

Chapter 7

Files and Exceptions:
The Trivia Challenge Game

Introducing the
Read It Program

read_it.py
Read It
Demonstrates reading from a text file

print("Opening and closing the file.")
text_file = open("read_it.txt", "r")
text_file.close()

print("\nReading characters from the file.")
text_file = open("read_it.txt", "r")
print(text_file.read(1))
print(text_file.read(5))
text_file.close()

print("\nReading the entire file at once.")
text_file = open("read_it.txt", "r")
whole_thing = text_file.read()
print(whole_thing)
text_file.close()

print("\nReading characters from a line.")
text_file = open("read_it.txt", "r")
print(text_file.readline(1))
print(text_file.readline(5))
text_file.close()

print("\nReading one line at a time.")
text_file = open("read_it.txt", "r")
print(text_file.readline())
print(text_file.readline())
print(text_file.readline())
text_file.close()

print("\nReading the entire file into a list.")
text_file = open("read_it.txt", "r")
lines = text_file.readlines()
print(lines)
print(len(lines))
for line in lines:
 print(line)
text_file.close()

print("\nLooping through the file, line by line.")
text_file = open("read_it.txt", "r")
for line in text_file:
 print(line)
text_file.close()

input("\n\nPress the enter key to exit.")

read_it.txt
Line 1
This is line 2
That makes this line 3

Opening and Closing a File
 plain text files: files made up of only ASCII (American

Standard Codes for Information Interchange) characters.

● To open a file:
text_file = open("read_it.txt", "r")

 The 1st argument is the file name, the 2nd argument is the
access mode:

 After opening the file, we access it through the variable
text_file, which represents a file object.

 The simplest file object methods is close(), which closes
the file, sealing it off from further reading or writing until
the file is opened again:

text_file.close()

Reading Characters from a File
 We can read a file’s contents with the read() file object

method. read() allows you to read a specified number of
characters from a file, which the method returns as a string:

>>> text_file = open("read_it.txt", "r")
>>> print(text_file.read(1))
L
>>> print(text_file.read(5))
ine 1

 Notice that we read the 5 characters following the "L".
Python remembers where we last left off. When you read to
the end of a file, subsequent reads return the empty string.

 To start back at the beginning, you can close and open it:

>>> text_file.close()
>>> text_file = open("read_it.txt", "r")

 If you don’t specify the number of characters to be read,
Python returns the entire file as a string:

>>> whole_thing = text_file.read()
>>> print(whole_thing)
Line 1
This is line 2
That makes this line 3

 If a file is small enough, reading the entire thing at once
may make sense. But it is not a good idea if the file is big.

 Since we’ve read the entire file, any subsequent reads will
just return the empty string.

Reading Characters from a Line
 readline() reads characters from the current line. You just

pass the number of characters you want read from the
current line and the method returns them as a string.

 If you don’t pass a number, the method reads from the
current position to the end of the line. Once you read all of
the characters of a line, the next line becomes the current
line.

>>> text_file = open("read_it.txt", "r")
>>> print(text_file.readline(1))
L
>>> print(text_file.readline(5))
ine 1
>>> text_file.close()

 readline() reads characters from the current line only,
while read() reads characters from the entire file.

 readline() is usually invoked to read 1 line of text at a
time.

>>> text_file = open("read_it.txt", "r")
>>> print(text_file.readline())
Line 1

>>> print(text_file.readline())
This is line 2

>>> print(text_file.readline())
That makes this line 3

>>> text_file.close()

 A blank line appears after each line. That’s because each
line in the text file ends with a newline character ("\n").

Reading All Lines into a List
 readlines() reads a text file into a list, where each line of

the file becomes a string element in the list:

>>> text_file = open("read_it.txt", "r")
>>> lines = text_file.readlines()
>>> print(lines)
['Line 1\n', 'This is line 2\n', 'That makes this line 3\n']
>>> print(len(lines))
3
>>> for line in lines:
 print(line)
Line 1

This is line 2

That makes this line 3

>>> text_file.close()

Looping through a File
 You can also loop directly through the lines of a file using a

for loop:

>>> text_file = open("read_it.txt", "r")
>>> for line in text_file:
 print(line)

Line 1

This is line 2

That makes this line 3

>>> text_file.close()

 The loop variable, eg, line, gets each line of the file, in
succession. This technique is the most elegant solution if you
want to move through a file one line at a time.

