

Chapter 3

Branching, while Loops, And
Program Planning: The

Guess My Number Game

Introducing the Craps Roller Program
 Craps Roller simulates the roll of 2 6-sided dices, and

displays the value of each and their total.

 To determine the dice values, the program uses functions
that generate random numbers.

craps_roller.py
Craps Roller
Demonstrates random number generation

import random

generate random numbers 1 - 6

die1 = random.randint(1, 6)
die2 = random.randrange(6) + 1

total = die1 + die2

print("You rolled a", die1, "and a", die2,
 "for a total of", total)

input("\n\nPress the enter key to exit.")

Importing the random Module
 The import statement allows you to import, or load,

modules, eg,

import random

 Modules are files that contain code meant to be used in
other programs. These modules usually group together a
collection of programming related to one area.

 The random module contains functions related to
generating random numbers and producing random results.

Using the randint() Function
 The random module contains a function, randint() , which

produces a random integer.

 The program accesses randint() through the following
function call:
 random.randint(1, 6)

 You can call a function from an imported module by giving
the module name, followed by a period, then the function
call itself. This method of access is called dot notation.

 random.randint() means the function randint() that
belongs to the module random. Dot notation can be used to
access different elements of imported modules.

 randint() requires 2 integer argument values and returns
a random integer between those 2 values, which may include
either of the argument values.

Using the randrange() Function
 The random module also contains randrange(), which

produces a random integer.

 random.randrange(N) gives an integer in {0, …, N–1}

 To produces either a 1, 2, 3, 4, 5, or 6

die2 = random.randrange(6) + 1

Introducing the Password Program

password.py
Password
Demonstrates the if statement

print("Welcome to System Security Inc.")
print("-- where security is our middle name\n")

password = input("Enter your password: ")

if password == "secret":
 print("Access Granted")

input("\n\nPress the enter key to exit.")

Examining the if Statement
 The key to program Password is the if statement:

if password == "secret":
 print("Access Granted")

 If password is equal to "secret" , then "Access Granted" is
printed and the program continues to the next statement.

 If it isn’t equal to "secret" , the program does not print the
message and continues directly to the next statement.

Creating Conditions
 All if statements have a condition. A condition is just an

expression that is either true or false.

 A condition can always be evaluated to be either True
(representing true) and False (representing false).

 The condition in the if statement is password=="secret" .
It means that password is equal to "secret" .

 This condition evaluates to either True or False , depending
on the value of password .

Understanding Comparison Operators
 Conditions are often created by comparing values. You can

compare values using comparison operators.

 The equal-to comparison operator is written as ==.

 password = "secret" is an assignment statement. It assigns
a value. password == "secret" is a condition. It evaluates to
either True or False .

 you can compare integers to integers, floating-point
numbers to floating-point numbers, as well as integers to
floating-point numbers.

 You can even compare strings—the results are based on
alphabetical order.

 "apple"<"orange" is True because "apple" is alphabetically
less than "orange".

 Objects of different types that don’t have an established
definition for order can’t be compared using the <, <=, >, or
>= operators.

 Python won’t let you use these operators to compare
strings and integers, eg, 10 > "five".

Using Indentation to Create Blocks
 By indenting the line, it becomes a block. A block is one or

more consecutive lines indented by the same amount.

 Blocks can be used as part of an if statement. They’re the
statement or group of statements that gets executed if the
condition is True .

 you could add more statements in the block:

if password == "secret":
 print("Access Granted")
 print("Welcome! You must be very important.")

 There’s debate about whether to use tabs or spaces. There
are 2 guidelines:
 1. be consistent
 2. don’t mix spaces and tabs.

The Granted or Denied Program

granted_or_denied.py
Granted or Denied
Demonstrates an else clause

print("Welcome to System Security Inc.")
print("-- where security is our middle name\n")

password = input("Enter your password: ")

if password == "secret":
 print("Access Granted")
else:
 print("Access Denied")

input("\n\nPress the enter key to exit.")

Examining the else Clause
 added an else clause to the if statement:

if password == "secret":
 print("Access Granted")
else:
 print("Access Denied")

 If the value of password is equal to "secret" , the program
prints Access Granted , just like before. And the program
prints Access Denied otherwise.

 In an if statement with an else clause, exactly one of the
code blocks will execute.

 You can create an else clause immediately following the if
block with else, followed by a colon, followed by a block of
statements. The else clause must be in the same block as its
corresponding if, ie, the else and if must be indented the
same amount.

