

Chapter 4

For Loops, Strings, Tuples:
The Word Jumble Game

Introducing the Loopy String Program

loopy_string.py
Loopy String
Demonstrates the for loop with a string

word = input("Enter a word: ")

print("\nHere's each letter in your word:")

for letter in word:
 print(letter)

input("\n\nPress the enter key to exit.")

Understanding for Loops
 A for loop repeats its loop body for each element of the

sequence, in order. It marches through (or iterates over) a
sequence one element at a time.

 The for loop is as follows:

for letter in word:
 print(letter)

 In the case of the string "Loop" , the 1st element is the
character "L" , the 2nd is "o" , and so on.

 A for loop uses a variable that gets each successive
element of the sequence, eg, letter .

Introducing the Counter Program

counter.py
Counter
Demonstrates the range() function

print("Counting:")
for i in range(10):
 print(i, end=" ")

print("\n\nCounting by fives:")
for i in range(0, 50, 5):
 print(i, end=" ")

print("\n\nCounting backwards:")
for i in range(10, 0, -1):
 print(i, end=" ")

input("\n\nPress the enter key to exit.\n")

Counting Forwards
 The 1st loop in the program counts forwards:

for i in range(10):
 print(i, end=" ")

 The sequence the loop iterates over is generated by the
return value of the range() function.

 If you give range() a positive integer, you can imagine that
it returns a sequence starting with 0, up to, but not
including, the number you gave it.

 range(10) returns the sequence [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 To be more formal, range(10) = range(0,10,1) .

Counting by Fives
 The next loop counts by fives:

for i in range(0, 50, 5):
 print(i, end=" ")

 If you give range() 3 values, it will treat them as a start
point, an end point, and the number by which to count.

 The start point is always the 1st value in our imagined
sequence while the end point is never included.

 So the sequence is [0, 5, 10, 15, 20, 25, 30, 35, 40, 45] .

 Notice that the sequence ends at 45, not 50.

 If you want to include 50, your end point needs to be
greater than 50, eg, range(0, 51, 5).

Counting Backwards
 The last loop in the program counts backwards:

for i in range(10, 0, -1):
 print(i, end=" ")

 Notice that the last argument in the range() call is –1. This
tells the function to go from the start point to the end point
by adding –1 each time.

 So the sequence is [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] .

 The loop counts from 10 down to 1 and does not include 0.

The Message Analyzer Program

message_analyzer.py
Message Analyzer
Demonstrates the len() function and the in operator

message = input("Enter a message: ")

print("\nThe length of your message is:", len(message))

print("\nThe most common letter in the English
language, 'e',")

if "e" in message:
 print("is in your message.")
else:
 print("is not in your message.")

input("\n\nPress the enter key to exit.")

Using the len() Function
 You can pass any sequence you want to the len() function

and it will return the length of the sequence:

print("\nThe length of your message is:", len(message))

 A sequence’s length is the number of elements it has.

Using the in Operator
 The program uses the following lines to test whether "e" is

in the message the user entered:

if "e" in message:
 print("is in your message.")
else:
 print("is not in your message.")

 If message contains the character "e", it’s true. If message
doesn’t contain "e", it’s false.

 the value of message is "Game Over!". So, the condition "e"
in message evaluated to True and the computer printed "is in
your message."

 You can use in anywhere to check if an element is a
member of a sequence. If the element is a member, the
condition is true; otherwise, it’s false.

Introducing the Random Access Program

random_access.py
Random Access
Demonstrates string indexing

import random

word = "index"
print("The word is: ", word, "\n")

high = len(word)
low = - len(word)

for i in range(10):
 position = random.randrange(low, high)
 print("word[", position, "]\t", word[position])

input("\n\nPress the enter key to exit.")

Working with Positive Position Numbers
 For the string variable word = "index", the 1st letter, “i,” is

at position 0. The 2nd letter, “n,” is at position 1. The 3rd
letter, “d,” is at position 2, and so on.

 To access the letter in position 0 from the variable word ,
you’d just type word[0] . For any other position, you’d just
substitute that number.

>>> word = "index "
>>> print(word[0])
i
>>> print(word[1])
n
>>> print(word[2])
d
>>> print(word[3])
e
>>> print(word[4])
x

 There is no position 5 in this string, because the computer
begins counting at 0. Valid positive positions are 0, 1, 2, 3, 4.

 Any attempt to access a position 5 will cause an error:

>>> word = "index "
>>> print(word[5])
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in ? print word[5]
IndexError: string index out of range

Working with Negative Position Numbers
 There’s also a way to access elements of a sequence

through negative position numbers.

