

Chapter 5

Lists and Dictionaries:
The Hangman Game

The Hero’s Inventory 3.0 Program

hero's_inventory3.py
Hero's Inventory 3.0
Demonstrates lists
create a list with items and display with a for loop
Inventory = ["sword","armor","shield","healing potion"]
print("Your items:")
for item in inventory:
 print(item)

input("\nPress the enter key to continue.")

get the length of a list
print("You have", len(inventory),
 "items in your possession.")
input("\nPress the enter key to continue.")

test for membership with in
if "healing potion" in inventory:
 print("You will live to fight another day.")

display one item through an index
index = int(input(\
"\nEnter the index number for an item in inventory: "))
print("At index", index, "is", inventory[index])

display a slice
start=int(input(\
"\nEnter the index number to begin a slice:"))
finish=int(input(\
"Enter the index number to end the slice: "))
print("inventory[", start, ":", finish, "] is", end=" ")
print(inventory[start:finish])
input("\nPress the enter key to continue.")

concatenate two lists
chest = ["gold", "gems"]
print("You find a chest which contains:")
print(chest)
print("You add the contents of the chest to your
inventory.")
inventory += chest

print("Your inventory is now:")
print(inventory)

input("\nPress the enter key to continue.")

assign by index
print("You trade your sword for a crossbow.")
inventory[0] = "crossbow"
print("Your inventory is now:")
print(inventory)

input("\nPress the enter key to continue.")

assign by slice
print("You use your gold and gems to buy an orb “,
 “of future telling.")
inventory[4:6] = ["orb of future telling"]
print("Your inventory is now:")
print(inventory)

input("\nPress the enter key to continue.")

delete an element
print("In a great battle, your shield is destroyed.")
del inventory[2]
print("Your inventory is now:")
print(inventory)

input("\nPress the enter key to continue.")

delete a slice
print("Your crossbow and armor are stolen by thieves.")
del inventory[:2]
print("Your inventory is now:")
print(inventory)

input("\n\nPress the enter key to exit.")

Creating a List
 Lists are sequences, just like tuples—but lists are mutable.

They can be modified. So, lists can do everything tuples can,
plus more.

 To create a new list, assign it to inventory , and print each
element:

inventory = ["sword","armor","shield","healing potion"]

 To create a list instead of a tuple, surrounded the elements
with square brackets instead of parentheses.

Using the len() Function and
 the in Operator with Lists
 The len() function works the same with lists as it does with

tuples:

print("You have", len(inventory),
 "items in your possession.")

 The in operator works the same with lists as it does with
tuples:

if "healing potion" in inventory:
 print("You will live to fight another day.")

Indexing Lists and Slicing Lists
 Indexing a list is the same as indexing a tuple—just supply

the position number of the element you’re after in brackets:

index=int(input(\
"\nEnter the index number for an item:"))

print("At index", index, "is", inventory[index])

 slicing a list is exactly the same as slicing a tuple:

start=int(input(\
"\nEnter the index number to begin a slice:"))
finish=int(input(\
"Enter the index number to end the slice: "))

print("inventory[", start, ":", finish, "] is", end=" ")

print(inventory[start:finish])

Concatenating Lists
 Concatenating lists works the same way concatenating

tuples does.

 The only real difference here is that you can only
concatenate sequences of the same type:

chest = ["gold", "gems"]

print("You find a chest which contains:")
print(chest)

print("You add the contents of the chest to your “,
 “inventory.")

inventory += chest

print("Your inventory is now:")
print(inventory)

Assigning a New List Element by Index
 There is one huge difference between List and Tuple. Lists

are mutable. They can change.

 Because lists are mutable, you can assign an existing
element a new value:

print("You trade your sword for a crossbow.")
inventory[0] = "crossbow"
print("Your inventory is now:")
print(inventory)

 The code assigns the string "crossbow" to the element in
inventory at position 0.