Introducing the Mood Computer Program

mood_computer.py
Mood Computer
Demonstrates the elif clause

import random

print(“I sense your energy. Your true emotions “,
 “are coming across my screen.”)
print("You are...")

mood = random.randint(1, 3)

if mood == 1:
 # happy
 print(
 """

 | |
 | O O |
 | < |
 | |
 | . . |
 | `… ` |

 """)
elif mood == 2:
 # neutral
 print(
 """

 | |
 | O O |
 | < |
 | |
 | -------- |
 | |

 """)
elif mood == 3:
 # sad
 print(
 """

 | |
 | O O |
 | < |
 | |
 | . ' . |
 | ' ' |

 """)
else:
 print("Illegal mood value!”,
 “(You must be in a really bad mood).")

print("...today.")
input("\n\nPress the enter key to exit.")

Examining the elif Clause
 An if statement with elif (short for “else if”) clauses can

contain a sequence of conditions for a program to evaluate.

 In the program, the lines containing the 3 conditions are

 • if mood == 0:
 • elif mood == 1:
 • elif mood == 2:

 You can have as many elif clauses as you like.

 An important feature of an if statement with elif clauses is
that once a condition evaluates to True, the computer
executes its corresponding block and exits the statement.

 It is possible to create statements where more than one
condition can be true at the same time. In that case, only the
block associated with the 1st true condition executes.

 If none of the preceding conditions
for mood turn out to be True, then
the final else clause’s block runs.

 It’s a good idea to use the final else
clause. It works as a catchall for
when none of the conditions within
the statement are True.

The 3-Year-Old Simulator Program

three_year-old.py
Three Year-Old Simulator
Demonstrates the while loop

print("\tWelcome to the 'Three-Year-Old Simulator'\n")
print("This program simulates a conversation with”,
 “a three-year-old child.")
print("Try to stop the madness.\n")

response = ""
while response != "Because.":
 response = input("Why?\n")

print("Oh. Okay.")

input("\n\nPress the enter key to exit.")

Examining the while Loop
 The loop from the program is just 2 lines:

while response != "Because.":
 response = input("Why?\n")

 In the while statement, similar to the if statement, if the
condition is true, the block (the loop body) is executed.

 In the while statement, the computer tests the condition
and executes the block over and over, until the condition is
false. That’s why it’s called a loop.

 The loop body is just response = input("Why?\n") , which
will continue to execute until the user enters Because.

Initializing the Sentry Variable
 Often, while loops are controlled by a sentry variable, a

variable used in the condition and compared to some other
value or values.

 In the previous program, the sentry variable is response .

 It’s important to initialize your sentry variable. Most of the
time, sentry variables are initialized right before the loop
itself.

 The code initializes the sentry variable with response = ""

 If the sentry variable doesn’t have a value when the
condition is evaluated, your program will generate an error.

 It’s usually a good idea to initialize your sentry variables to
some type of empty value.

Checking the Sentry Variable
 Make sure that it’s possible for the while condition to

evaluate to True at some point; otherwise, the block will
never run.

 If you add one extra line to the program as

response = "Because."
while response != "Because.":
 response = input("Why?\n")

 Since response is equal to "Because." right before the loop,
the block will never run.

Updating the Sentry Variable
 Once you’ve established your condition, initialized your

sentry variable, and are sure that under some conditions the
loop block will execute, then make sure the loop will end at
some point.

 If you write a loop that never stops, you’ve created an
infinite loop.

 a simple example of an infinite loop:

counter = 0
while counter <= 10:
 print(counter)

 The values in the condition must be able to change as a
result of the code inside the loop body. If they can’t ever
change, the loop won’t end, and you end up with an infinite
loop

Introducing the Losing Battle Program

 Stop the process by pressing Ctrl+C, or it runs forever.

losing_battle-bad.py
Losing Battle
Demonstrates the dreaded infinite loop

print("Your lone hero is surrounded by a massive “,
 “army of trolls.")
print("Their decaying green bodies stretch out,”,
 “melting into the horizon.")
print("Your hero unsheathes his sword for the last “,
 “fight of his life.\n")

health = 10
trolls = 0
damage = 3

while health != 0:
 trolls += 1
 health -= damage

 print("Your hero swings and defeats an “,
 “evil troll, but takes", damage,
 "damage points.\n")

print("Your hero fought valiantly and defeated",
 trolls, "trolls.")
print("But alas, your hero is no more.")

input("\n\nPress the enter key to exit.")

Tracing the Program
 It looks like the program has a logical error. A good way to

track down the error is to trace your program’s execution.

 Tracing means you simulate the running of your program
and do exactly what it would do, following every statement
and keeping track of the values assigned to variables.

