
  

Chapter 12Chapter 12 Electrodynamics and Relativity

Einstein’s PostulatesEinstein’s Postulates
 Classical mechanics obeys the principle of relativity: the same laws apply in 

any inertial reference frame. By “inertial” it means that the system is at rest or 
moving with constant velocity.

 By contrast you know immediately if the train accelerates. The laws of 
mechanics are certainly not the same in accelerating reference frames.

 Does the principle of relativity also apply to the laws of electrodynamics? At 
first glance, the answer would seem to be no. After all, a charge in motion 
produces a magnetic field, whereas a charge at rest does not.

 Many of the equations of electrodynamics with the Lorentz force law make 
explicit reference to the velocity of the charge. 
It appears that electromagnetic theory presupposes 
the existence of a unique stationary reference 
frame, with respect to which all velocities are to 
be measured.

 If we mount a wire loop on a freight car, and 
have the train pass between the poles of a 
giant magnet.
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 As the loop rides through the magnetic field, a motional emf is

 This emf is due to the magnetic force on charges in the wire loop, which are 
moving along with the train.

 On the other hand, someone on the car will find no magnetic force because the 
loop is at rest. But as the magnet flies by, the magnetic field in the car changes, 
and a changing magnetic field induces an electric field, by Faraday’s law.

 The resulting electric force would generate an emf:

 Because Faraday’s law and the flux rule predict exactly the same emf, people 
on the train will get the right answer, even though their physical interpretation of 
the process is completely wrong!

 Before Einstein’s special relativity, people thought of electric and magnetic 
fields as strains in an invisible jellylike medium called ether, which permeated 
all of space. The speed of the charge was to be measured with respect to the ether
—only then would the laws of electrodynamics be valid.

 With this assumption, it becomes a matter of crucial importance to find the 

ether frame, experimentally, or else all our calculations will be invalid.

 The problem becomes to determine our motion through the ether—to measure 
the speed and direction of the “ether wind.” 
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 Among the results of classical electrodynamics is the prediction that EM waves 

travel through the vacuum at a speed                                    relative to the ether.

 So one should be able to detect the ether wind by simply measuring the speed 
of light in various directions.

 The experiment was done by Michelson & Morley, 
using an optical interferometer of nice precision.

 2 essential points: 

  (1) all Michelson & Morley were trying to do was 
        compare the speed of light in different directions;
  (2) what they discovered was that this speed is exactly the same in all directions.

 At that time all other waves travel at a prescribed speed relative to the 
propagating medium, and if this medium is in motion with respect to the observer, 
the net speed is always greater “downstream” than “upstream.” This made light’s 
propagation difficult to understand.

 Michelson & Morley interpreted their experiment as confirmation of the “ether 
drag” hypothesis, ie, the earth pulls the ether along with it. But this was found to 
be inconsistent with other observations, eg, the aberration of starlight.
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Michelson interferometer



  

 Einstein took the Michelson-Morley result at face value, and suggested that the 
speed of light is a universal constant, the same in all directions, regardless of the 
motion of the observer or the source. There is no ether wind because there is no 
ether.

 Also any inertial system is a suitable reference frame for the application of 

Maxwell’s eqns, and the velocity of a charge is to be measured not with respect 
to an absolute rest frame, nor with respect to an ether, but simply with respect to 
the particular inertial system you happen to have chosen.

 Inspired both by internal theoretical hints and by external empirical evidence, 
Einstein proposed his 2 famous postulates:

   1. The principle of relativity: The laws of physics apply in all inertial 
                                                      reference systems.
   2. The universal speed of light: The speed of light in vacuum is the same for 
                                 all inertial observers, regardless of the motion of the source.

 The 1st elevates Galileo’s observation about classical mechanics to the status of 
a general law, applying to all of physics. Also there is no absolute rest system.

 The 2nd is the response to the result of the Michelson-Morley experiment. It 
means that there is no ether.



  

 The universal speed of light was radically new and preposterous:

 For “ordinary” speeds (vAB≪c, vBC≪c), the denominator is so close to 1 that the 
discrepancy between Galileo’s formula and Einstein’s formula is negligible.

 Einstein’s formula has the desired property that 
                                    if vAB=c, then automatically

 Special relativity compels us to alter our notions of space and time themselves, 
and therefore also of such derived quantities as velocity, momentum, and energy.

 Special theory is not limited to any particular class, it is a description of the 
space-time “arena” in which all physical phenomena take place. Thus relativity 
defines the structure of space and time.

vAC=
c+ vBC

1+ c vBC / c
2
=c

vAC= vAB+ vBC Galileo’s velocity addition rule

vAC=
v AB+ vBC

1+ v AB vBC / c
2   Einstein’s velocity addition rule  ⇐ v AC=v AB=c   for light



  

The Lorentz TransformationsThe Lorentz Transformations
 Any physical process consists of one or more 

events. An “event” is something that takes place 
at a specific location (x, y, z), at a precise time t.

 Suppose we know the coordinates (x, y, z, t) of 

a particular event E in one inertial system S, 
and we would like to calculate the coordinates
                    of that same event in some other 
inertial system    .

 If we set t=0 at the moment the 

origins coincide, then at time t,     will be a distance vt from O:

 Before Einstein, 

 In relativity, 

d= x̄ ⇒

x̄= x−v t
ȳ= y
z̄= z
t̄ = t

Galilean transformations

Ō

( x̄ , ȳ , z̄ , t̄ )
S̄

x=d + v t

x̄=γ ( x− v t )

ȳ= y
z̄= z

t̄ =γ ( t−
v
c2 x )

  Lorentz transformations ⇐ γ=
1

√1−v2
/c2



  

c= c̄ ⇒ 0=c2
(t2− t1)

2
−(x2− x1)

2
−( y2− y1)

2
−(z2− z1)

2

=c2
( t̄ 2− t̄ 1)

2
−( x̄2− x̄1)

2
−( ȳ2− ȳ1)

2
−( z̄2− z̄1)

2 for light

⇒ define an (infinitesimal) interval d s2
=−c2 d t2

+d x2
+d y2

+d z2  for 2 events

⇒ d s2
=d s̄2

⇐ d s̄2
=a (v) d s2 , d s2

=a (v) d s̄2
⇒ a=± 1 ⇒ a=1

⇒ −c2 d t2
+d x2

=−c2 d t̄ 2
+d x̄2

⇐ d y=d ȳ , d z=d z̄

[d x̄= A (d x−v d t) ⇐ generalized Galilean transformation
d t̄ = B d t +D d x

⇒ −c2 d t2
+d x2

=−c2
(B d t+D d x )2+ A2

(d x− v d t )2

=−(c2 B2
− A2 v2

) d t 2
−2 (c2 B D+ A2 v) d t d x+(A2

−c2 D2
) d x2

⇒
B2

−β
2 A2

=1
c B D+ A2

β=0
A2

−c2 D2
=1

⇒ A2
=−

c
β

B D ⇒

B (B+ c β D)=1

−
c
β

D (B+ c β D)=1
⇐ β≡

v
c



  

⇒ D=−
β

c
B ⇒ B2

(1−β
2
)=1 ⇒ B=± γ ⇒ A2

=B2
⇒ A=± γ

Choose   for v  approaching 0 continuously.  γ ≡
1

√1−β
2
=

1

√1−v2
/ c2

⇒

c d t̄ = γ (c d t − β d x )
d x̄= γ ( d x−β c d t )
d ȳ= d y
d z̄= d z

 The reverse transformation from     to S is obtained algebraically by solving for 

x & t, or by switching v’s sign:

 

S̄

x=γ ( x̄+ v t̄ )
y= ȳ
z= z̄

t =γ ( t̄ +
v x̄
c2 )

⇐

d x=γ ( d x̄+ β c d t̄ )
d y= d ȳ
d z= d z̄

c d t =γ (c d t̄ + β d x̄ )



  

x=c t
x̄=c t̄

Δ s

c t̄

x̄

x

x̄

x

yȳ

ttc t

Δ s2
=Δ x2

−c2
Δ t2

=Δ x̄2
−c2

Δ t̄ 2

x=−c t
x̄=−c t̄

Spacetime interval

Space Length

Δ ℓ
Δ ℓ2=Δ x2

+Δ y2

=Δ x̄2
+Δ ȳ2



  

Simultaneity, synchronization, and time dilationSimultaneity, synchronization, and time dilation
 Suppose event A occurs at xA=0, tA=0, and event B occurs at xB=b, tB=0. The 2 

events are simultaneous in S. But they are not simultaneous in     for the Lorentz 
transformations give           ,            and

 According to the     clocks, B occurred before A—the relativity of simultaneity.