 The new string replaces the previous value (ie, "sword").

 You can assign an existing list element a new value with
indexing, but you can’t create a new element in this way.

Assigning a New List Slice
 You can assign a new value to a slice.

 Assign the list ["orb of future telling"] to the slice
inventory[4:6] :

inventory[4:6] = ["orb of future telling"]

 The statement replaces the 2 items inventory[4] and
inventory[5] with the string "orb of future telling" .

 Because we assigned a list with one element to a slice with
2 elements, the length of the list shrunk by 1.

Deleting a List Element
 You can delete an element from a list with del:

del inventory[2]

 The element that was at position number 2, the string
"shield" , is then removed from inventory .

 The length of the list shrinks by 1, and all of the elements
after the deleted one “slide down” one position.

 So there is still an element in position 2; it’s just the
element that was at position 3.

Deleting a List Slice
 The following line removes the slice inventory[:2] , which is

["crossbow", "armor"] , from inventory :

del inventory[:2]

 Just as with deleting an element, the length of the list
shrinks and the remaining elements form a new, continuous
list, starting from position 0.

Introducing the High Scores Program

high_scores.py
High Scores
Demonstrates list methods

scores = []
choice = None

while choice != "0":
 print(
 """
 High Scores

 0 - Exit
 1 - Show Scores
 2 - Add a Score
 3 - Remove a Score
 4 - Sort Scores
 """
)

 choice = input("Choice: ")
 print()

 # exit
 if choice == "0":
 print("Good-bye.")

 # list high-score table
 elif choice == "1":
 print("High Scores")
 for score in scores:
 print(score)

 # add a score
 elif choice == "2":
 score = int(input("What score did you get?: "))
 scores.append(score)

 # remove a score
 elif choice == "3":
 score = int(input("Remove which score?: "))
 if score in scores:
 scores.remove(score)
 else:
 print(score, "isn't in the high scores list.")

 # sort scores
 elif choice == "4":
 scores.sort(reverse=True)

 # some unknown choice
 else:
 print("Sorry, but", choice, "isn't a valid choice.")

input("\n\nPress the enter key to exit.")

Setting Up the Program
 We create 2 variables. scores is a list that will contain the

scores. I set it to an empty list to start out. choice represents
the user’s choice from the menu. I initialized it to None :

scores = []
choice = None

Displaying the Menu
 The while loop is the core of the program. It continues until

the user enters 0. The rest of this code prints the menu and
gets the user’s choice:

while choice != "0":
 print(
 """
 High Scores

 0 - Exit
 1 - Show Scores
 2 - Add a Score
 3 - Remove a Score
 4 - Sort Scores
 """
)
 choice = input("Choice: ")
 …

Exiting the Program
 Check first if the user wants to quit. If the user enters 0,

the computer says “Good-bye.”:

 if choice == "0":
 print("Good-bye.")

 If the user enters 0, then the while loop’s condition will be
false the next time it’s tested. The loop will end and so will
the program.

Displaying the Scores and Adding a Score
 If the user enters 1, then this elif block executes and the

computer displays the scores:

 elif choice == "1":
 print("High Scores")
 for score in scores:
 print(score)

 If the user enters 2, the user is then asked for a new score
and assigns it to score .

 The last line uses the append() list method to add score to
the end of scores. The list becomes one element longer:

 elif choice == "2":
 score = int(input("What score did you get?: "))
 scores.append(score)

Removing a Score
 When the user enters 3, the computer gets a score from

the user to remove.

 If the score is in the list, the 1st occurrence of it is removed.
If the score isn’t in the list, the user is informed:

 elif choice == "3":
 score = int(input("Remove which score?: "))
 if score in scores:
 scores.remove(score)
 else:
 print(score, "isn't in the high scores list.")

 The code first checks if the score is in the list. If it is, the
list method remove() is invoked.

 The method goes through the list, starting at position 0,
and searches for the value passed to score.