Introducing the Write It Program

write_it.py
Write It
Demonstrates writing to a text file

print("Creating a text file with the write() method.")
text_file = open("write_it.txt", "w")
text_file.write("Line 1\n")
text_file.write("This is line 2\n")
text_file.write("That makes this line 3\n")
text_file.close()

print("\nReading the newly created file.")
text_file = open("write_it.txt", "r")
print(text_file.read())
text_file.close()

print("\nCreating a file with the writelines() method.")
text_file = open("write_it.txt", "w")
lines = ["Line 1\n",
 "This is line 2\n",
 "That makes this line 3\n"]
text_file.writelines(lines)
text_file.close()

print("\nReading the newly created file.")
text_file = open("write_it.txt", "r")
print(text_file.read())
text_file.close()

input("\n\nPress the enter key to exit.")

Writing Strings to a File
 To write strings to a file, we open a file in write mode:

text_file = open("write_it.txt", "w")

 The file write_it.txt springs into existence as an empty text
file just waiting for the program to write to it.

 If write_it.txt had already existed, it would have been
replaced with a brand-new, empty file and all of its original
contents would have been erased.

 use write() to write a string to the file:

text_file.write("Line 1\n")
text_file.write("This is line 2\n")
text_file.write("That makes this line 3\n")

 write() does not automatically insert a newline character
at the end of a string it writes. You have to put newlines in
where you want them.

 Without the 3 newline characters, the program would write
one, long line to the file.

 To achieve the same result, we could just as easily have
stuck all 3 of the previous strings together to form one long
string, "Line 1\n This is line 2\n That makes this line 3\n" ,
and written that string to the file with a single write().

 To prove that the writing worked, we can read and print
the entire contents of the file, as done in the code.

Writing a List of Strings to a File
 writelines() works with a list of strings and writes a list of

strings to a file.

 We open the same file, write_it.txt, which means we wipe
out the existing file and start with a new, empty one:

text_file = open("write_it.txt", "w")

 create a list of strings to be written, in order, to the file:

lines = ["Line 1\n",
 "This is line 2\n",
 "That makes this line 3\n"]

 write the entire lists of strings to the file with writelines():

text_file.writelines(lines)

Introducing the Pickle It Program

pickle_it.py
Pickle It
Demonstrates pickling and shelving data

import pickle, shelve

print("Pickling lists.")
variety = ["sweet", "hot", "dill"]
shape = ["whole", "spear", "chip"]
brand = ["Claussen", "Heinz", "Vlassic"]
f = open("pickles1.dat", "wb")
pickle.dump(variety, f)
pickle.dump(shape, f)
pickle.dump(brand, f)
f.close()

print("\nUnpickling lists.")
f = open("pickles1.dat", "rb")
variety = pickle.load(f)
shape = pickle.load(f)
brand = pickle.load(f)
print(variety)
print(shape)
print(brand)
f.close()

print("\nShelving lists.")
s = shelve.open("pickles2.dat")
s["variety"] = ["sweet", "hot", "dill"]
s["shape"] = ["whole", "spear", "chip"]
s["brand"] = ["Claussen", "Heinz", "Vlassic"]
s.sync() # make sure data is written

print("\nRetrieving lists from a shelved file:")
print("brand -", s["brand"])
print("shape -", s["shape"])
print("variety -", s["variety"])
s.close()

input("\n\nPress the enter key to exit.")

Pickling Data and Writing It to a File
 The pickle module allows you to pickle and store more

complex data in a file. The shelve module allows you to store
and randomly access pickled objects in a file:

import pickle, shelve

 Instead of writing characters to a file, you can write a
pickled object to a file. Pickled objects are stored in files
much like characters; you can store and retrieve them
sequentially:

variety = ["sweet", "hot", "dill"]
shape = ["whole", "spear", "chip"]
brand = ["Claussen", "Heinz", "Vlassic"]

 Then open the new file to store the pickled lists:

f = open("pickles1.dat", "wb")

 Pickled objects must be stored in a binary file—they can’t
be stored in a text file.

 Then pickle and store the 3 lists variety, shape, and brand
in the file pickles1.dat using the pickle.dump() function.

 pickle.dump() requires 2 arguments: the data to pickle
and the file in which to store it.

pickle.dump(variety, f)
pickle.dump(shape, f)
pickle.dump(brand, f)
f.close()

 This code pickles the list referred to by variety and writes
the whole thing as one object to pickles1.dat. Then shape.
Then brand.