 Suppose that at t=0 observer S decides 
to examine all the clocks in   . He finds 

that they read different times, depending 
on their location                       .

 Those to the left of the origin are ahead, 
and those to the right are behind, by an 
amount that increases ∝ distance. Only 
the master clock at the origin           .

 Thus the nonsynchronization of moving 
clocks follows directly from the Lorentz 
transformations. And from     it is the S clocks that are out of synchronization.

 Let S focus his attention on a single clock at rest in the    frame (eg,          ), and 

watches it over some interval Δt. Then

c t̄ =−γ β x

t̄ =0

S̄

x̄ A=0 x̄ B=γ b , c t̄ B=− γ β b

S̄

S̄
t̄ A=0

S̄

S̄ x̄=a

Δ x̄=0 ⇒ Δ t= γ Δ t̄  time dilation ⇐ γ≥1 ⇒ Δ t̄ =
Δ t
γ



  

x̄

x

tt c t̄c t

c Δ t̄

Time Dilation

Δ x̄=0 ⇒ Δ x=v Δ t

⇒ Δ s2
=−c2

Δ t̄ 2
=−c2

Δ t2
+Δ x2

⇒ Δ t̄ 2
=Δ t2 [1− 1

c2 ( Δ x
Δ t
)2

]
=Δ t2( 1−

v2

c2
)= Δ t2

γ
2

⇒ Δ t=γ Δ t̄ ⇒ Δ t ≥Δ t̄

c Δ t

Δ x



  

x̄

x

tt x=v t + ℓc t

Length Contraction

Δ t̄ =0 ⇒ c Δ t=β Δ x

⇒ Δ s2
=Δ x̄2

=− c2
Δ t2

+Δ x2

[c Δ t=β Δ x
Δ x= ℓ+ v Δ t

⇒ [ Δ x=γ
2 ℓ

c Δ t=γ
2

β ℓ

⇒ ℓ̄2
=−γ

4
β

2 ℓ2
+ γ

4 ℓ2

= ℓ2
γ

4
(1−β

2
)=γ

2 ℓ2

⇒ ℓ̄=γ ℓ ⇒ ℓ̄≥ ℓ

ℓ̄

Δ x

ℓ

c t̄

c Δ t



  

Lorentz contractionLorentz contraction
 Let a stick at rest in    (moving to the right at speed v in S). Its rest length (as 

measured in    ) is                        .  

 If an observer in S were to measure the stick Δx=xR−xL at his time t,

 Note that S’s t hold fixed here, because we’re talking about a measurement 

made by S, and he marks off the 2 ends at the same instant of his time.

Einstein’s velocity addition ruleEinstein’s velocity addition rule
 Let the particle move with constant velocity parallel to the x &     axes, send out 

2 signals as it moves. Each observer measures the space interval and the time 
interval between these 2 events.

Δ x=
Δ x̄
γ

  Lorentz contraction ⇐ Δ x̄=γ (Δ x−v Δ t ) + Δ t=0

Δ x̄= x̄R− x̄ LS̄

x̄

S̄

Δ x= γ ( Δ x̄ + v Δ t̄ )

Δ t =γ ( Δ t̄ +
v
c2 Δ x̄ ) ⇒

Δ x
Δ t

=
Δ x̄+ v Δ t̄

Δ t̄ +
v

c2 Δ x̄
=

Δ x̄
Δ t̄

+ v

1+
v

c2

Δ x̄
Δ t̄

To the limit u≡
d x
d t

the velocity of
the particle in S

, ū≡
d x̄
d t̄

the velocity of
the particle in S̄

⇒ u=
ū+ v

1+ ū v /c2
⇒ βu=

β ū+β

1+β β ū

⇐ βu≡
u
c

, β ū≡
ū
c

, β=β v≡
v
c



  

The Geometry of RelativityThe Geometry of Relativity
 Present thought experiments to introduce the 3 most striking geometrical 

consequences of Einstein’s postulates: time dilationtime dilation, Lorentz contractionLorentz contraction, and the 
relativity of simultaneityrelativity of simultaneity.

(i) The relativity of simultaneity(i) The relativity of simultaneity
 The 2 events observed from the car—(a) light reaches the front end and (b) 

light reaches the back end—occur simultaneously.

 To an observer on the ground these same 2 events are not simultaneous. For as 
the light travels out from the bulb, the train moves forward, so the beam going to 
the back end has a shorter distance to travel than the one going forward. Thus, 
event (b) happens before event (a).

 An observer passing by on an express train would report that (a) preceded (b).

 Conclusion: 2 events that are simultaneous in one inertial system are not,
                     in general, simultaneous in another.



  

 An observation means that the correction of the time for the signal travel to 
the observer is made, and then records after doing so. So all the data shouldn’t 
depend on where the observer is located.

(ii) Time dilation(ii) Time dilation
 Consider a light ray that leaves the bulb and 

strikes the floor of the car directly below.

 From an observer on the train, 
                                  the time is

 As observed from the ground, this same ray must travel farther, because the 
train itself is moving:

 The time elapsed between the same 2 events is different for the 2 observers. In 
fact, the interval recorded on the train clock   , is shorter by the factor γ.

 Conclusion: Moving clocks run slow—time dilation.

 It doesn’t have anything to do with the mechanics of clocks; it’s a statement 
about the nature of time, and works for any clock.

 When particles are moving at speeds close to c they last much longer, for their 
internal clocks are running slow, in accordance with Einstein’s time dilation.

Δ t̄ =
h
c

t̄

Δ t=√h2
+(c Δ t )2

c
⇒ Δ t =

h
c

1

√1− v2
/ c2

=γ Δ t̄ ⇒ Δ t̄ =
Δ t
γ



  

Example 12.1: A muon is traveling through the laboratory at 3/5 of the speed of 
light. How long does it last?

 The lifetime of a muon

 Time dilation seems inconsistent with the principle of relativity. But it doesn’t. 
The observations from different frames are all correct.

 There is no contradiction since the 2 observers have measured different things.

 Clocks that are properly synchronized in one system will not be synchronized when 
observed from another system.

 Whereas each observer conducted a perfect sound measurement from his own 
point of view, the other observer considers that he used 2 unsynchronized clocks.

τ̄ =2×10−6 s ⇒ τ =γ τ̄ =2.5×10−6 s> τ̄



  

 Because moving clocks are not synchronized, you can use as many stationary 
clocks (to you) as you please, for they are properly synchronized.

Example 12.2: The twin paradox. On her 21st birthday, an 
astronaut takes off in a rocket ship at a speed of 12c/13. 
After 5 years on her watch, she turns and heads back at the 
same speed to rejoin her twin brother, who stayed at home. 
How old is each twin at their reunion?

 The traveling twin has aged 10 years (5 yrs out+5 yrs back).

 As viewed from earth, the moving clock runs slow by

Her brother is now 16 years older than her!

 This is no fountain of youth for the traveling twin, for though 
she may die later than her brother, she will not have lived 
any more—she’s just done it slower.

 The twin paradox arises when you try to tell this story from 
the point of view of the traveling twin. From her point of view, 
she’s at rest, whereas her brother is in motion, and hence it 
is he who should be younger at the reunion. ×

γ=
1

√1−(12 /13)2
=

13
5

⇒
the elapsed

time on earth
= γ×10 yrs=26 yrs

Δ t=γ Δ t̄



  

 The two twins are not equivalent. The traveling twin experiences acceleration 
when she turns around to head home, but her brother does not.

 The traveling twin cannot claim to be a stationary observer because you can’t 
undergo acceleration and remain stationary.

(iii) Lorentz contraction(iii) Lorentz contraction
 To an observer on the train, the time for 

     the signal to complete the round trip is

 To a ground observer, the process is complicated because of the moving of train

 The length of the boxcar is not the same when measured by an observer on the 
ground, as it is when measured by an observer on the train—from the ground 
point of view, it is somewhat shorter.

Δ t1=
Δ x+ v Δ t1

c
, Δ t2=

Δ x− v Δ t2

c
⇒ Δ t 1=

Δ x
c−v

, Δ t 2=
Δ x
c+ v

⇒ Δ t=Δ t1+Δ t2=2
Δ x
c

1
1−v2

/ c2
⇒ Δ x=

Δ x̄
γ

⇐ Δ t= γ Δ t̄

Δ t̄ =2
Δ x̄
c



  

 Conclusion: Moving objects are shortened—Lorentz contraction.