 When the method finds the 1st occurrence of the value, that
element is deleted from the list.

 If the value is in the list more than once, only the 1st one is
removed.

 If the method successfully removes an element from the
list, the list becomes one element shorter.

 remove() is different from del. The remove() method
doesn’t delete an element based on a position, but rather on
a value.

 If you try to remove a value that isn’t in a list with the
remove() method, you’ll generate an error. A safer way to
do it is:

 if score in scores:
 scores.remove(score)

Sorting the Scores
 The sort() method sorts the elements in the list:

 elif choice == "4":
 scores.sort(reverse=True)

 By default sort() orders the elements in ascending—
smallest values first.

 You can tell the sort() method to sort values in descending
order—largest values first by passing True to the method’s
reverse parameter.

 If you want to sort a list in ascending order, you can simply
call the method without passing values

numbers.sort()

Dealing with an Invalid Choice
 If the user enters a number that isn’t a valid choice, the

else clause catches it:

 else:
 print("Sorry, but", choice, "isn't a valid choice.")

Understanding When to Use Tuples
Instead of Lists
 There are a few occasions where tuples make more sense

than lists:

* Tuples are faster than lists because the they won’t change.

* Tuples’ immutability makes them perfect for creating
constants since they can’t change.

* Sometimes tuples are required, eg, Python requires
immutable values.

 But, because lists are so flexible, you’re probably best off
using them rather than tuples the majority of the time.

Creating Nested Sequences
 Lists can contain other lists/tuples, and tuples can contain

other tuples/lists. They’re called nested sequences.

 With nested sequences, you include entire lists or tuples as
elements:

>>> nested=["1st", ("2nd","3rd"), ["4th",“5fth","6th"]]
>>> print(nested)
['1st', ('2nd', '3rd'), ['4th', '5th', '6th']]

 Although we see 6 strings here, nested has only 3
elements. The 1st element is the string "1st" , the 2nd element
is the tuple ("2nd", "3rd") , and the 3rd element is the list
["4th", "5th", "6th"] .

 While you can create a list or tuple with any number of lists
and tuples, useful nested sequences often have a consistent
pattern:

>>> scores = [("Moe", 1000), ("Larry", 1500),
 ("Curly",3000)]
>>> print(scores)
[('Moe',1000), ('Larry',1500), ('Curly',3000)]

 scores is a list with 3 elements. Each element is a tuple.
Each tuple has exactly 2 elements, a string and a number.

 Although you can create nested sequences inside nested
sequences many times over, this usually isn’t a good idea:

nested = ("deep",("deeper",("deepest","still deepest")))

Accessing Nested Elements
 Access elements of a nested sequence through indexing:

>>> scores = [("Moe",1000), ("Larry",1500),
 ("Curly",3000)]
>>> print(scores[0])
('Moe', 1000)
>>> print(scores[1])
('Larry', 1500)
>>> print(scores[2])
('Curly', 3000)

 Each element is a tuple. To access one of the elements of
one of the tuples, one way is to assign the tuple to a variable
and index it:
>>> a_score = scores[2]
>>> print(a_score)
('Curly ', 3000)
>>> print(a_score[0])
Curly

 There’s a direct way to access "Curly" right from scores :

>>> print(scores[2][0])
Curly

 By supplying 2 indices with scores[2][0], the computer gets
the element from scores at position 2 (ie, ("Curly", 3000))
and, from that, to get the element at position 0 (ie, "Curly").

 We can use this kind of multiple indexing with nested
sequences to get directly to a nested element.

Unpacking a Sequence
 If we know how many elements are in a sequence, we can

assign each to its own variable in a single line of code:

>>> name, score = ("Shemp", 175)
>>> print(name)
Shemp
>>> print(score)
175

 This is called unpacking and works with any sequence type.

 Use the same number of variables as elements in the
sequence, or you’ll generate an error.

