

Chapter 2

Types, Variables, Simple I/O:

The Useless Trivia Program

Using Quotes with Strings
 An example of a string, "Game Over." But strings can

become much longer and more complex.

 Using quotes can help you to create strings to accomplish
all of this.

game_over2.py
Game Over - Version 2
Demonstrates the use of quotes in strings

print("Program 'Game Over' 2.0")

print("Same", "message", "as before")

print("Just",
 "a bit",
 "bigger")

print("Here", end=" ")
print("it is...")

print(
 """

 _____ ___ __ ___ _____
 / ___| / | / |/ | | ___|
 | | / /| | / /| /| | | |__
 | | _ / _ | / / |__/| | | __|
 | |__| | / / | | / / | | | |___
 _____/ /_/ |_| /_/ |_| |_____|

 _____ _ _ _____ _____
 / _ \ | | / / | ___| | _ \
 | | | | | | / / | |__ | |_| |
 | | | | | | / / | __| | _ /
 | |_| | | |/ / | |___ | | \ \
 _____/ |___/ |_____| |_| _\

 """
)

input("\n\nPress the enter key to exit.")

The program shows that it’s pretty simple to present text in
different ways by using quotes.

Here it is ...

Using Quotes Inside Strings
 You can use either a pair of single (' ') or double quotes ("

") to create string values.

 'Game Over' represents the same string as "Game Over" .

 the 1st appearance of a string in the program

print "Program 'Game Over' 2.0"

uses both kinds of quotes.

 Only the single quotes show up, because they are part of
the string. But the double quotes are not part of the string.

 If you use a pair of double quotes to “bookend” your string,
you can use as many single quotes inside the string as you
want. And, if you surround your string with a pair of single
quotes, you can use as many double quotes inside the string
as you like.

 Once you’ve used one kind of quote as bookends for your
string, you can’t use that type of quote inside your string.

"With the words, 'Houston, we have a problem.', Jim Lovell

became one of our most famous astronauts." √

"With the words, "Houston, we have a problem.", Jim Lovell

became one of our most famous astronauts." 

Printing Multiple Values
 Print multiple values with a single call to print()—just list

multiple argument values, separated by commas.

 Print multiple values with the line
 print("Same", "message", "as before")

passing 3 arguments to the function: "Same" , "message" ,
and "as before.", to display Same message as before.

 Each value is printed with a space as a separator. This is
the default behavior of the print() function.

 print ("Just",
 "a bit",
 "bigger")

form a single statement that prints the one line of text
 Just a bit bigger

Specifying a Final String to Print
 By default, the print() function prints a newline character

as a final value.

 But you have the ability specify your own final string to be
printed.

 To specify that a space be the final character printed
instead of the newline

print("Here", end=" ")
print("it is…")

To prints the text “Here it is...” all on one line.

 accomplish this by passing a space to the end parameter of
the print() function with the code end=" " .

 You can specify other string to be printed as the final value.

Creating Triple-Quoted Strings
 A triple-quoted string is a string enclosed by a pair of 3

quotes in a row. It doesn’t matter which kind of quotes you
use, as long as you bookend with the same type.

“””
………

“””

 Triple-quoted strings can span multiple lines. They print on
the screen exactly the way you type them.

Using Escape Sequences with Strings
 Escape sequences allow you to put special characters into

your strings.

 The escape sequences are made up of 2 characters: a
backslash followed by another character.

Introducing the Fancy Credits Program

fancy_credits.py
Fancy Credits
Demonstrates escape sequences

print("\t\t\tFancy Credits")

print("\t\t\t \\ \\ \\ \\ \\ \\ \\")
print("\t\t\t\tby")
print("\t\t\tMichael Dawson")
print("\t\t\t \\ \\ \\ \\ \\ \\ \\")

print("\nSpecial thanks goes out to:")
print("My hair stylist, Henry \'The Great,\' who never
says \"can\'t.\"")

sound the system bell
print("\a")

input("\n\nPress the enter key to exit.")

Moving Forward a Tab Stop
 To set some text off from the left margin where it normally

prints, you could use the Tab key.

 With strings, you can use the escape sequence for a tab, \t.

print("\t\t\tFancy Credits")

 When the program prints the string, it prints 3 tabs and
then Fancy Credits .

 Tab sequences are good for setting off text, but they’re also
perfect for arranging text into columns.