 Moving clocks run slow, moving sticks are shortened, and the factor is γ.

 The observer on the train doesn’t think her car is shortened—her meter sticks 
are contracted by that same factor, so all her measurements come out the same 
as when the train was standing in the station. In fact, from her point of view it is 
objects on the ground that are shortened. Then This turns to another paradox.

 To find the length of a board, you lay your ruler 
next to the board and measure, if it’s at rest.

 If the board is moving, you do the same 

thing and read the 2 ends at the same instant of time.

 Here is the problem: Because of the relativity of simultaneity the 2 observers 
disagree on what constitutes “the same instant of time.”

 When the person on the ground measures the length of the boxcar, he reads the 
position of the 2 ends at the same instant in his system. But the person on the 
train, watching him do it, complains that he read the front end first, then waited 
a moment before reading the back end. Naturally, he came out short.

 Yet there is no inconsistency, for they are measuring different things, and each 
considers the other’s method improper.



  

The barn and ladder paradox

 A moving object is shortened only along the direction of its motion:
           Dimensions perpendicular to the velocity are not contracted.

 Taylor & Wheeler’s thought experiment

 If the rule were that perpendicular directions
contract, the person on the ground would 
predict that the red line is lower, while the 
person on the train would say it’s the blue one.

 The principle of relativity says that both 
observers are equally justified, but they 
cannot both be right.

 No simultaneity or synchronization can rationalize this contradiction; either the 
blue line is higher or the red one is—unless they exactly coincide.



  

The Structure of SpacetimeThe Structure of Spacetime
(i) Four-vectors
 Change the unit of time from the second to the meter to make the Lorentz 

transformation simple:

 In this abstract manner we can handle in the same format a more general 
transformation, in which the relative motion is not along a common        axis.

 Define a 4-vector as any set of 4 components that transform in the same 
manner as (x0, x1, x2, x3) under Lorentz transformations:

 4d scalar product:

x x̄

āμ
=∑

ν =0

3

Λ
μ

ν aν
⇒

ā0
=γ (a0

−β a1
)

ā1
=γ (a1

−β a0
)

ā2
=a2

ā3
=a3

as the case of a transformation
along the x  axis

a⃗⋅⃗b≡−a0 b0
+ a1 b1

+a2 b2
+a3 b3

⇒

x̄0
=γ ( x0

−β x1
)

x̄1
= γ (x1

−β x0
)

x̄2
= x2

x̄3
= x3

⇒ [
x̄0

x̄1

x̄2

x̄3 ]= [
γ −γ β 0 0

− γ β γ 0 0
0 0 1 0
0 0 0 1 ] [

x0

x1

x2

x3 ] ⇒ x̄μ
=∑

ν =0

3

Λ
μ

ν xν

⇒ ¯⃗x=Λ x⃗

Λ : Lorentz transformation matrix

x0
≡c t , x1

= x , x2
= y , x3

= z



  

 The scalar product has the same value in all inertial systems:

 As the 3d dot product is invariant (unchanged) under rotations, this 
combination is invariant under Lorentz transformations.

 To keep track of the “−” sign, it is convenient to introduce the covariant vector 
aμ, different from the contravariant aμ only in the sign of the 0th component:

 Upper/Lower indices designate contravariant/covariant vectors.

 Formally,

 Summation is implied whenever an index is repeated in a product—once as a 
covariant index and once as contravariant—Einstein summation convention.

 

aμ=(a0 , a1 , a2 , a3)≡(−a0 , a1 , a2 , a3
)

¯⃗a⋅¯⃗b= a⃗⋅⃗b ⇒ − ā0 b̄0
+ ā1 b̄1

+ ā2 b̄2
+ ā3 b̄3

=−a0 b0
+ a1 b1

+a2 b2
+a3 b3

aμ bμ
=aμ bμ=−a0 b0

+a1 b1
+ a2 b2

+ a3 b3

aμ=∑
ν =0

3

ημ ν aν
⇐ ημ ν≡ [

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1] Minkowski metric

⇒ a⃗⋅b⃗=∑
μ=0

3

aμ bμ
⇒ aμ bμ in a compact way



  

(ii) The invariant interval
 The scalar product of a 4-vector with itself,

 Let event A occurs at                            , and event B at                           . The 
difference,                        is the displacement 4-vector.

 The scalar product of Δxμ with itself isthe invariant interval between 2 events:

 When you transform to a moving system, the time between A & B is altered  

and so is the spatial separation           , but the interval I remains the same.

 If the displacement between 2 events is timelike (I<0), there exists an inertial 
system (using Lorentz transformation) in which they occur at the same point. You 
cannot do this for a spacelike interval because v would have to be greater than c, 
and no observer can exceed the speed of light.

 If I is spacelike (I>0), there exists a system in which the 2 events occur at the 
same time.

 If I is lightlike (I=0), the 2 events could be connected by a light signal.

aμ aμ
=−(a0

)
2
+(a1

)
2
+(a2

)
2
+(a3

)
2

(x B
0 , x B

1 , xB
2 , x B

3
)

I≡Δ x μ Δ xμ
=−(Δ x0

)
2
+(Δ x1

)
2
+(Δ x2

)
2
+(Δ x3

)
2
=−c2 t2

+d2

(x A
0 , x A

1 , x A
2 , x A

3
)

d̄≠d

Δ xμ
= x A

μ
− x B

μ

t̄ ≠ t

If aμ aμ
>0 , aμ  is called spacelike ,

If aμ aμ
<0 , aμ  is called timelike ,

If aμ aμ
=0 , aμ  is called lightlike .



  

(iii) Space-time diagrams
 The convention in a graph is reversed in relativity: 

people plot position horizontally and time vertically.

 A particle at rest is a vertical line; a photon, traveling 
at the speed of light, is a 45̊ line; a rocket going at 
some intermediate speed follows a line of slope 
c/v=1/β —Minkowski diagrams.

 The trajectory of a particle on a Minkowski diagram is called a world line.

 Because no material object can travel faster than light, 
your world line can never have a slope less than 1. 
Accordingly, your motion is restricted to the 
wedge-shaped region bounded by the two 45̊ lines.

 We call this your “future,” in the sense that it is 
the locus of all points accessible to you.

 the backward wedge represents your “past,” in the 
sense that it is the locus of all points from which you 
might have come.

 As for the rest, this is the generalized “present.” 
You can’t get there, and you didn’t come from there.



  

 There’s no way you can influence any event in the present; it’s a vast expanse 
of spacetime that is absolutely inaccessible to you.

 Because the boundaries are the trajectories of light rays, we call them the 
forward light cone and the backward light cone. Your future lies within your 
forward light cone, your past within your backward light cone.

 The slope of the line connecting 2 events on a space-time diagram tells you 
whether the displacement between them is timelike, spacelike, or lightlike.

 All points in the past & future are timelike to your present location, whereas 
points in the present are spacelike, and points on the light cone are lightlike.

 Time is not just another coordinate, as x, y, z in spacetime. It is 

utterly different from the others with its distinction of the “−” 
sign in the invariant interval. The minus sign imparts to 
spacetime a hyperbolic geometry instead of a circular one.

 Under rotations a point P in the xy plane describes a 

circle: the locus of all points a fixed distance                     
from the origin.

 Under Lorentz transformations, it is the interval
that is preserved, and the locus of all points with a fixed I is a 

hyperbola—or, a hyperboloid of revolution. 

I= x2
−c2 t2

r =√ x2
+ y2



  

 When the displacement is timelike, it’s a “hyperboloid of two sheets”; when the 

displacement is spacelike, it’s a “hyperboloid of one sheet.”

 When you perform a Lorentz transformation, the coordinates (x,t) of a given 
event will change to           , but these new coordinates will lie on the same 
hyperbola as (x,t).

 It is impossible to make a transformation from the upper sheet of the timelike 
hyperboloid to the lower sheet, or to a spacelike hyperboloid. 

 If the displacement 4-vector between 2 events is timelike, their ordering is 
absolute; if the interval is spacelike, their ordering depends on the inertial system 
from which they are observed.

( x̄ , t̄ )



  

 An event on the upper sheet of a timelike hyperboloid definitely occurred after 
(0,0), and one on the lower sheet certainly occurred before; it is the notion of 
causality, on which all physics is based.