The High Scores 2 Program

high_scores2.py
High Scores 2.0
Demonstrates nested sequences

scores = []
choice = None

while choice != "0":

 print(
 """
 High Scores 2.0

 0 - Quit
 1 - List Scores
 2 - Add a Score
 """
)

 choice = input("Choice: ")
 print()

 # exit
 if choice == "0":
 print("Good-bye.")

 # display high-score table
 elif choice == "1":
 print("High Scores\n")
 print("NAME\tSCORE")
 for entry in scores:
 score, name = entry
 print(name, "\t", score)

 # add a score
 elif choice == "2":
 name=input("What is the player's name?: ")
 score=int(input("What score did the player get?:"))
 entry = (score, name)
 scores.append(entry)
 scores.sort(reverse=True)
 scores = scores[:5] # keep only top 5 scores

 # some unknown choice
 else:
 print("Sorry, but", choice, "isn't a valid choice.")

input("\n\nPress the enter key to exit.")

Displaying the Scores by Accessing
Nested Tuples
 If the user enters 1, the computer goes through each

element in scores and unpacks the score and name into the
variables score and name:

 elif choice == "1":
 print("High Scores\n")
 print("NAME\tSCORE")
 for entry in scores:
 score, name = entry
 print(name, "\t", score)

Adding a Score by Appending a Nested
Tuple
 If the user enters 2, the computer lets the user enter a new

score and name. With these 2 values, the computer creates a
tuple, entry.

 Then appends this new entry to the list. The computer sorts
the list and reverses it so that the highest scores are first.

 The final statement slices and assigns the list so that only
the top 5 scores are kept.

 elif choice == "2":
 name=input("What is the player's name?: ")
 score=int(input("What is the player’s score?:"))
 entry = (score, name)
 scores.append(entry)
 scores.sort(reverse=True)
 scores = scores[:5] # keep only top 5 scores

Understanding Shared References
 A variable doesn’t store a copy of a value, but just refers to

the place in your computer’s memory where the value is
stored.

 language = "Python" stores the string "Python" in your
computer’s memory and then creates the variable language ,
which refers to that place in memory.

 When several variables refer to the same mutable value,
they share the same reference. They all refer to the one,
single copy of that value. And a change to the value through
one of the variables results in a change for all the variables,
since there is only one, shared copy to begin with.

 Here’s an example to show that 3 variables could all refer
to the same list:

>>> mike = ["khakis", "dress shirt", "jacket"]
>>> mr_dawson = mike
>>> honey = mike
>>> print(mike)
['khakis', 'dress shirt', 'jacket']
>>> print(mr_dawson)
['khakis', 'dress shirt', 'jacket']
>>> print(honey)
['khakis', 'dress shirt', 'jacket']

 This means that a change to the list using any of these 3
variables will change the list they all refer to:

>>> honey[2] = "red sweater"
>>> print(honey)
['khakis', 'dress shirt', 'red sweater']
>>> print(mike)
['khakis', 'dress shirt', 'red sweater']
>>> print(mr_dawson)
['khakis', 'dress shirt', 'red sweater']

 So be aware of shared references when using mutable
values. If you change the value through one variable, it will
be changed for all.

 You can avoid this effect if you make a copy of a list
through slicing:

>>> mike = ["khakis", "dress shirt", "jacket"]
>>> honey = mike[:]
>>> honey[2] = "red sweater"
>>> print(honey)
['khakis', 'dress shirt', 'red sweater']
>>> print(mike)
['khakis', 'dress shirt', 'jacket']

 Here, honey is assigned a copy of mike . honey does not
refer to the same list. Instead, it refers to a copy. So, a
change to honey has no effect on mike .