 With negative position numbers, you start counting from
the end. For strings, that means you start counting from the
last letter and work backwards.

>>> word = "index "
>>> print(word[-1])
x
>>> print(word[-2])
e
>>> print(word[-3])
d
>>> print(word[-4])
n
>>> print(word[-5])
i

Accessing a Random String Element
 To access a random letter from the "index", the 1st thing is

to import the random module:

import random

 Then generate a random number between –5 and 4,
because those are all the possible position values of word .

 The random.randrange() function can produce a random
number from between 2 numbers:

high = len(word)
low = - len(word)

position = random.randrange(low, high)

produces either –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, but not 5.

 Finally, create a for loop that executes 10 times to picks a
random position value and prints that position value and
corresponding letter:

for i in range(10):
 position = random.randrange(low, high)
 print("word[", position, "]\t", word[position])

Understanding String Immutability
 Sequences fall into one of two categories: mutable or

immutable. Mutable means changeable. Immutable means
unchangeable.

 Strings are immutable sequences, which means that they
can’t change.

 For example, the string "Game Over!" will always be the
string "Game Over!" . You can’t change it. In fact, you can’t
change any string you create.

>>> name = "Chris "
>>> print(name)
Chris
>>> name = "Jackson "
>>> print(name)
Jackson

 In this case you might think that you can change a string.
But, you didn’t change any strings in this session.

 It is only a reassignment of a
variable to different string.

 Since you can’t change a string,
you can’t assign a new character
to a string through indexing.

>>> word = "game "
>>> word[0] = "l "
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module> word[0] = "l"
TypeError: 'str' object does not support item assignment

 You can’t alter a string, but you can create new strings from
existing ones.

Introducing the No Vowels Program

no_vowels.py
No Vowels
Demonstrates creating new strings with a for loop

message = input("Enter a message: ")
new_message = ""
VOWELS = "aeiou"

print()
for letter in message:
 if letter.lower() not in VOWELS:
 new_message += letter
 print("A new string has been created:",
 new_message)

print("\nYour message without vowels is:", new_message)

input("\n\nPress the enter key to exit.")

Creating Constants
 Traditionally, variable names are in lowercase.

 There’s a special meaning associated with variable names
in all caps. They’re called constants and refer to a value that
is not meant to change (their value is constant):

VOWELS = "aeiou"

 Constants are valuable to programmers in 2 ways:

1. they make programs clearer.
2. constants save retyping (and possibly errors in typing).

 There’s nothing in Python that will stop you from changing
a “constant” in your program. This naming practice is simply
a convention.

Creating New Strings from Existing Ones
 The program can’t literally add a character to a string, so,

it concatenates the new message it has so far with a
character to create a new string:

for letter in message:
 if letter.lower() not in VOWELS:
 new_message += letter
 print("A new string has been created:",
 new_message)

 Python is picky about strings and characters, eg, "A" ≠ "a" .

 To make sure that only lowercase letters is considered,
letter.lower() is used.

 new_message += letter is exactly the same as
 new_message = new_message + letter

Introducing the Pizza Slicer Program

pizza_slicer.py
Pizza Slicer
Demonstrates string slicing

word = "pizza"

print(
"""
 Slicing 'Cheat Sheet'

 0 1 2 3 4 5
 +---+---+---+---+---+
 | p | i | z | z | a |
 +---+---+---+---+---+
-5 -4 -3 -2 -1

"""
)

print("Enter the beginning and ending index for your”,
 “ slice of 'pizza'.")
print("Press the enter key at 'Begin' to exit.")

start = None
start = input("\nStart: ")

while start != "":
 if start:
 start = int(start)

 finish = int(input("Finish: "))

 print("word[", start, ":", finish, "] is", end=" ")
 print(word[start:finish])

 start = (input("\nStart: "))

input("\n\nPress the enter key to exit.")

Introducing None
 None is Python’s way of representing nothing:

 None makes a good placeholder for a value.

 None also evaluates to False when treated as a condition.

 None can be used to initialize a variable for use:

start = None

Understanding Slicing
 Using indexing, you can copy (or slice) one element or part

of a sequence.

 To create a slice, you supply a starting position and ending
position.

>>> word = "pizza"
>>> print(word[0:5])
pizza
>>> print(word[1:3])
iz
>>> print(word[-4:-2])
iz
>>> print(word[-4:3])
iz

 If you create an “impossible” slice, like word[2:1] , you
won’t cause an error. Instead, Python will quietly return an
empty sequence. So be careful!