 Causality is preserved if the 2 events are timelike or lightlike seperated.

 Conclusion: The displacement between causally related events is always 
timelike, and their temporal ordering is the same for all inertial observers.



  

 Each satellite carries accurate 
atomic clocks that keep proper time 
on a satellite to accuracy up to 10−13 
over a few weeks.

Global Positioning System (GPS)Global Positioning System (GPS)
 Measurement of code-phase arrival times from at 

least 4 satellites are used to estimate 4 quantities: 
position in 3 dimension (x, y, z) & GPS time T.

 A constellation of 24 satellites, each in a
12-hour orbit about the Earth in a total of 
6 orbital planes.



  

 A GPS satellite emits a signal encoded with its time of emission, te, and the 

location of the satellite. An observer who receives the signal at a time tr that is an 

interval Δt= tr - te later knows that he or she is located somewhere on a sphere of 

radius cΔt centered on the satellite. Signals from 2 satellites narrow the location 
down to the intersection of 2 spheres.

 With 4 satellites, the observer’s position in spacetime can be fixed.



  

ct P=
c t B+ xB+ c t A− x A

2

xP=
c t B+ x B−c t A+ x A

2

 In 1+1 spacetime, the 
signals from 2 satellites 
are sufficient to locate a 
point P in spacetime 
where they are received 
simultaneously:

 In a 4d spacetime, a 
spacetime point can be 
similarly located with 
the signals from 4 satellites.

Corrections due to the relativistic effectsCorrections due to the relativistic effects
 Proper time on the satellite clocks has to be corrected to give the time of the 

inertial frame on the Earth for 2 reasons:

    (1) time dilation of special relativity; (SR)

    (2) the effects of the Earth's gravitational field. (GR)



  

d τ s

d τ E

≈1+

G M E

RE

−
G M E

Rs

c2 ⇒ ( fractional correction
in rate for the

gravitational potential
)≈ G M E

Rs c2 ≈1.6×10−10

V s
2

Rs

=
G M E

Rs
2

Rs≈2.7×104 km≈4.2 RE=4.2×6.4×103 km

⇒ V s≈3.9 km / s ⇒
V s

c
≈1.3×10−5

d τ

d t
=√1−

V s
2

c2 ⇒ ( fractional  correction  in
rate  for  time  dilation

)≈ 1
2

V s
2

c2 ≈0.84×10−10

 Suppose the radius of the orbit is Rs, then the satellite's speed Vs is

                                    where

 The gravitational correction is bigger than the correction for time dilation.

 The GPS is a practical application of both SR & GR.

 Further corrections: rotating frame of the Earth, the relativistic Doppler effect, 
the relativity simultaneity, the Earth's rotation, the asphericity of the Earth's 
gravitational potential, the time delays from the index of refraction of the Earth's 
ionosphere, satellite clock errors, etc. 



  

U≡
d ℓ
d τ

⇒ U=
d t
d τ

d ℓ
d t

= γu u ⇐ γ u=
1

√1−u2
/ c2

Relativistic Mechanics
Proper Time and Proper VelocityProper Time and Proper Velocity
 As you progress along your world line, your watch runs slow; while the clock on 

the wall ticks off an interval d t, your watch only advances d τ:                           

where u is your velocity. The time τ your watch registers is called proper time.

 τ is a more useful quantity than t, since proper time is invariant, whereas 
“ordinary” time depends on the particular reference frame you have in mind.

 The ordinary velocity:              , d t is measured by an arbitrary observer.

 The proper velocity:

 From a theoretical standpoint, proper velocity has an advantage over ordinary 
velocity: it transforms simply, when you go from one inertial system to another:

 When you go from system S to system    , moving
           at speed v along the common       axis:

 U μ is called the proper velocity 4-vector, 

or the 4-velocity;

U μ
≡

d xμ

d τ
⇐ U 0

=
d x0

d τ
=c

d t
d τ

=γ u c ⇐ d τ  is invariant

U⃗ 2
≡U μ U μ

=−c2
⇐ U⃗ 2

=− γu
2 c2

+γ u
2 u2

Ū μ
=Λ

μ

ν U ν
⇒

Ū 0
=γ v (U

0
−β U 1

)

Ū 1
= γ v (U

1
−β U 0

)

Ū 2
=U 2

Ū 3
=U 3

S̄
x x̄

u=
d ℓ
d t

d τ =√1−u2
/ c2 d t



  

U⃗ =(U 0 , U 1 , U 2 , U 3
)=(γ u c , γ u u x , γu uy , γ u u z

)=(γ u c , γ u u )

Λ
μ

ν (v )=[
γ −γ β 0 0

− γ β γ 0 0
0 0 1 0
0 0 0 1

] ⇐

v=(v , 0 , 0)

β=
v
c

, β v=β=|β| , γ v=γ=
1

√1−β
2

⃗̄U =(Ū 0 , Ū 1 , Ū 2 , Ū 3
)=(γ ū c , γ ū ū x , γ ū ūy , γ ū ū z

)=(γ ū c , γ ū ū )

Ū μ
=Λ

μ
ν U ν

⇒

Ū 0
=γ (U 0

−β U 1
)=γ γu (c−β ux

)= γ γ u (1−β βu
x
) c ⇒ γ ū c

Ū 1
=γ (U 1

−β U 0
)= γ γ u (u

x
−β c)=γ γ u (u

x
−v) ⇒ γ ū ūx

Ū 2
=U 2

= γu u y
⇒ γ ū ūy

Ū 3
=U 3

=γ u u z
⇒ γ ū ūz

where βu=
u
c

, βu=|βu| , γ u=
1

√1−βu
2

, β ū=
ū
c

, β ū=|β ū| , γ ū=
1

√1−β ū
2

⇒ γ ū=γ γ u (1−β βu
x
) ⇒ ūx

=
γ γ u (u

x
−v)

γ ū
=

u x
−v

1−β βu
x

⇒ ū y
=

γ u u y

γ ū
=

u y

γ (1−β βu
x
)

, ūz
=

γ u u z

γ ū
=

uz

γ (1−β βu
x
)



  

 By contrast, the transformation rule for ordinary velocities is cumbersome,

 The reason for the added complexity is that it needs to transform both d ℓ & d t, 
whereas for proper velocity, d τ is invariant, the ratio inherits the transformation 
rule of the numerator alone.

ū x
=

d x̄
d t̄

=
u x
− v

1−β βu
x

ū y
=

d ȳ
d t̄

=
u y

γ (1−β βu
x
)

ūz
=

d z̄
d t̄

=
uz

γ (1−β βu
x
)

⇐ β v≡β=
v
c

, γ v=γ =
1

√1−β
2

, βu≡
u
c



  

Relativistic Energy and MomentumRelativistic Energy and Momentum
 Momentum is mass times velocity. In relativity, we should use proper velocity 

instead of ordinary velocity, for the law of conservation of momentum would be 
inconsistent with the principle of relativity if we define momentum as m u,

 p μ is called the energy-momentum 4-vector or the momentum 4-vector.

 The relativistic energy is nonzero even when the object is stationary—rest 
energy. The remainder, which is attributable to the motion, is kinetic energy.  
And the 2nd term reproduces the classical formula.

 The experimental fact: In every closed system, the total relativistic energy 
and momentum are conserved.

 Relativistic mass

 Note the distinction between an invariant quantity (same value in all inertial 
systems) and a conserved quantity (same value before and after some process).

E =γ u m c2
=

m c2

√1−βu
2
= m c2

+
1
2

m u2
+

3
8

m u4

c2 +⋯ ⇒ K E=(γ u−1) m c2

rest energy kinetic energy K E

mγ≡ γ m

p≡m U= γu m u relativistic momentum ⇒ pμ
≡m U μ   4-vector ⇒ p⃗=m U⃗

⇒ p0
=m U 0

=γ u m c ⇒ E≡ p0 c=γ u m c2 relativistic energy ⇒ p0
=

E
c



  

 Mass is invariant but not conserved; energy is conserved but not invariant; 
electric charge is both conserved and invariant; velocity is neither conserved nor 
invariant.
 

 This result is extremely useful, for it enables you to calculate E (knowing p), or 
p (knowing E), without ever having to determine the velocity.