 You can pickle a variety of objects, including:

* Numbers * Strings

* Tuples * Lists

* Dictionaries

Reading Data from a File & Unpickling It
 Now we retrieve and unpickle the 3 lists with pickle.load():

f = open("pickles1.dat", "rb")
variety = pickle.load(f)
shape = pickle.load(f)
brand = pickle.load(f)

 The code reads the 1st pickled object in the file, unpickles it
to get the list [“sweet”, “hot”, “dill”], and assigns the list to
variety. Then the code reads the next pickled object from the
file, unpickles it to get the list [“whole”, “spear”, “chip”], and
assigns the list to shape. Finally, the code reads the last one
from the file, unpickles it to get the list [“Claussen”, “Heinz”,
“Vlassic”] , and assigns the list to brand.

Using a Shelf to Store Pickled Data
 Using the shelve module, we create a shelf that acts like a

dictionary, which provides random access to the lists.

 create a shelf, s:

s = shelve.open("pickles2.dat")

 shelve.open() works a lot like open(). But shelve.open()
works with a file that stores pickled objects, not characters.

 When you call shelve.open(), Python may add an
extension to the file name you specify. Python may also
create additional files to support the newly created shelf.

 shelve.open() requires one argument: a file name. It also
takes an optional access mode. If you don’t supply an access
mode, it defaults to "c" .

 Add 3 lists to the shelf:
s["variety"] = ["sweet", "hot", "dill"]
s["shape"] = ["whole", "spear", "chip"]
s["brand"] = ["Claussen", "Heinz", "Vlassic"]

 The key "variety" is paired with ["sweet", "hot", "dill"]. The
key "shape" is paired with ["whole", "spear", "chip"]. And the
key "brand" is paired with ["Claussen", "Heinz", "Vlassic"].

 One important thing is that a shelf key can only be a stringstring.

 Python writes changes to a shelf file to a buffer and then
periodically writes the buffer to the file. To make sure the
file reflects all the changes to a shelf, you can invoke sync():

s.sync() # make sure data is written

Using a Shelf to Retrieve Pickled Data
 Since a shelf acts like a dictionary, you can randomly

access pickled objects from it by supplying a key. To prove
this, we access the pickled lists in s in reverse order:

print("brand -", s["brand"])
print("shape -", s["shape"])
print("variety -", s["variety"])

Handling Exceptions
 When Python runs into an error, it stops the program and

displays an error message. More precisely, it raises an
exception, indicating that something exceptional has occurred

 If nothing is done with the exception, Python halts what it’s
doing and displays an error message detailing the exception:

>>> num = float("Hi!")
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 num = float("Hi!")
ValueError: could not convert string to float: Hi!

 Using Python’s exception handling functionality, you can
intercept and handle exceptions so that your program
doesn’t end abruptly.

Introducing the Global Reach Program

handle_it.py
Handle It
Demonstrates handling exceptions

try/except
try:
 num = float(input("Enter a number: "))
except:
 print("Something went wrong!")

specifying exception type
try:
 num = float(input("\nEnter a number: "))
except ValueError:
 print("That was not a number!")

handle multiple exception types
print()
for value in (None, "Hi!"):
 try:
 print("Attempting to convert", value,"-->", end=" ")
 print(float(value))
 except (TypeError, ValueError):
 print("Something went wrong!")

print()
for value in (None, "Hi!"):
 try:
 print("Attempting to convert", value,"-->", end=" ")
 print(float(value))
 except TypeError:
 print("I can only convert a string or a number!")
 except ValueError:
 print("I can only convert a string of digits!")

get an exception's argument
try:
 num = float(input("\nEnter a number: "))
except ValueError as e:
 print("That’s not a number! Or as it would say...")
 print(e)

try/except/else
try:
 num = float(input("\nEnter a number: "))
except ValueError:
 print("That was not a number!")
else:
 print("You entered the number", num)

input("\n\nPress the enter key to exit.")

Using try statement with an except clause
 The most basic way to handle (or trap) exceptions is to use

the try statement with an except clause.

 By using a try statement, you section off some code that
could potentially raise an exception. Then, you write an
except clause with a block of statements that are executed
only if an exception is raised:

try:
 num = float(input("Enter a number: "))
except:
 print("Something went wrong!")

 If the call to float() raises an exception, the exception is
caught and the user is informed that Something went wrong!

 If no exception is raised, num gets the number entered and
the code skips the except clause, continuing to the next.

Specifying an Exception Type
 Different kinds of errors result in different types of

exceptions. There are over 2 dozen exception types.

 The except clause lets you specify exactly which type of
exceptions it will handle. To specify a single exception type,
you just list the specific type of exception after except.

try:
 num = float(input("\nEnter a number: "))
except ValueError:
 print("That was not a number!")

 Now print will only execute if a ValueError is raised.

 If any other type of exception is raised inside the try
statement, the except clause won’t catch it and the program
will come to a halt.