Introducing the Geek Translator Program

geek_translator.py
Geek Translator
Demonstrates using dictionaries

geek = {"404": "clueless. From the web error message \
404, meaning page not found.",
 "Googling": "searching the Internet for \
background information on a person.",
 "Keyboard Plaque" : "the collection of debris \
found in computer keyboards.",
 "Link Rot" : "the process by which web page \
links become obsolete.",
 "Percussive Maintenance" : "the act of striking \
an electronic device to make it work.",
 "Uninstalled" : "being fired. Especially popular \
during the dot-bomb era."}

choice = None

while choice != "0":

 print(
 """
 Geek Translator

 0 - Quit
 1 - Look Up a Geek Term
 2 - Add a Geek Term
 3 - Redefine a Geek Term
 4 - Delete a Geek Term
 """
)

 choice = input("Choice: ")
 print()

 # exit
 if choice == "0":
 print("Good-bye.")

 # get a definition
 elif choice == "1":
 term = input(\
 "What term do you want me to translate?: ")
 if term in geek:
 definition = geek[term]
 print("\n", term, "means", definition)
 else:
 print("\nSorry, I don't know", term)

 # add a term-definition pair
 elif choice == "2":
 term = input("What term do you want me to add?: ")
 if term not in geek:
 definition = input("\nWhat's the definition?: ")
 geek[term] = definition
 print("\n", term, "has been added.")
 else:
 print("\nThat term already exists! “,
 ”Try redefining it.")

 # redefine an existing term
 elif choice == "3":
 term = input(\
 "What term do you want me to redefine?: ")
 if term in geek:
 definition = input("What's the new definition?: ")
 geek[term] = definition
 print("\n", term, "has been redefined.")
 else:
 print("\nThat term doesn't exist! Try adding it.")

 # delete a term-definition pair
 elif choice == "4":
 term=input("What term do you want me to delete?")
 if term in geek:
 del geek[term]
 print("\nOkay, I deleted", term)
 else:
 print("\nI can't do that!", term,
 "doesn't exist in the dictionary.")

 # some unknown choice
 else:
 print("\nSorry, but", choice, "isn't a valid choice.")

input("\n\nPress the enter key to exit.")

Creating Dictionaries
 This following code creates a dictionary named geek. It

consists of 6 pairs, called items:

geek = {"404": "clueless. From the web error message\
404, meaning page not found.",
 "Googling": "searching the Internet for\
background information on a person.",
 "Keyboard Plaque" : "the collection of debris\
found in computer keyboards.",
 "Link Rot" : "the process by which web page\
links become obsolete.",
 "Percussive Maintenance" : "the act of
\striking an electronic device to make it work.",
 "Uninstalled" : "being fired. Especially\
popular during the dot-bomb era."}

 Each item is made up of a key and a value. The keys are on
the left side of the colons. The values are on the right.

Using a Key to Retrieve a Value
 The simplest way to retrieve a value from a dictionary is by

directly accessing it with a key.

 To get a key’s value, just put the key in brackets, following
the name of the dictionary:

>>> geek["404"]
'clueless. From the web error message 404, meaning
page not found. '
>>> geek["Link Rot"]
'the process by which web page links become obsolete. '

 When you index a sequence, you use a position number.
When you look up a value in a dictionary, you use a key.
Dictionaries don’t have position numbers at all.

 A value can’t be used to get a key in a dictionary.

Testing for a Key with the in Operator
Before Retrieving a Value

 Since using a nonexistent key can lead to an error, one thing
you can do is check to see if a key exists before attempting to
retrieve its value:

>>> if "Dancing Baloney" in geek:
 print("I know what Dancing Baloney is. ")
 else:
 print("I have no idea what Dancing Baloney is.")

I have no idea what Dancing Baloney is.

 Using the in operator with dictionaries is much the same way
you’ve used it with lists and tuples.

 in only checks for keys; it can’t check for values used this
way.

Using the get() Method to Retrieve a Value
 The dictionary method get() has a built-in safety net for

handling situations for a value of a key that doesn’t exist.