 Simple derivation for E = mγ c 2 = γ m c 2:

Selected problems: 6, 16, 25, 35, 45, 51, 54, 59, 64, 68

 m2 U⃗ 2
=−m2 c2

p⃗2
= pμ pμ

=−( p0
)
2
+ p⋅p=−m2 c2

⇒ E2
− p2 c2

=m2 c4
(@) ⇐ p≡|p|

d E ⇐ d W =F⋅d x=
d p
d t

⋅u d t =u⋅d p=u⋅d (γ u m u )=γ u m u⋅d u+m u2 d γu

=m ( γ u u⋅d u +γ u
3 u2

c2 u⋅d u ) ⇐ d γ u=d
1

√1−u2
/ c2

=
γ u

3

c2 u⋅d u

=γ u m (1+ γu
2

βu
2
) u⋅d u =m γ u

3 u⋅d u=m c2 d γ u=d (γ u m c2
)

⇒ E= γu m c2
+ constant ⇒ Δ E=Δ m c2

⇐ nuclear experiment



  

Relativistic KinematicsRelativistic Kinematics
Example 12.7: 2 lumps of clay, 
each of (rest) mass m, collide 

headon at 3c/5. They stick together. What is the mass (M) of the composite lump?

 Conservation of momentum is trivial: 0=0.

 The energy of each lump prior to the collision is                                   . The 

energy of the composite lump after the collision is Mc2. So conservation of energy

 Mass was not conserved in this collision; kinetic energy was converted into rest 
energy, so the mass increased. In fact, kinetic energy is converted into thermal 
(internal) energy. 

 These internal energies are represented in the mass of the composite object: a 
hot potato is heavier than a cold potato, and a compressed spring is heavier than 
a relaxed spring (due to the potential energy).

 Internal energy (U) contributes an amount U/c2 to the mass. The effect can be 
very striking in the realm of elementary particles.

5
4

m c2
+

5
4

m c2
=M c2

⇒ M =
5
2

m>2 m

m c2

√1−(3 /5)2
=

5
4

m c2



  

 The neutral π meson (2.4×10−28kg) decays into an electron and a positron (each 
9.11×10 −31kg), the rest energy is converted almost entirely into kinetic energy—
less than 1% of the original mass remains.

 In classical mechanics, there’s no such thing as a massless (m=0) particle—its 
kinetic energy and its momentum would be 0, you couldn’t apply a force to it, and 
hence (by Newton’s 3rd law) it couldn’t exert a force on anything else.

 In relativity, a massless particle could carry energy and momentum, provided it 
always travels at the speed of light, as photon:

 Relativity cannot tell what E & p of a photon are, but quantum mechanics can: 

According to the Planck formula, E=h ν, where h is Planck’s constant and ν is 
the frequency. So a blue photon is more energetic than a red one!

Example 12.8: A pion at rest decays into a muon and a neutrino. Find the energy 
of the outgoing muon, in terms of the 2 masses, mπ & mμ (assume mν=0).

E before=mπ c2 , p before=0
E after =E μ+E ν , pafter =pμ+p ν

⇒
p ν=−pμ

E μ+Eν =mπ c2

pν c=E ν

pμ c=√Eμ

2
−mμ

2 c4
⇒

Eμ+√E μ
2
−mμ

2 c4
=mπ c2

⇒ E μ=
mπ

2
+mμ

2

2 mπ

c2

(@) ⇒ E= p c



  

 In a classical collision, momentum and mass are always conserved, whereas 
kinetic energy, in general, is not. In the relativistic case, momentum and total 
energy are always conserved, but mass and kinetic energy, in general, are not.

 We call the process elastic if kinetic energy is conserved. In such a case the 
rest energy (the total − the kinetic) is also conserved, and so is the mass.

 In fact, it means that the same particles come out as went in.

Compton scattering
 A photon of energy E0 

bounces off an electron, 
initially at rest. Find the energy 
E of the outgoing photon, as a 
function of the scattering angle θ.

 vertical:      pe sin ϕ= p p sin θ ⇒ sin ϕ=
E

pe c
sin θ ⇐ p p=

E
c

horizontal: pp 0=
E0

c
= p p cos θ+ pe cos ϕ=

E
c

cos θ+ pe √1−( E
pe c

sin θ )2

⇒ pe
2 c2

=(E0−E cos θ )
2
+E2 sin2

θ=E0
2
−2 E 0 E cos θ +E2



  

 The quantity         is called the Compton wavelength of the electron.

energy: E0+m c2
=E +Ee=E +√m2 c4

+ pe
2 c2

=E +√m2 c4
+E 0

2
−2 E0 E cos θ +E2

⇒ (E0+m c2
−E )

2
=m2 c4

+E 0
2
−2 E0 E cos θ+E2

⇒ E0
2
+m2 c4

+E2
+2 m c2 E0−2 E (m c2

+E 0)=m2 c4
+E0

2
−2 E 0 E cos θ+E 2

⇒ 2 E (E0−E0 cos θ +m c2
)=2 m c2 E 0  E =h ν =

h c
λ

⇒ E=
m c2 E 0

E0 (1−cos θ)+m c2 =
1

1−cos θ

m c2
+

1
E 0

⇒
h c
λ

=
1

1−cos θ

m c2
+

λ0

h c

⇒ λ=λ0+
h

m c
(1−cos θ )

⇒ Δ λ=λC (1−cos θ )

h
m c



  

Relativistic DynamicsRelativistic Dynamics
 Newton’s 1st law is built into the principle of relativity. His 2nd law,             

retains its validity in relativistic mechanics, provided we use the relativistic 
momentum.

Example 12.10: Motion under a constant force. A particle of mass m is subject
to a const force F. If it starts from rest at the origin at t=0, find its position x(t).

 The relativistic denominator ensures that u never exceeds c; as t  ∞, u  c.

 Instead of the classical parabola,                       , the graph is a hyperbola—  

hyperbolic motion, eg, a charged particle placed in a uniform electric field.

x (t )=
F
m
∫

0

t t d t

√1+(F t /m c)2
=

m c2

F √1+( F t

m c
)2

|
0

t

=
m c2

F [√1+( F t
m c
)2

−1] ⇒ ( F x

m c2 +1 )2

−( F t
m c
)2

=1

F=
d p
d t

d p
d t

=F ⇒ p=F t + constant=F t ⇐ p (t=0)=0

⇒ p=
m u

√1−u2
/ c2

=F t ⇒ u=
F t /m

√1+(F t /m c)2

x (t )=
F

2 m
t2



  

 Work is the line integral of the force:

 The work-energy theorem holds relativistically:

 Newton’s 3rd law does not, in general, extend to the relativistic domain.

 If 2 objects are separated in space, the 3rd law is incompatible with the 
relativity of simultaneity.

 If the force of A on B at some instant t is F(t), and the force of B on A at the 

same instant is −F(t); then the 3rd law applies in this reference frame.

W ≡∫ d p
d t

⋅d ℓ=∫ d p
d t

⋅
d ℓ
d t

d t=∫ d p
d t

⋅u d t

d p
d t

⋅u =u⋅ d
d t

(γ u m u )=γ u
3 m u⋅

d u
d t

=
d

d t
(γ u m c2

)=
d E
d t

⇐ γu=
1

√1−u2
/ c2

⇒ W =∫ d E
d t

d t =Efinal−E initial

W ≡∫ F⋅d ℓ



  

 But a moving observer will report that these equal and opposite forces 
occurred at different times; in his system, therefore, the 3rd law is violated.

 Only in the case of contact interactions, where the 2 forces are applied at the 
same physical point can the 3rd law be retained.

 Because F is the derivative of momentum with respect to ordinary time, it 
shares the ugly behavior of (ordinary) velocity, when you go from one inertial 
system to another:

 If the particle is (instantaneously) at rest in S, u=0, then                                  .

The component of F ‖ the motion of     is unchanged, whereas ⊥ components are 
divided by γ.

F̄ x
=

d p̄x

d t̄
=

γ (d p x
−β d p0

)

γ ( d t − β

c
d x )

=

d px

d t
−β

d p0

d t

1− β

c
d x
d t

=

F x
−

β

c
d E
d t

1−β
u x

c

=
F x

−β βu⋅F
1−β βu

x

F̄ y , z
=

d p̄ y , z

d t̄
=

d py , z

γ ( d t− β

c
d x )

=

d p y , z

d t

γ ( 1− β

c
d x
d t
)
=

F y , z

γ (1−β βu
x
)

⇐

βu≡
u
c

βu
x
=

u x

c
F̄=

F

γ
, F̄∥=F∥

S̄



  

 Avoid the bad transformation behavior of F by using a “proper” force, similar to 

proper velocity, the derivative of momentum with respect to proper time:

 Relativistic dynamics can be formulated in terms of the ordinary force or in 
terms of the Minkowski force. The latter is neater, but since we are interested in 
the particle’s trajectory as a function of ordinary time, the former is more useful.