 It’s good programming practice to specify exception types
so that you handle each individual case.

 In fact, it’s dangerous to catch all exceptions the way we
did in the 1st except clause. This is because the code could
blindly run without a correct treatment of the exception.

Handling Multiple Exception Types
 One way to trap for multiple exception types is to list them

in a single except clause as a comma-separated group
enclosed in a set of parentheses:

for value in (None, "Hi!"):
 try:
 print("Attempting to convert",value,"-->",end=" ")
 print(float(value))
 except (TypeError, ValueError):
 print("Something went wrong!")

 This code tries to convert 2 different values to a real
number. Both fail, but each raises a different exception type.

 float(None) raises a TypeError because the function can
only convert strings and numbers. float("Hi!") raises a
ValueError because, while "Hi!" is a string, the characters in
the string are of the wrong value.

 Another way to catch multiple exceptions is with multiple
except clauses:

for value in (None, "Hi!"):
 try:
 print("Attempting to convert",value,"-->",end=" ")
 print(float(value))
 except TypeError:
 print("I can only convert a string or a number!")
 except ValueError:
 print("I can only convert a string of digits!")

 Using multiple except clauses allows you to define unique
reactions to different types of exceptions from the same try
block.

 When an exception occurs, it may have an associated value,
the exception’s argument. The argument is usually an official
message from Python describing the exception.

 You can receive the argument if you specify a variable after
the exception type, preceded by the keyword as:

try:
 num = float(input("\nEnter a number: "))
except ValueError as e:
 print("That was not a number! Or as it would say...")
 print(e)

Getting an Exception’s Argument

 You can add an else clause after all the except clauses in a
try statement. The else block executes only if no exception is
raised in the try block:

try:
 num = float(input("\nEnter a number: "))
except ValueError:
 print("That was not a number!")
else:
 print("You entered the number", num)

 num is printed in the else block only if the assignment
statement in the try block doesn’t raise an exception.

 This is perfect because that means num will be printed only
if the assignment statement was successful and the variable
exists.

Adding an else Clause

Introducing the Trivia Challenge Game

trivia_challenge.py
Trivia Challenge
Trivia game that reads a plain text file

import sys

def open_file(file_name, mode):
 """Open a file."""
 try:
 the_file = open(file_name, mode)
 except IOError as e:
 print("Unable to open the file", file_name,
 "Ending program.\n", e)
 input("\n\nPress the enter key to exit.")
 sys.exit()
 else:
 return the_file

def next_line(the_file):
 """Return next line from File trivia, formatted."""
 line = the_file.readline()
 line = line.replace("/", "\n")
 return line

def next_block(the_file):
 """Return the next block of data from File trivia."""
 category = next_line(the_file)

 question = next_line(the_file)

 answers = []
 for i in range(4):
 answers.append(next_line(the_file))

 correct = next_line(the_file)
 if correct:
 correct = correct[0]

 explanation = next_line(the_file)

 return category,question,answers,correct,explanation

def welcome(title):
 """Welcome the player and get his/her name."""
 print("\t\tWelcome to Trivia Challenge!\n")
 print("\t\t", title, "\n")

def main():
 trivia_file = open_file("trivia.txt", "r")
 title = next_line(trivia_file)
 welcome(title)
 score = 0

 # get 1st block
 category, question, answers, correct, explanation = \
 next_block(trivia_file)

 while category:
 # ask a question
 print(category)
 print(question)
 for i in range(4):
 print("\t", i + 1, "-", answers[i])

 # get answer
 answer = input("What's your answer?: ")

 # check answer
 if answer == correct:
 print("\nRight!", end=" ")
 score += 1
 else:
 print("\nWrong.", end=" ")
 print(explanation)
 print("Score:", score, "\n\n")

 # get next block
 category,question,answers,correct,explanation=\
 next_block(trivia_file)

 trivia_file.close()

 print("That was the last question!")
 print("You're final score is", score)

main()
input("\n\nPress the enter key to exit.")

trivia.txt
An Episode You Can't Refuse
On the Run With a Mammal
Let's say you turn state's evidence and need to "get on the
lamb." If you wait /too long, what will happen?
You'll end up on the sheep
You'll end up on the cow
You'll end up on the goat
You'll end up on the emu
1
A lamb is just a young sheep.
The Godfather Will Get Down With You Now
Let's say you have an audience with the Godfather of Soul.
How would it be /smart to address him?
Mr. Richard
Mr. Domino
Mr. Brown
Mr. Checker
3
James Brown is the Godfather of Soul.