 If the key doesn’t exist, get() returns a default value,
which you can define:
>>> print(geek.get("Dancing Baloney",
 "I have no idea."))
I have no idea.

 To use the get() method, all you have to do is supply the
key you’re looking for followed by an optional default value.
If the key is in the dictionary, you get its value. If the key
isn’t in the dictionary, you get the default value.

 If you don’t supply a default value, then you get back None:

>>> print(geek.get("Dancing Baloney"))
None

Getting a Value
If the user enters 1, the code asks for a term to look up. The
computer checks to see if the term is in the dictionary. If
yes, the program accesses the dictionary, using the term as
the key, gets its definition, and prints it out. If the term is
not in the dictionary, the computer informs the user:

elif choice == "1":
 term=input("What term do you want to translate?")
 if term in geek:
 definition = geek[term]
 print("\n", term, "means", definition)
 else:
 print("\nSorry, I don't know", term)

Adding a Key-Value Pair
 elif choice == "2":
 term=input("What term do you want me to add?")
 if term not in geek:
 definition = input("\nWhat's the definition?: ")
 geek[term] = definition
 print("\n", term, "has been added.")
 else:
 print("\nThat term already exists! “,
 ”Try redefining it.")

 geek[term] = definition is exactly how you assign a new
item to a dictionary: The term is the key and the definition is
its value.

Replacing a Key-Value Pair
elif choice == "3":
 term =input("What term do you want me to
redefine?: ")
 if term in geek:
 definition = input("What's the new definition?: ")
 geek[term] = definition
 print("\n", term, "has been redefined.")
 else:
 print("\nThat term doesn't exist! Try adding it.")

 To replace a key-value pair, we use the exact same line
that we used for adding a new pair: geek[term] = definition.

 If you assign a value to a dictionary using a key that
already exists, Python replaces the current value without
complaint. So you have to watch out, because you might
overwrite the value of an existing key without realizing it.

Deleting a Key-Value Pair
elif choice == "4":
 term=input("What term do you want me to delete? ")
 if term in geek:
 del geek[term]
 print("\nOkay, I deleted", term)
 else:
 print("\nI can't do that!", term,
 "doesn't exist in the dictionary.")

 The program asks the user for the geek term to delete.
Next, the program checks if the term is in the dictionary. If it
is, the item is deleted with

del geek[term]

 This deletes the item with the key term from the dictionary
geek.

Understanding Dictionary Requirements
 For creating dictionaries:

* A dictionary can’t contain multiple items with the same key.

* A key has to be immutable. It can be a string, a number, or
 a tuple, which gives you lots of possibilities.

* Values don’t have to be unique. Also, values can be mutable
 or immutable. They can be anything you want.

hangman.py

Hangman Game
#
The classic game of Hangman. The computer picks a
random word and the player wrong to guess it, one
letter at a time. If the player can't guess the word in
time, the little stick figure gets hanged.

imports

import random

constants
HANGMAN = (
"""

 | |
 |
 |
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 |
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | -+-
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+-
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+-/
 |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+-/
 | |
 |
 |
 |
 |

""",
"""

 | |
 | O
 | /-+-/
 | |
 | |
 | |
 | |
 |

""",
"""

 | |
 | O
 | /-+-/
 | |
 | |
 | | |
 | | |
 |

""")

MAX_WRONG = len(HANGMAN) - 1
WORDS = ("OVERUSED", "CLAM", "GUAM",
 "TAFFETA", "PYTHON")

initialize variables
the word to be guessed
word = random.choice(WORDS)

one dash for each letter in word to be guessed
so_far = "-" * len(word)

number of wrong guesses player has made
wrong = 0
used = [] # letters already guessed

print("Welcome to Hangman. Good luck!")

while wrong < MAX_WRONG and so_far != word:
 print(HANGMAN[wrong])
 print("\nYou've used the following letters:\n", used)
 print("\nSo far, the word is:\n", so_far)

 guess = input("\n\nEnter your guess: ")
 guess = guess.upper()

 while guess in used:
 print("You've already guessed the letter", guess)
 guess = input("Enter your guess: ")
 guess = guess.upper()

 used.append(guess)

 if guess in word:
 print("\nYes!", guess, "is in the word!")