 The Lorentz force is an ordinary force—explain why this is so later and show 
how to construct the EM Minkowski force.

Example 12.11: The typical trajectory of a charged particle in a 
uniform magnetic field is cyclotron motion. The magnetic 
force pointing toward the center, 

 In special relativity the 

centripetal force            , 

as in classical mechanics.

K μ
≡

d pμ

d τ
 Minkowski force ⇐ 4-vector ⇒ K⃗ =

d p⃗
d τ

⇒ K=
d t
d τ

d p
d t

=
F

√1−βu
2
=γ u F , K 0

=
d p0

d τ
=

1
c

d E
d τ

∝ the proper power
to the particle

F =Q u B

≠
m u2

R



  

 In this form, the relativistic cyclotron formula is identical to the nonrelativistic 
one—the only difference is that p is now the relativistic momentum.

 In classical mechanics, the total momentum P of a collection of interacting 

particles can be expressed as the total mass M times the velocity of the center-of-

mass:

 In relativity

 P now includes all forms of momentum, and E all forms of energy—not just 
mechanical, but also whatever may be stored in the fields.

 The momentum stored in the fields of a coaxial cable is not 0 (Ex 8.3), even 
though the cable itself is at rest. However, energy is being transported, from the 
battery to the resistor, and hence the center-of-energy is in motion. 

center-of-mass R m=
1
M ∑ mi r i  center-of-energy R e=

1
E ∑

E i r i

and M 
E
c2

⇒ P=
E
c2

d R e

d t

P=M
d R m

d t

d p= p d θ ⇒ F =
d p
d t

= p
d θ

d t
= p

u
R

(classically p=m u ⇒ F=
m u2

R
)

⇒ Q u B= p
u
R

⇒ p=Q B R



  

 If the battery is at z=0, so the resistor is at z=ℓ, then                                  , 

where ER: energy in the resistor, E0: rest of the energy, R0: center-of-energy of E0, 

 Imagine a shoe-box with a marble inside. The box is at rest, but the marble rolls 
around. Although the box is stationary, there is the momentum of the marble.

 In the case of the coaxial cable, no actual object is in motion, but energy flows 

around. In relativity all forms of energy in motion, not just rest energy (mass), 
constitute momentum.

 The EM field transports energy, and therefore contributes momentum, even 
though the fields themselves are perfectly static!

Example 12.13: For a magnetic dipole m with a rectangular loop of wire of a 

steady current I, let the current as a stream of noninteracting positive charges 

moving within the wire. When a uniform electric field E is applied, the charges 
accelerate/decelerate in the left/right segment. Find the total momentum of all 
the charges in the loop.

 The momenta of the left and right segments cancel, so we need only consider the 
top and the bottom. 

⇒
d R e

d t
=

d E R /d t
E

ℓ ẑ= I V ℓ
E

ẑ ⇒ P =
E
c2

d R e

d t
=

I V ℓ
c2

ẑ momentum in the
fields, as in Ex 8.3

R e=
E 0 R 0+E R ℓ ẑ

E



  

 N+/N− charges in the top/bottom segment 

with speed u+/u−(slower) to the right/left.

 The current is the same in all 4 segments

 Classically,

 Relativistically,

 The gain in energy (γ M c 2), as a particle goes up the left segment, is equal to 

the work done by the electric force, Q E w

 Thus a magnetic dipole at rest in an electric field carries linear momentum, 
even though it is not moving! 

 This hidden momentum is strictly relativistic, and purely mechanical; it 
precisely cancels the electromagnetic momentum stored in the fields ∝ E 

×
 B.

⇒ γ+−γ
−
=

Q E w
M c2

⇒ p=
I ℓ E w

c2
⇒ p=

m×E
c2

⇐ m= I A= I ℓ w

I=λ u=
Q N +

ℓ
u+=

Q N−

ℓ
u− ⇒ N± u±=

I ℓ
Q

⇒ pclass=M N + u+−M N
−

u
−
=M

I ℓ
Q

−M
I ℓ
Q

=0

p=γ M u ⇒ p=γ+ M N + u+−γ
−

M N
−

u
−
=

M I ℓ
Q

(γ+− γ
−
)>0

p=M u



  

Relativistic Electrodynamics
Magnetism as a Relativistic PhenomenonMagnetism as a Relativistic Phenomenon
 Classical electrodynamics is already consistent with special relativity. Maxwell’s 

eqns and the Lorentz force law can be applied legitimately in any inertial system.

 What one observer interprets as an electrical process another may regard as 
magnetic, but the actual particle motions they predict will be identical.

 For a complete and consistent formulation of relativistic electrodynamics, we 
will not change the rules of electrodynamics—rather, we will express these rules 
in a notation that exposes and illuminates their relativistic character. 

 Show why there had to be such a thing as magnetism, given electrostatics and 
relativity, and how to calculate the magnetic force between a current-carrying 
wire and a moving charge without ever invoking the laws of magnetism.

 Let a string of positive 
charges moves along to the right 
at speed v. Assume the charges are 
close enough together to treat them 
as a continuous line charge λ. 
Superimposed on this positive string is 
a negative one, −λ proceeding to the 
left at the same speed v ⇒ I =2 λ v



  

 A point charge q a distance s 
away travels to the right at speed 
u≤v. Because the 2 line charges 

cancel, there is no electrical force 
on q in this system S.

 Examine the same situation from    , moving to the right with speed u. In   , q is

at rest. By the Einstein velocity addition rule,

 v−>v+ ⇒ the Lorentz contraction of the spacing between “−” charges is more 

severe than between “+” charges; so in   , the wire carries a net negative charge!    
 

 The net line charge in   : 

S̄

S̄

λ0 : the charge density of the positive
line in its own rest system

⇒ λ=γ λ0 ⇐ γ=
1

√1−β
2

S̄

λ0=
Q
ℓ0

⇒ λ=
Q
ℓ
=γ

Q
ℓ0
=γ λ0

λ±=± γ± λ0 ⇐ γ±=
1

√1−β±

2
=

1

√1−(β∓βu)
2
(1∓β βu)

−2

=
1∓β βu

√(1∓β βu)
2
−(β∓βu)

2
=

1∓β βu

√(1−β
2
) (1−βu

2
)
= γ γ u (1∓β βu)

S̄

v±=
v∓u

1∓β βu

⇒ β±=
β∓βu

1∓β βu

λtot =λ++λ−=λ0 (γ+− γ− )=−2 β γu βu λ



  

 Conclusion: As a result of unequal Lorentz contraction of the “+” and “−” lines, 
a current-carrying wire that is electrically neutral in one inertial system will be 
charged in another.

 But if there’s a force on q in   , there must be one in S; we can calculate it by 
using the transformation rules for forces

 The charge is attracted toward the wire by a force that is purely electrical in   , 
but distinctly nonelectrical in S (where the wire is neutral).

 Taken together electrostatics & relativity imply the existence of magnetic force.

the force is what we would have obtained by using the Lorentz force law in S.

F =−
λ q β βu

π ϵ0 s
=−q u

μ0 I

2 π s
=−q u B ⇐ c2

=
1

ϵ0 μ0
, I =2 λ v

S̄

Ē =
λtot

2 π ϵ0 s
for a linear charge

distribution
⇒ F̄=q Ē=−

λ β

π ϵ0 s
q γ u βu   in S̄

S̄

q  at rest in S̄
F̄ ⊥ u

⇒ F =
F̄
γ u

=−
λ q β βu

π ϵ0 s
  in S



  

How the Fields TransformHow the Fields Transform
 Assumption: Charge is invariant. The charge of a particle is a fixed number, 

independent of how fast it happens to be moving.

 Also assume that the transformation rules are the same no matter how the  
fields were produced—electric fields associated with changing magnetic fields 
transform the same way as those set up by stationary charges.

 In a field theory, the fields at a given point tell you all there is to know about 

that point; you do not have to append extra information regarding their source.

 the capacitor is at rest in S0 and carries surface charges ±σ0 ⇒ E0=
σ0

ϵ0
ŷ



  

 From system S moving to the right at speed v0, the 
plates are moving to the left, but the field still takes 

the form               , and the surface charge σ is different,

besides the other differences. And              .  