Using Slicing Shorthand
 You can omit the beginning point for the slice to start the

slice at the beginning of the sequence: word[:4] = word[0:4]

 You can omit the ending point so that the slice ends with
the very last element: word[2:] = word[2:5]

 You can even omit both numbers to get a slice that is the
entire sequence: word[:] = word[0:5] (≠ word)

>>> word = "pizza"
>>>print(word[0:4])
pizz
>>>print(word[:4])
pizz
>>>print(word[2:5])
zza

 it’s that [:] returns a complete copy of a sequence, so this is
a quick and efficient way to make a copy.

 >>>print(word[2:])
zza
>>>print(word[0:5])
pizza
>>> print(word[:])
Pizza

Creating Tuples
 Tuples are a type of sequence, like strings. But tuples can

contain elements of any type.

 Tuple elements don’t have to all be of the same type. You
could create a tuple with both strings and numbers.

 You can create a tuple that contains a sequence of graphic
images, sound files, or even a group of aliens.

 Whatever you can assign to a variable, you can group
together and store as a sequence in a tuple.

Introducing the Hero’s Inventory Program

hero's_inventory.py
Hero's Inventory
Demonstrates tuple creation

create an empty tuple
inventory = ()

treat the tuple as a condition
if not inventory:
 print("You are empty-handed.")

input("\nPress the enter key to continue.")

create a tuple with some items
inventory = ("sword",
 "armor",
 "shield",
 "healing potion")

print the tuple
print("\nThe tuple inventory is:")
print(inventory)

print each element in the tuple
print("\nYour items:")
for item in inventory:
 print(item)

input("\n\nPress the enter key to exit.")

Creating an Empty Tuple
 To create a tuple, you just surround a sequence of values,

separated by commas, with parentheses.

 Even a pair of lone parentheses is a valid (but empty) tuple:

inventory = ()

Treating a Tuple as a Condition
 You could treat any value in Python as a condition. That

means you can treat a tuple as a condition, too:

if not inventory:
 print("You are empty-handed.")

 As a condition, an empty tuple is False. A tuple with at least
one element is True.

Creating a Tuple with Elements
 Create a new tuple with string elements

inventory = ("sword",
 "armor",
 "shield",
 "healing potion")

 That makes the 1st element the string "sword" , the next
"armor" , the next "shield" , and the last element "healing
potion" . So each string is a single element in this tuple.

 Notice that the tuple spans multiple lines. This is one of the
few cases where Python lets you break up a statement across
multiple lines.

Printing a Tuple
 Though a tuple can contain many elements, you can print

the entire tuple just like you would any single value:

print("\nThe tuple inventory is:")
print(inventory)

Looping Through a Tuple’s Elements
 A for loop to march through the elements in inventory and

print each one individually:

for item in inventory:
 print(item)

 Tuples don’t have to be filled with values of the same type.
A single tuple can just as easily contain strings, integers, and
floating-point numbers, for example.

Introducing the Hero’s Inventory 2.0

hero's_inventory2.py
Hero's Inventory 2.0
Demonstrates tuples

create a tuple with items and display with a for loop
inventory = ("sword",
 "armor",
 "shield",
 "healing potion")
print("Your items:")
for item in inventory:
 print(item)

input("\nPress the enter key to continue.")

get the length of a tuple
print("You have", len(inventory),
 "items in your possession.")
input("\nPress the enter key to continue.")

test for membership with in
if "healing potion" in inventory:
 print("You will live to fight another day.")

display one item through an index
index = int(input(\
"\nEnter the index number for an item in inventory: "))
print("At index", index, "is", inventory[index])

display a slice
start=int(input(\
"\nEnter the index number to begin a slice:"))
finish=int(input(\
"Enter the index number to end the slice: "))

print("inventory[", start, ":", finish, "] is", end=" ")
print(inventory[start:finish])

input("\nPress the enter key to continue.")

concatenate two tuples
chest = ("gold", "gems")
print("You find a chest. It contains:")
print(chest)

print("You add the contents of the chest to your”,
 “inventory.")
inventory += chest
print("Your inventory is now:")
print(inventory)

input("\n\nPress the enter key to exit.")

Using the len() Function with Tuples
 If you want to know the length of a tuple, place it inside the

parentheses of len(). The function returns the number of
elements in the tuple.

 Empty tuples, or any empty sequences for that matter, have
a length of 0.

print("You have", len(inventory),
 "items in your possession.")

 Notice that in the tuple inventory , the string "healing
potion" is counted as a single element, even though it’s 2
words.

Using the in Operator with Tuples
 You can use the in operator with tuples to test for element

membership:

if "healing potion" in inventory:
 print("You will live to fight another day.")