That's Gonna Cost Ya
If you paid the Mob protection money in rupees, what
business would you most /likely be insuring?
Your tulip farm in Holland
Your curry powder factory in India
Your vodka distillery in Russian
Your army knife warehouse in Switzerland
2
The Rupee is the standard monetary unit of India.
Keeping It the Family
If your mother's father's sister's son was in "The Family,"
how are you /related to the mob?
By your first cousin once removed
By your first cousin twice removed
By your second cousin once removed
By your second cousin twice removed
1

Your mother's father's sister is her aunt -- and her son is
your /mother's first cousin. Since you and your mother are
exactly one generation /apart, her first cousin is your first
cousin once removed.
A Maid Man
If you were to literally launder your money, but didn't want
the green in your /bills to run, what temperature should you
use?
Hot
Warm
Tepid
Cold
4
According to my detergent bottle, cold is best for colors
that might run.

Understanding the Data File Layout
 The 1st line in trivia.txt is the title of the episode. The rest

of the file consists of blocks of 7 lines for each question:

<category>
<question>
<answer 1>
<answer 2>
<answer 3>
<answer 4>
<correct answer>
<explanation>

 On the Run With a Mammal is the category of the 1st
question. Let’s say you turn state’s evidence and need to "get
on the lamb." If you wait /too long, what will happen?, is the
1st question in the game. The next 4 lines are the 4 possible
answers from which the player will choose.

 The next line, 1, is the number of the correct answer. The
next line, A lamb is just a young sheep., explains why the
correct answer is correct.

 Include a forward slash (/) in 2 of the lines to represent a
newline since Python does not automatically wrap text when
it prints it.

The open_file() Function
 open_file() receives a file name and mode (both strings)

and returns a corresponding file object.

 Use try & except to trap for an IOError exception for input-
output errors, which would occur if the file doesn’t exist.

 If there was a problem opening the trivia file, then there’s
no point in continuing the program, so we print a message
and call sys.exit().

 sys.exit() raises an exception resulting in the termination
of the program. You should only use sys.exit() as a last
resort, when you must end a program.

 We have to import the sys module to call sys.exit():

import sys

def open_file(file_name, mode):
 """Open a file."""
 try:
 the_file = open(file_name, mode)
 except IOError as e:
 print("Unable to open the file", file_name, \
 "Ending program.\n", e)
 input("\n\nPress the enter key to exit.")
 sys.exit()
 else:
 return the_file

The next_line() Function
 next_line() receives a file object and returns the next line of

text from it:

def next_line(the_file):
 line = the_file.readline()
 line = line.replace("/", "\n")
 return line

 Before its return, we replace all forward slashes with
newline characters because Python does not automatically
word wrap printed text.

The next_block() Function
 next_block() reads the next block of lines for one question.

It takes a file object and returns a string for the category,
question, correct answer, and explanation as well as a list of
4 strings for the possible answers to the question:

def next_block(the_file):
 category = next_line(the_file)
 question = next_line(the_file)
 answers = []
 for i in range(4):
 answers.append(next_line(the_file))
 correct = next_line(the_file)
 if correct:
 correct = correct[0]
 explanation = next_line(the_file)
 return category, question, answers, correct, \
 explanation

The welcome() Function
 welcome() welcomes the player to the game and announces

the episode’s title:

def welcome(title):
 print("\t\tWelcome to Trivia Challenge!\n")
 print("\t\t", title, "\n")

Setting Up the Game
 main() houses the main game loop:

def main():
 trivia_file = open_file("trivia.txt", "r")
 title = next_line(trivia_file)
 welcome(title)
 score = 0

Asking a Question
 Next, we start the while loop, which will continue to ask

questions as long as category is not the empty string.

 If category is the empty string, that means the end of the
trivia file has been reached and the loop won’t be entered.

 # get first block
 category, question, answers, correct, explanation = \
 next_block(trivia_file)
 while category:
 # ask a question
 print(category)
 print(question)
 for i in range(4):
 print("\t", i + 1, "-", answers[i])

Getting an Answer
 # get answer
 answer = input("What's your answer?: ")

Checking an Answer
 Compare the player’s answer to the correct answer. If they

match, the player is congratulated and his score is increased
by 1. If they don’t match, the player is told he is wrong. In
either case, the explanation is displayed, so is the player’s
current score:

 # check answer
 if answer == correct:
 print("\nRight!", end=" ")
 score += 1
 else:
 print("\nWrong.", end=" ")
 print(explanation)
 print("Score:", score, "\n\n")

Getting the Next Question
 # get next block
 category,question,answers,correct,explanation = \
 next_block(trivia_file)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