 The total charge on each plate is invariant, but the length is Lorentz-contracted 

by a factor of                      , so the charge/area is increased by a factor of γ0:

                                             for components of E ⊥ the direction of motion of S.

 For ‖ components, consider the capacitor lined up with the yz 
plane, then the plate separation is Lorentz-contracted,
whereas σ are the same in both frames  

Example 12.14: Electric field of a point charge in 
uniform motion. A point charge q is at rest at the origin in 
system S0. Find the electric field of this same charge in 

system S, moving to the right at speed v0 relative to S0.

β0=
v0

c

⇒ E∥
=E0

∥

E0=
q r̂0

4 π ϵ0 r0
2
⇒ [

E0 x

E0 y

E0 z
]= 1

4 π ϵ0

q
(x0

2
+ y0

2
+ z0

2
)
3 /2 [

x0

y0

z0
]  in S0

σ=γ0 σ0 ⇒ E
=γ0 E0



E=
σ
ϵ0

ŷ

γ0=
1

√1−β0
2



  

x0=γ0 (x+ v0 t)= γ0 Rx , y0= y= Ry

z0= z=R z

⇒ E=
1

4 π ϵ0

γ0 q R
(γ0

2 R2 cos2
θ+ R2 sin2

θ )
3 /2

=
1

4 π ϵ0

q (1−β0
2
)

(1−β0
2 sin2

θ)
3 /2

R̂
R2

 From the above transformation

 These are still expressed in the S0 coordinates (x0, y0, z0) of the field point (P); 

we would prefer to write them in the S coordinates of P.

 This is the field of a charge in uniform motion; we got the same result in Ch 10 
using the retarded potentials.

 This derivation is more efficient, and sheds some light on the fact that the field 
points away from the instantaneous (instead of retarded) position of the charge:

   Ex gets a factor of γ0 from the Lorentz transformation of the coordinates;

   Ey & Ez pick up theirs from the transformation of the field.

 It’s the balancing of these 2 γ0’s that leaves E parallel to R. 

[
E x

E y

E z
]=[

E0 x

γ0 E0 y

γ0 E0 z
]= 1

4 π ϵ0

q
(x0

2
+ y0

2
+ z0

2
)
3 /2 [

x0

γ0 y0

γ0 z0
]



  

 The above eqns are not the general transformation laws for no magnetic field.

 In the same case, In addition to the electric field             , there is a magnetic 

field due to the surface currents                        .

 By the right-hand rule, the magnetic field                           by Ampère’s law.

 In a 3rd system,    , traveling to the right with 
speed v relative to S, the fields would be

B=−μ0 σ v0 ẑ

Ē y=
σ̄
ϵ0

, B̄ z=−μ0 σ̄ v̄ ⇐ σ̄= γ̄ σ0

where v̄=
v+ v0

1+β β0

, γ̄=
1

√1−β v̄
2

⇒ Ē y=
γ̄
γ0

σ
ϵ0

, B̄ z=−
γ̄
γ0

μ0 σ v̄

γ̄
γ0

=
√1−β0

2

√1−β v̄
2
=

1+β β0

√1−β
2
=γ (1+β β0) ⇐ β0=

v0

c

⇒

Ē y= γ (1+β β0)
σ
ϵ0

= γ ( E y−
β

c ϵ0 μ0

B z )= γ (E y−c β B z)

B̄ z=− γ (1+β β0)μ0 σ
v+ v0

1+β β0

= γ (B z−μ0 ϵ0 v E y) = γ ( Bz−
β

c
E y )

K±=∓σ v0 x̂

S̄

E y=
σ
ϵ0



  

Example 5.8: Find the magnetic field of an 
infinite uniform surface current                , 
flowing over the x z plane.

 B can only have a z component, and it points 

to the left above the plane and to the right below it.

 Come back to the current problem:

B–

>

−y

z

⇒

B

≷
=∓

μ0

2
σ v0 ẑ   for y ≷ 0

B–

≷
=±

μ0

2
σ v0 ẑ   for y ≷ d

⇒ B= [ −μ0 σ v0 ẑ   for 0< y<d
0 elsewhere

∮ B⋅d ℓ=2 B ℓ=μ0 I enc=μ0 K ℓ ⇐ Ampere's law

⇒ B=
μ0

2
K ⇒ B≷

=±
μ0

2
K ẑ   for y ≷ 0

K±=∓σ v0 x̂

K=K x̂

y

σ –

B–

<

B

>

B

<
σ

d



  

 This tells us how Ey & Bz transform—to do Ez & By, we simply 

align the same capacitor parallel to the xy plane instead 

of the xz plane

 As for the x components, we have seen

 In this case there is no accompanying magnetic 
field, we cannot deduce Bx’s transformation rule.

 Imagine a long solenoid ‖ the x axis and   at rest in S.

 The component of B ‖ the motion 
is unchanged.

n̄=γ n> n ⇐ lenght contracts

Ī =
I
γ
< I ⇐ time dilates

 in S̄

B̄ x=μ0 n̄ Ī =μ0 n I =B x

Ē x=E x , Ē y=γ ( E y−β c B z) , Ē z=γ ( E z+β c By)

B̄x=Bx , c B̄ y=γ (c By+β E z) , c B̄ z=γ (c B z−β E y)
(!)

Ē x=E x

E z=
σ
ϵ0

By=μ0 σ v0

 in S ⇒
Ē z=γ ( E z+β c By)

c B̄y=γ (c By+ β E z)



  

 2 special cases

   1. If B=0 in S, then

   2. If E=0 in S, then

 If either E or B is 0 (at a particular point) in one system, then in any other 
system the fields (at that point) are very simply related

Example 12.15: Magnetic field of a point charge in uniform motion. Find 
the magnetic field of a point charge q moving at constant velocity v.

 In the particle’s rest frame B=0, so in a system moving with velocity −v

exactly what you get by naive application of the Biot-Savart law to a point charge

Ē =− γ β (c B z ŷ−c B y ẑ )=−β (c B̄ z ŷ−c B̄y ẑ )  in S̄

⇒ Ē=β×(c B̄) ⇐ v=v x̂ , β=
v
c

B=
β

c
×E=

μ0

4 π

q v (1−β
2
) sin θ

[1−β
2 sin2

θ ]
3 /2

ϕ̂

R2
  using Ex 12.14

≈
μ0

4 π

q v× R̂
R2

⇐ v2
≪ c2

c B̄=γ β (E z ŷ−E y ẑ )=β ( Ē z ŷ− Ē y ẑ )  in S̄

⇒ c B̄=−β× Ē ⇐ v=v x̂ , β=
v
c



  

The Field TensorThe Field Tensor
 E & B don’t transform like the spatial parts of the 2 4-vectors—the components 

of E & B are stirred together when you go from one inertial system to another.

 An object with 6 components and transforming according to (!) is an 
antisymmetric, second-rank tensor.

 A 4-vector transforms by the rule

 A (2nd-rank) tensor is an object with 2 indices, which transforms with 2 factors 
of Λ (one for each index):

 The 16 elements need not all be different. A symmetric tensor has the property

āμ
=Λ

μ

ν aν
⇐ Λ= [

γ −γ β 0 0
−γ β γ 0 0

0 0 1 0
0 0 0 1 ]

t μ ν
= t ν μ symmetric tensor, having 10 components

⇒ t01
= t10 , t02

= t20 , t03
= t30 , t12

= t21 , t13
= t31 , t23

= t32

t̄ μ ν
=Λ

μ

λ Λ
ν

σ t λ σ
⇐ t μ ν

=[
t 00 t01 t02 t03

t 10 t11 t12 t13

t 20 t21 t22 t23

t 30 t31 t32 t33 ] 4×4 =16  components



  

 An antisymmetric tensor obeys

 Check the transformation rule for an antisymmetric tensor (6 components)

precisely the rules we obtained on physical grounds 
for the EM fields.

 we can construct 

the field tensor F by 

direct comparison:

t̄ 01
=Λ

0
λ Λ

1
σ tλ σ

=Λ
0

0 Λ
1

0 t00
+Λ

0
0 Λ

1
1 t01

+Λ
0

1 Λ
1

0 t10
+Λ

0
1 Λ

1
1 t11

=(Λ
0

0 Λ
1

1−Λ
0

1 Λ
1

0) t01
⇐ t00

= t11
=0 , t 01

=− t 10

=(γ
2
−γ

2
β

2
) t01

= t01

⇒
t̄ 01

= t 01 , t̄ 02
=γ (t02

−β t12
) , t̄ 03

=γ (t03
+β t31

)

t̄ 23
= t23 , t̄ 31

= γ (t31
+β t03

) , t̄ 12
= γ (t12

−β t 02
)

⇒
t μ ν

=− t ν μ

⇒ t00
= t11

= t 22
= t33

=0
⇒ t μ ν

= [
0 t01 t02 t03

− t01 0 t12 t13

− t02
− t12 0 t23

− t03
− t13

− t23 0
]  only 6 components

F01
≡

E x

c
, F23

≡Bx

F02
≡

E y

c
, F31

≡By

F03
≡

E z

c
, F12

≡B z

⇒ Fμ ν
=|

0
E x

c
E y

c
E z

c

−
E x

c
0 B z −By

−
E y

c
−B z 0 Bx

−
E z

c
By −Bx 0

|



  

 Swapping the roles of E & B and doing the same thing leads to dual tensor ℱμν

 ℱ μν can be obtained directly from F μν by the substitution                                  .