Indexing Tuples
 Indexing tuples works like indexing strings:

index = int(input("\nEnter the index number for an
item in inventory: "))

print("At index", index, "is", inventory[index])

Slicing Tuples
 Slicing works just like you saw with strings:

start=int(input(\
 "\nEnter the index number to begin a slice:"))
Finish=int(input(\
 "Enter the index number to end the slice:"))
print("inventory[", start, ":", finish, "] is", end=" ")

print(inventory[start:finish])

Understanding Tuple Immutability
 Like strings, tuples are immutable:

>>> inventory=("sword", "armor", "shield",
 "healing potion")

>>> print(inventory)
('sword', 'armor', 'shield', 'healing potion')

>>> inventory[0] = "battleax"
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in ?
 inventory[0] = "battleax"
TypeError: object doesn’t support item assignment

Concatenating Tuples
 You can concatenate tuples the same way you concatenate

strings:

chest = ("gold", "gems")
print("You find a chest. It contains:")
print(chest)

print("You add the contents of the chest to your”,
 “ inventory.")
inventory += chest
print("Your inventory is now:")
print(inventory)

word_jumble.py
Word Jumble
#
The computer picks a word and then "jumbles" it
The player has to guess the original word

import random

create a sequence of words to choose from
WORDS = ("python", "jumble", "easy", "difficult",
"answer", "xylophone")

pick one word randomly from the sequence
word = random.choice(WORDS)

create a variable to see if the guess is correct
correct = word

create a jumbled version of the word
jumble =""
while word:
 position = random.randrange(len(word))
 jumble += word[position]
 word = word[:position] + word[(position + 1):]

start the game
print(
"""
 Welcome to Word Jumble!

 Unscramble the letters to make a word.
(Press the enter key at the prompt to quit.)
"""
)

print("The jumble is:", jumble)

guess = input("\nYour guess: ")

while guess != correct and guess != "":
 print("Sorry, that's not it.")
 guess = input("Your guess: ")

if guess == correct:
 print("That's it! You guessed it!\n")

print("Thanks for playing.")

input("\n\nPress the enter key to exit.")

Introducing the Word Jumble Game

Setting Up the Program
 Use a tuple to create a sequence of words. Notice that the

variable name WORD is in all caps, implying that it will be
treated as a constant:

WORDS = ("python", "jumble", "easy", "difficult",
 "answer", "xylophone")

 Use random.choice() to get a random word from WORDS:

word = random.choice(WORDS)

 random.choice() picks a random element from whatever
sequence you give.

Planning the Jumble Creation Section
 Algorithm to create a jumbled word from the chosen word:

create an empty jumble word
while the chosen word has letters in it
 extract a random letter from the chosen word
 add the random letter to the jumble word

 Because strings are immutable, one can’t actually “extract
a random letter” from the string the user entered. But, one
can create a new string that doesn’t contain the randomly
chosen letter.

 Although one can’t “add the random letter” to the jumble
word string either, but one can create a new string by
concatenating the current jumble word with the “extracted”
letter.

Setting Up the Loop
 The jumble creation process is controlled by a while loop:

while word:

 The while will continue until word becomes an empty string

 Each time the loop executes, the computer creates a new
version of word with one letter “extracted” and assigns it
back to word .

 Eventually, word will become the empty string and the
jumbling will be done.

Generating a Random Position in word
 The 1st line in the loop body generates a random position in

word, based on its length:

position = random.randrange(len(word))

 So, the letter word[position] is the letter that is going to be
“extracted” from word and “added to” jumble .

Creating New Versions of jumble & word
 A new version of the string jumble is equal to its old self,

plus the letter word[position] :

jumble += word[position]

 Creates a new version of word minus the one letter at
position position:

word = word[:position] + word[(position + 1):]

 Using slicing, we creates 2 new strings from word. The 1st
one, word[:position] , is every letter up to, but not including,
word[position] . The next one, word[(position + 1):] , is every
letter after word[position] .

 These 2 strings are joined together and assigned to word ,
which is now equal to its old self, minus the one letter
word[position] .

Getting the Player’s Guess
 The computer keeps asking the player for a guess as long

as the player doesn’t enter the correct word or press the
Enter key at the prompt:

guess = input("\nYour guess: ")

while guess != correct and guess != "":
 print("Sorry, that's not it.")
 guess = input("Your guess: ")

Congratulating the Player
 If the player has guessed the word, then the computer

offers its hearty congratulations:

if guess == correct:
 print("That's it! You guessed it!\n")

Quiz 4: Create a game where the computer picks a
 random word and the player has to guess that
 word. The computer tells the player how many
 letters are in the word. Then the player gets 5
 chances to ask if a letter is in the word. The
 computer can only respond with “yes” or “no”.
 Then, the player must guess the word.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