 # create a new so_far to include guess
 new = ""

 for i in range(len(word)):
 if guess == word[i]:
 new += guess
 else:
 new += so_far[i]
 so_far = new

 else:
 print("\nSorry,", guess,
 "isn't in the word.")
 wrong += 1

if wrong == MAX_WRONG:
 print(HANGMAN[wrong])
 print("\nYou've been hanged!")
else:
 print("\nYou guessed it!")

print("\nThe word was", word)

input("\n\nPress the enter key to exit.")

Introducing the Hangman Game

Creating Constants
 We create the tuple which is a sequence of 8 elements, but

each element is a triple-quoted string that spans 12 lines.

 Each string is a representation of the gallows where the
stick figure is being hanged. Each subsequent string shows a
more complete figure.

 Each time the player guesses incorrectly, the next string is
displayed. By the 8 entry, the image is complete and the
figure is a goner.

 If this final string is displayed, the player has lost and the
game is over.

 We assign this tuple to HANGMAN , a variable name in all
caps, because we will be using it as a constant.

 Next, we create a constant to represent the maximum
number of wrong guesses a player can make before the
game is over:

MAX_WRONG = len(HANGMAN) – 1

 Finally, we create a tuple containing all of the possible
words that the computer can pick from for the player to
guess:

WORDS = ("OVERUSED", "CLAM", "GUAM",
"TAFFETA", "PYTHON")

Initializing the Variables
 We use the random.choice() function to pick a random

word from the list of possible words:

word = random.choice(WORDS)

 We create another string, so_far, to represent what the
player has guessed so far in the game. so_far starts out as
just a series of dashes, one for each letter in the word:

so_far = "-" * len(word)

 When the player correctly guesses a letter, the dashes in
the positions of that letter are replaced with the letter itself.

 We create wrong to keep track of the number of wrong
guesses the player makes.

 We create an empty list, used, to contain all the letters the
player has guessed: used = []

Creating the Main Loop
 We create a loop that continues until either the player has

guessed too many wrong letters or the player has guessed all
the letters in the word:

while wrong < MAX_WRONG and so_far != word:
 print(HANGMAN[wrong])
 print("\nYou've used the following letters:\n", used)
 print("\nSo far, the word is:\n", so_far)

 And we print the current stick figure, based on the number
of wrong guesses the player has made.

 Then we display the list of letters that the player has used
in this game. And then we show what the partially guessed
word looks like so far.

Getting the Player’s Guess
 guess = input("\n\nEnter your guess: ")
 guess = guess.upper()

 while guess in used:
 print("You've already guessed the letter", guess)
 guess = input("Enter your guess: ")
 guess = guess.upper()

 used.append(guess)

Checking the Guess
 if guess in word:
 print("\nYes!", guess, "is in the word!")

 # create a new so_far to include guess
 new = ""
 for i in range(len(word)):
 if guess == word[i]:
 new += guess
 else:
 new += so_far[i]
 so_far = new

 else:
 print("\nSorry,", guess, "isn't in the word.")
 wrong += 1

Ending the Game
if wrong == MAX_WRONG:
 print(HANGMAN[wrong])
 print("\nYou've been hanged!")
else:
 print("\nYou guessed it!")

print("\nThe word was", word)

input("\n\nPress the enter key to exit.")

Quiz 5: Write a Character Creator program for a role-
 playing game. The player should be given a pool
 of 30 points to spend on 4 attributes:
 Strength, Health, Wisdom, and Dexterity.
 The player should be able to spend points from
 the pool on any attribute and should also be able
 to take points from an attribute and put them
 back into the pool.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