Printing a Backslash
 To print a backslash, just use 2 backslashes in a row, \\.

 Each of the following lines prints 3 tabs followed by 7
backslashes, separated by spaces:

print("\t\t\t \\ \\ \\ \\ \\ \\ \\")
print("\t\t\t \\ \\ \\ \\ \\ \\ \\")

Inserting a Newline
 The newline sequence is represented by \n .

 By using this sequence, you can insert a newline character
into your strings for a blank line.

 You can use a newline right at the beginning of a string to
separate it from the text last printed.

print("\nSpecial thanks goes out to:")

The computer prints a blank line, then prints Special thanks
goes out to: .

Inserting a Quote
 To insert a quote into a string, use the sequence \' for a

single quote and \" for a double quote.

print("My hair stylist, Henry \'The Great,\' who never
says \"can\'t.\"")

* \'The Great\' prints as 'The Great'

* Each \' sequence is printed as a single quote

* \"can\'t\" prints as "can't"

* Both \" sequences print as double quotes

* The lone \' sequence prints as a single quote

Sounding the System Bell
 print("\a") sounds the system bell of your computer.

 It does this through the escape sequence, \a, which
represents the system bell character. Every time you print it,
the bell rings.

 Some escape sequences only work as advertised if you run
your program directly from the operating system and not
through IDLE. \a is a good example.

Concatenating and Repeating Strings

silly_strings.py.
Silly Strings
Demonstrates string concatenation and repetition

print("You can concatenate two " + "strings with the '+' operator.")

print("\nThis string " + "may not " + "seem terr" \
+ "ibly impressive. " + "But what " + "you don't know" \
+ " is that\n" + "it's one real" + "l" + "y" \
+ " long string, created from the concatenation " + "of " \
+ "twenty-two\n" + "different strings, broken across " \
+ "six lines." + " Now are you" + " impressed? " + "Okay,\n" \
+ "this " + "one " + "long" + " string is now over!")

print("\nIf you really like a string, you can repeat it. For example,")
print("who doesn't like pie? That's right, nobody. But if you really")
print("like it, you should say it like you mean it:")
print("Pie" * 10)

input("\n\nPress the enter key to exit.")

Creating the Initial Comments
 Although comments don’t have any effect while the

program runs, they are an important part of every project.

 Experienced programmers also use the initial comments
area to describe any modifications they make to code over
time.

 This provides a history of the program right up front. This
practice is especially helpful when several programmers
have their hands on the same code.

Concatenating Strings
 Concatenating strings means joining them together to

create a whole new string.

print("You can concatenate two " + "strings with the '+'
operator.")

 The + operator joins the 2 strings, "You can concatenate
two " and "strings with the '+' operator." , together to form a
new, larger string.

 When you join 2 strings, their exact values are fused
together, with no space or separator character inserted
between them.

 So, if you were to join the 2 strings "cup" and "cake", you’d
end up with "cupcake" and not "cup cake".

 You can concatenate strings as long as you want.

Using the Line Continuation Character
 You can stretch a single statement across multiple lines.

 All you have to do is use the line-continuation character, \.

 Put it anywhere (but not inside a string) to continue your
statement on the next line.

 The computer will act as if it sees one long line of code.

Repeating Strings

print("Pie" * 10)

creates a new string, "PiePiePiePiePiePiePiePiePiePie" , and
prints it out. That’s the string "Pie" repeated 10 times.

 To repeat a string, just put the string and number of
repetitions together with the repetition operator, *.

Introducing the Word Problems Program

word_problems.py
Word Problems
Demonstrates numbers and math

print("If a 2000 pound pregnant hippo gives birth to a 100
pound calf,")
print("but then eats 50 pounds of food, how much does she
weigh?")
input("Press the enter key to find out.")
print("2000 - 100 + 50 =", 2000 - 100 + 50)

print("\nIf an adventurer returns from a successful quest and
buys each of")
print("6 companions 3 bottles of ale, how many bottles are
purchased?")
input("Press the enter key to find out.")
print("6 * 3 =", 6 * 3)

print("\nIf a restaurant check comes to 19 dollars with tip,
and you and")
print("your friends split it evenly 4 ways, how much do you
each throw in?")
input("Press the enter key to find out.")
print("19 / 4 =", 19 / 4)

print("\nIf a group of 4 pirates finds a chest full of 107 gold
coins, and")
print("they divide the booty evenly, how many whole coins
does each get?")
input("Press the enter key to find out.")
print("107 // 4 =", 107 // 4)

print("\nIf that same group of 4 pirates evenly divides the
chest full")
print("of 107 gold coins, how many coins are left over?")
input("Press the enter key to find out.")
print("107 % 4 =", 107 % 4)

input("\n\nPress the enter key to exit.")