 This way, you can step through the program, understand
exactly what is happening at each point, and discover the
circumstances that conspire to produce the bug in your code.

 After a few times through the loop, the trace looks like:

 Since the value of health is negative (and not equal to 0) in
the last 3 lines of the trace, the condition is still True .

 health will never become 0. It will just grow in the negative
direction each time the loop executes. As a result, the
condition will never become False , and the loop will never
end.

Creating Condition That Can Become False
 Besides making sure values in a while loop’s condition

change, you should be sure that the condition can eventually
evaluate to False ; otherwise, you still have an infinite loop.

 the fix to the previous program is easy. The line with the
condition just needs to become

while health > 0:

 Now, if health becomes 0 or negative, the condition
evaluates to False and the loop ends.

losing_battle-good.py
Losing Battle
Demonstrates the dreaded infinite loop

print("Your lone hero is surrounded by a massive “,
 “army of trolls.")
print("Their decaying green bodies stretch out,”,
 “melting into the horizon.")
print("Your hero unsheathes his sword for the last “,
 “fight of his life.\n")

health = 10
trolls = 0
damage = 3

while health > 0:
 trolls += 1
 health -= damage

 print("Your hero swings and defeats an “,
 “evil troll, but takes", damage,
 "damage points.\n")

print("Your hero fought valiantly and defeated",
 trolls, "trolls.")
print("But alas, your hero is no more.")

input("\n\nPress the enter key to exit.")

Introducing the Maitre D’ Program

maitre_d.py
Maitre D'
Demonstrates treating a value as a condition

print("Welcome to the Chateau D' Food")
print("It seems we are quite full this evening.\n")

money = int(input("How many dollars do you slip the
Maitre D'? "))

if money:
 print("Ah, I am reminded of a table. “,
 ”Right this way.")
else:
 print("Please, sit. It may be a while.")

input("\n\nPress the enter key to exit.")

Interpreting Any Value as True or False
 The new concept is demonstrated in the line:

if money:

 money is not compared to any other value. money is the
condition.

 When it comes to evaluating a number as a condition, 0 is
False and everything else , even if it is negative, is True .

 So, the above line is equivalent to if money != 0:

 The basic principle is: any empty or zero value is False ,
everything else is True .

 The empty string, "" , is False , any other string is True .

Introducing the Finicky Counter Program

finicky_counter.py
Finicky Counter
Demonstrates the break and continue statements

count = 0
while True:
 count += 1
 # end loop if count greater than 10
 if count > 10:
 break
 # skip 5
 if count == 5:
 continue
 print(count)

input("\n\nPress the enter key to exit.")

Using the break Statement to Exit a Loop
 The loop is set up with:

while True:

 This technically means that the loop will continue forever,
unless there is an exit condition in the loop body. So we put

end loop if count greater than 10
if count > 10:
 break

 Since count is increased by 1 each time the loop body
begins, it will eventually reach 11.

 When it does, the break statement, which here means
“break out of the loop,” is executed and the loop ends.

Using the continue Statement to Jump
Back to the Top of a Loop
 For the lines:

skip 5
if count == 5:
 continue

 The continue statement means “jump back to the top of
the loop.” At the top of the loop, the while condition is tested
and the loop is entered again if it evaluates to True .

 So when count is equal to 5, the program does not get to
the print(count) statement. Instead, it goes right back to the
top of the loop so that 5 is never printed.

When to Use break and continue
 You can use break and continue in any loop you create.

 But both break and continue make it harder to see the flow
of a loop and understand under what conditions it ends.

 You don’t actually need break and continue .

 Any loop you can write using them can be written without
them (in most of the cases).

The Exclusive Network Program

exclusive_network.py
Exclusive Network
Demonstrates logical operators and compound conditions

print("\tExclusive Computer Network")
print("\t\tMembers only!\n")

security = 0

username = ""
while not username:
 username = input("Username: ")

password = ""
while not password:
 password = input("Password: ")

if username == "M.Dawson" and password == "secret":
 print("Hi, Mike.")
 security = 5
elif username == "S.Meier" and password == "civilization":
 print("Hey, Sid.")
 security = 3
elif username == "S.Miyamoto" and password == "mariobros":
 print("What's up, Shigeru?")
 security = 3
elif username == "W.Wright" and password == "thesims":
 print("How goes it, Will?")
 security = 3
elif username == "guest" or password == "guest":
 print("Welcome, guest.")
 security = 1
else:
 print("Login failed. You're not so exclusive.\n")

input("\n\nPress the enter key to exit.")

Understanding the not Logical Operator
 Want to make sure that the user enters something for the

username and password. Just pressing the Enter key, which
results in the empty string, won’t do.

