\n")
 self.__pass_time()

The eat() Method
 eat() reduces a critter’s hunger level by an amount passed

to food. food’s default value is 4. The critter’s hunger level is
kept in check and not allowed to go below 0. Finally, the
method invokes __pass_time():

 def eat(self, food = 4):
 print("Brruppp. Thank you.")
 self.hunger -= food
 if self.hunger < 0:
 self.hunger = 0
 self.__pass_time()

The play() Method
 play() reduces the critter’s boredom level by an amount

passed to fun. fun’s default value is 4. The critter’s boredom
level is kept in check and not allowed to go below 0. Finally,
the method invokes __pass_time():

 def play(self, fun = 4):
 print("Wheee!")
 self.boredom -= fun
 if self.boredom < 0:
 self.boredom = 0
 self.__pass_time()

Creating the Critter
 We put the main part of the program into main().

 At the start of the program, we get the name of the critter
from the user. Next, we instantiate a new Critter object.

 Since we don’t supply values for hunger or boredom, the
attributes start out at 0:

def main():
 crit_name = input("What is your critter’s name?: ")
 crit = Critter(crit_name)

Creating a Menu System
 We then created a menu system. If 0 is entered, the code

ends. If 1 is entered, the object’s talk() is invoked. If 2 is
entered, the object’s eat() is invoked. If 3 is entered, the
object’s play() is invoked. If anything else is entered, the
code shows the choice is invalid:

 choice = None
 while choice != "0":
 print \
 ("""
 Critter Caretaker

 0 - Quit
 1 - Listen to your critter
 2 - Feed your critter
 3 - Play with your critter
 """)

 choice = input("Choice: ")
 print()

 # exit
 if choice == "0":
 print("Good-bye.")

 # listen to your critter
 elif choice == "1":
 crit.talk()
 # feed your critter
 elif choice == "2":
 crit.eat()

 # play with your critter
 elif choice == "3":
 crit.play()

 # some unknown choice
 else:
 print("\nSorry,", choice, "isn't a valid choice.")

Starting the Program
 The next line of code calls main() and begins the program:

main()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