Understanding Numeric Types
 Python allows programmers to use several different types

of numbers.

 The 2 types used in this program, and probably the most
common, are integers and floating-point numbers (or floats).

 Integers are whole numbers—numbers with no fractional
part, eg, 1, 27, -100, 0, etc.

 Floats are numbers with a decimal point, like 2.376, - 99.1,
and 1.0.

Using Mathematical Operators

Introducing the Greeter Program

greeter.py
Greeter
Demonstrates the use of a variable

name = "Larry"

print(name)

print("Hi,", name)

input("\n\nPress the enter key to exit.")

Creating Variables
 A variable provides a way to label and access information.

 Before you use a variable, you have to create it,

name = "Larry"

 This line is called an assignment statement. It creates a
variable called name and assigns it a value so that it
references the string "Larry" .

 In general, assignment statements assign a value to a
variable.

Using Variables
 The convenience of a variable is that it can be used just like

the value to which it refers.

 print(name) prints the string "Larry" just like the statement
print("Larry") does.

 print("Hi,", name) prints the string "Hi," followed by a
space, followed by "Larry" .

Naming Variables
 There are only a few rules that you have to follow to create

legal variable names.

 Create an illegal one and Python will let you know about it
with an error.

 The 2 most important rules:

1. A variable name can contain only numbers, letters, and
 underscores.

2. A variable name can’t start with a number.

Guidelines for good variable names
 Choose descriptive names: Use score instead of s .

 Be consistent: It’s not important what the style of naming
is, as long as you’re consistent.

 Follow the traditions of the language: Avoid using an
underscore as the 1st character of variable names. Names
starting with an underscore have special meaning in Python.

 Keep the length in check: try to keep your variable
names under 15 characters

Introducing the Personal Greeter Program

personal_greeter.py

Personal Greeter
Demonstrates getting user input

name = input("Hi. What's your name? ")

print(name)

print("Hi,", name)

input("\n\nPress the enter key to exit.")

Using the input() Function
 name = input("Hi. What's your name? ")

 input() gets some text from the user. It takes a string
argument that it uses to prompt the user for this text.

 input() waits for the user to enter something. Once the
user presses the Enter key, input() returns whatever the user
typed as a string. That string, the return value of the function
call, is what name gets.

 input("\n\nPress the enter key to exit.")

 The goal of the line waits for the user to press the Enter
key. If the return value isn’t assigned to a variable, the
computer just ignores it. So once the user presses the Enter
key, the call to the input() function ends, the program ends,
and the console window closes.

The Quotation Manipulation Program

quotation_manipulation.py
Quotation Manipulation
Demonstrates string methods

quote from IBM Chairman, Thomas Watson
quote = "I think there is a world market for maybe five
computers."

print("Original quote:")
print(quote)

print("\nIn uppercase:")
print(quote.upper())

print("\nIn lowercase:")
print(quote.lower())

print("\nAs a title:")
print(quote.title())

print("\nWith a minor replacement:")
print(quote.replace("five", "millions of"))

print("\nOriginal quote is still:")
print(quote)

input("\n\nPress the enter key to exit.")

Creating New Strings with String Methods
 print(quote.upper()) prints a version of quote in all

uppercase letters. The line does this through the use of a
string method, upper().

 The line becomes equivalent to the following line:

print("I THINK THERE IS A WORLD MARKET FOR MAYBE
FIVE COMPUTERS.")

 A string method is like an ability a string has. Methods are
similar to built-in functions.

 You kick off a method, or invoke it, by adding a dot,
followed by the name of the method, followed by a pair of
parentheses

 print(quote.lower()) invokes the lower() method of quote
to create an all-lowercase-letters version of the string, which
the method returns.

 print(quote.title()) prints a version of quote that’s like a
title.

 print(quote.replace("five", "millions of")) prints a new
string, where every occurrence of "five" in quote is replaced
with "millions of" .

 replace() needs at least 2 pieces of information: the old
text to be replaced, and the new text that replaces it.