 Want a loop that continues to ask for a username until the
user enters something:

username = ""
while not username:
 username = input("Username: ")

 The logical not operator works a lot like the word “not.” In
Python, putting not in front of a condition creates a new
condition that evaluates to the opposite of the original.

 Since username is initialized to the empty string in the
program, it starts out as False . That makes not username
True and the loop runs the 1st time.

 If the user just presses Enter, username is the empty
string, just as before. And not username is True and the loop
keeps running.

 When the user finally enters something, username becomes
something other than the empty string. That makes
username evaluate to True and not username evaluate to
False . As a result, the loop ends.

 The program does the same thing for password .

Understanding the and Logical Operator
 A user has to enter a username and password that are

recognized together. The program checks that a user enters
S.Meier for his username, civilization for his password with

elif username == "S.Meier" and password == "civilization":

 The line contains a single compound condition made up of
2 simple conditions. They are joined together by the and
logical operator to form a larger, compound condition.

 This compound condition, though larger, is still just a
condition, which means that it can be either True or False .

Understanding the or Logical Operator
 Guests are allowed in the network, but with a limited

security level. To make it easy, all a guest has to do is enter
guest for either the username or password:

elif username == "guest" or password == "guest":
 print("Welcome, guest.")
 security = 1

Planning Your Programs:
Creating Algorithms with Pseudocode

 An algorithm is a set of clear, easy-to-follow instructions for
accomplishing some task. An algorithm is like an outline for
your program. It’s something you planned out, before
programming, to guide you along as you code.

 An algorithm isn’t just a goal—it’s a concrete list of steps to
be followed in order.

 Algorithms are generally written in pseudocode.

 Pseudocode falls somewhere between English and a
programming language.

 Make a Million Dollars algorithm:

if you can think of a new and useful product
 then that’s your product
otherwise
 repackage an existing product as your product

make an infomercial about your product

show the infomercial on TV

charge $100 per unit of your product

sell 10,000 units of your product

Stepwise Refinement to Your Algorithms
 Often, algorithms need multiple passes before they can be

implemented in code.

 Stepwise refinement is one process used to rewrite
algorithms so that they’re ready for implementation.

 By taking each step in an algorithm and breaking it down
into a series of simpler steps, the algorithm becomes closer
to programming code.

 In stepwise refinement, you keep breaking down each step
until you feel that the entire algorithm could be fairly easily
translated into a program.

 If you’re still unclear about a step, refine it some more.
Continue with this process and you will have a complete
algorithm.

 As an example,

create an infomercial about your product

 This might seem like too vague a task. Using stepwise
refinement, the single step can be broken down into several
others:

write a script for an infomercial about your product

rent a TV studio for a day

hire a production crew

hire an enthusiastic audience

film the infomercial

Guess My Number: Planning the Program
 To plan the game, write some pseudocode first:

pick a random number

while the player hasn’t guessed the number
 let the player guess

congratulate the player

 It is missing some important elements:

1. the program needs to tell the player if the guess is too
high or too low.

2. the program should keep track of how many guesses the
player has made and then tell the player this number at the
end of the game.

 A refinement of the algorithm:

welcome the player to the game and explain it

 pick a random number between 1 and 100
 ask the player for a guess
 set the number of guesses to 1

 while the player’s guess does not equal the number
 if the guess is greater than the number
 tell the player to guess lower
 otherwise
 tell the player to guess higher
 get a new guess from the player
 increase the number of guesses by 1

congratulate the player on guessing the number
let the player know how many guesses it took

 Much better! Ready to go!

guess_my_ number.py
Guess My Number
#
The computer picks a random number between 1-100
The player tries to guess it and the computer lets
the player know if the guess is too high, too low
or right on the money

import random

print("\tWelcome to 'Guess My Number'!")
print("\nI'm thinking of a number between 1 and 100.")
print("Try to guess it in as few attempts as
possible.\n")

set the initial values
the_number = random.randint(1, 100)
guess = int(input("Take a guess: "))
tries = 1

guessing loop
while guess != the_number:
 if guess > the_number:
 print("Lower...")
 else:
 print("Higher...")

 guess = int(input("Take a guess: "))
 tries += 1

print("You guessed it! The number was", the_number)
print("And it only took you", tries, "tries!\n")

input("\n\nPress the enter key to exit.")

the Result of the Guess My Number Game

Quiz 3: Write the pseudocode for a program where the
 player and the computer trade places in the
 number guessing game. That is, the player picks
 a random number between 1 and 100 that the
 computer has to guess. Then code the game
 according to your pseudocode.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