 You can add an optional 3rd argument, an integer, that tells
the method the maximum number of times to make the
replacement.

 String methods create a new string. They don’t affect the
original one.

The Trust Fund Buddy—Bad Program

trust_fund_bad.py
Trust Fund Buddy - Bad
Demonstrates a logical error

print(
"""
 Trust Fund Buddy

Totals your monthly spending so that your trust fund doesn't
run out (and you're forced to get a real job).

Please enter the requested, monthly costs. Since you're rich,
ignore pennies and use only dollar amounts.

"""
)

car = input("Lamborghini Tune-Ups: ")
rent = input("Manhattan Apartment: ")
jet = input("Private Jet Rental: ")
gifts = input("Gifts: ")
food = input("Dining Out: ")
staff = input("Staff (butlers, chef, driver, assistant): ")
guru = input("Personal Guru and Coach: ")
games = input("Computer Games: ")

total = car + rent + jet + gifts + food + staff + guru +games

print("\nGrand Total:", total)

input("\n\nPress the enter key to exit.")

Tracking Down Logical Errors
 Since the program doesn’t crash, you don’t get the benefit

of an error message to offer a clue. You have to observe the
behavior of the program and investigate the code.

 The huge number in the output is clearly not the sum of all
the numbers the user entered.

 the input() function returns a string. So each “number” the
user enters is treated like a string. Which means that each
variable in the program has a string value associated with it.

 total=car +rent +jet +gifts +food +staff +guru +games is
not adding numbers. It’s concatenating strings!

 How do you fix it? Somehow those string values need to be
converted to numbers.

The Trust Fund Buddy—Good Program

trust_fund_good.py
Trust Fund Buddy - Good
Demonstrates type conversion

print(
"""
 Trust Fund Buddy

Totals your monthly spending so that your trust fund doesn't
run out (and you're forced to get a real job).

Please enter the requested, monthly costs. Since you're rich,
ignore pennies and use only dollar amounts.

"""
)

car = input("Lamborghini Tune-Ups: ")
car = int(car)

rent = int(input("Manhattan Apartment: "))
jet = int(input("Private Jet Rental: "))
gifts = int(input("Gifts: "))
food = int(input("Dining Out: "))
staff = int(input("Staff (butlers, chef, driver, assistant): "))
guru = int(input("Personal Guru and Coach: "))
games = int(input("Computer Games: "))

total = car + rent + jet + gifts + food + staff + guru +games

print("\nGrand Total:", total)

input("\n\nPress the enter key to exit.")

Converting Strings to Integers
 The function to convert a value to an integer is as

car = input("Lamborghini Tune-Ups: ")
car = int(car)

 int() takes the string referenced by car and returns an
integer version of it. Then, car gets this new integer value.

 The following assignments are done in just one line, eg,

rent = int(input("Manhattan Apartment: "))

Using Augmented Assignment Operators
 food = food * 52 to calculate and assign the yearly amount.

 You could accomplish the same thing with food *= 52

 *= is an augmented assignment operator.

 Since assigning a new value to a variable based on its
original value is what happens a lot in programming, these
operators provide a nice shortcut to a common task.

useless_trivia.py
Useless Trivia
#
Gets personal information from the user and then
prints true but useless information about him or her

name = input("Hi. What's your name? ")

age = input("How old are you? ")
age = int(age)

weight = int(input("Okay, last question. How many pounds
do you weigh? "))

print("\nIf poet ee cummings were to email you, he'd address
you as", name.lower())
print("But if ee were mad, he'd call you", name.upper())

called = name * 5
print("\nIf a small child were trying to get your attention",)
print("your name would become:")
print(called)

seconds = age * 365 * 24 * 60 * 60
print("\nYou're over", seconds, "seconds old.")

moon_weight = weight / 6
print("\nDid you know that on the moon you would weigh
only", moon_weight, "pounds?")

sun_weight = weight * 27.1
print("On the sun, you'd weigh", sun_weight, "(but, ah... not
for long).")

input("\n\nPress the enter key to exit.")

 The program takes 3 pieces of personal information from
the user: name, age, and weight. From these mundane items,
the program is able to produce some amusing but trivial
facts about the person.

the Result of the Useless Trivia Program

Quiz 2: Write a Tipper program where the user enters a
 restaurant bill. The program should then display
 two amounts: (bill + a 15 percent tip) and
 (bill + a 20 percent tip).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