 ∂ν ℱ
μ ν
=

1
2!

ϵ
μ ν λ σ

∂ν Fλ σ ⇐ Fλ σ=ηλ μ ησ ν Fμ ν , ∂μ≡
∂

∂ xμ

=
1

3!2!
ϵ

μ ν λ σ
(∂ν Fλ σ+∂λ Fσ ν+∂σ Fν λ−∂ν Fσ λ−∂σ Fλ ν−∂λ Fν σ)

=
1
3!

ϵ
μ ν λ σ

(∂ν Fλ σ +∂λ Fσ ν+∂σ Fν λ)

∂ν ℱ
μ ν
=0 ⇒ ∂ν Fλ σ+∂λ Fσ ν +∂σ Fν λ=0 ⇒ Problem 12.54

E
c
 B , B −

E
c

ℱ
μ ν
=

1
2!

ϵ
μ ν

λ σ Fλ σ
=|

0 Bx By B z

−Bx 0 −
E z

c

E y

c

−By

E z

c
0 −

E x

c

−B z −
E y

c
E x

c
0

| ⇐

ϵ
0 1 2 3

=1 , ϵ0 1 2 3=−1 ,

ϵμ ν λ σ=ημ α ην β ηλ γ ησ δ ϵ
α β γ δ

⇒ ϵμ ν λ σ=− ϵ
μ ν λ σ



  

Electrodynamics in Tensor NotationElectrodynamics in Tensor Notation
 Determine how the sources of the fields, ρ and J, transform.

 The charge density is           , the current density is

 Express these quantities in terms of the proper charge 
density ρ0, the density in the rest system of the charge:

 Evidently charge density and current density go together to make a 4-vector:

 The continuity eqn                         expressing the local conservation of charge, 

takes on a nice compact form when written in terms of J μ

      is the 4d divergence of J μ, so the continuity equation states that the 

current density 4-vector is divergenceless.

J=ρ u

J⃗=ρ0 U⃗ ⇒ J μ
=ρ0 U μ

⇒ J μ
=(c ρ , J x , J y , J z) current density 4-vector

∇⋅J =
∂ J x

∂ x
+
∂ J y

∂ y
+
∂ J z

∂ z
=∑

i=1

3
∂ J i

∂ x i ,
∂ ρ

∂ t
=

1
c
∂ J 0

∂ t
=

∂ J 0

∂ x0 ⇒ ∂μ J μ
=

∂ J μ

∂ xμ =0

ρ0=
Q
V 0

+ V =
V 0

γ u

Lorentz
contraction

⇒ ρ= γu ρ0 , J=γ u ρ0 u ⇐ γu≡
1

√1−βu
2

ρ=
Q
V

∂ J μ

∂ xμ

∇⋅J =−
∂ ρ

∂ t

βu≡
u
c

, βu=
u
c



  

 Maxwell’s equations can be written as                                             , 4 equations 
each.

 μ=0:

 μ=1:

 μ=0:

 μ=1:
∂ ℱ

1 ν

∂ xν =
∂ ℱ

10

∂ x0
+
∂ ℱ

11

∂ x1
+
∂ ℱ

12

∂ x2
+
∂ ℱ

13

∂ x3
=−

1
c
∂ Bx

∂ t
−

1
c
∂ E z

∂ y
+

1
c
∂ E y

∂ z

=−
1
c
∂ B x

∂ t
−
(∇×E )x

c
=0  combined

with μ=2, 3
⇒ ∇×E=−

∂ B
∂ t

 Faraday’s law

∂ Fμ ν

∂ xν =μ0 J μ , ∂ ℱ
μ ν

∂ xν =0 ,

∂ ℱ
0 ν

∂ xν =
∂ ℱ

00

∂ x0
+
∂ ℱ

01

∂ x1
+
∂ ℱ

02

∂ x2
+
∂ ℱ

03

∂ x3
=
∂ Bx

∂ x
+
∂ By

∂ y
+
∂ Bz

∂ z
=∇⋅B=0

∂ F0 ν

∂ xν =
∂ F00

∂ x0
+
∂ F01

∂ x1
+
∂ F02

∂ x2
+
∂ F03

∂ x3
=

1
c
( ∂ E x

∂ x
+
∂ E y

∂ y
+
∂ E z

∂ z
)

=
1
c
∇⋅E=μ0 J 0

=μ0 c ρ ⇒ ∇⋅E=
ρ
ϵ0

  Gauss's law

∂ F1 ν

∂ xν =
∂ F10

∂ x0
+
∂ F11

∂ x1
+
∂ F12

∂ x2
+
∂ F13

∂ x3
=−

1
c2

∂ E x

∂ t
+
∂ Bz

∂ y
−
∂ By

∂ z

=−
1
c2

∂ E x

∂ t
+(∇×B )x=μ0 J 1

=μ0 J x   combined with μ=2, 3

⇒ ∇×B=μ0 J +μ0 ϵ0

∂ E
∂ t

  Ampère-Maxwell law



  

 In term of F μν and the proper velocity U μ, the Minkowski force on a charge q is

 If μ=1:

 Work out the μ=0 part yourself. 

K 1
=q U ν F1 ν

=q (−U 0 F10
+U 1 F11

+U 2 F12
+U 3 F13

)

=q( (−γ u c)
−E x

c
+ γ u u y Bz+ γ u uz (−B y))

=q γu (E + u×B)x   combined with μ=2,3

⇒ K=q γ u (E +u ×B)=q γ u [E +βu×(c B)] ⇒ F=q (E +u ×B)

K μ
=q U ν Fμ ν

⇒ K⃗ =q F⋅U⃗



  

Relativistic PotentialsRelativistic Potentials
 The electric and magnetic fields can be expressed in terms of a scalar potential 

Φ and a vector potential A:

 Φ and A together constitute a 4-vector:

 In terms of this 4-vector potential, the field tensor

 For μ=0, ν=1:

 For μ=1, ν=2:

 The potential formulation automatically takes care of the homogeneous 

Maxwell equation

F12
=

∂ A2

∂ x1

−
∂ A1

∂ x2

=
∂ Ay

∂ x
−
∂ Ax

∂ y
=(∇×A)z=B z

⇒ F23
=Bx , F31

=By

E=−∇ Φ−
∂ A
∂ t

, B=∇×A

Aμ
=( Φ

c
, Ax , Ay , Az )
Fμ ν

=
∂ Aν

∂ xμ

−
∂ Aμ

∂ xν

F01
=

∂ A1

∂ x0

−
∂ A0

∂ x1

=−
∂ Ax

∂ c t
−

1
c
∂ Φ
∂ x

=−
1
c
( ∂ A

∂ t
+∇ Φ)

x
=

E x

c

⇒ F02
=

E y

c
, F03

=
E z

c

∂ ℱ
μ ν

∂ xν =0 ⇐ ϵ
μ ν λ σ

∂ν ∂λ Aσ=0 ⇐ ∂ν ∂λ=∂λ ∂ν



  

 As for the inhomogeneous equation

 The potentials are not uniquely determined by the fields—you could add to A μ 

the gradient of any scalar function λ:                                     without changing Fμν

—the gauge invariance.

 The Lorenz gauge condition                             can be written as

 In the Lorenz gauge, (&) reduces to

 The equation combines our previous results into a single 4-vector equation—it 
represents the most elegant formulation of Maxwell’s equations.

∇⋅A=−
1
c2

∂ Φ
∂ t

∂ Aμ

∂ xμ =0

Aμ
 A μ

= Aμ
+

∂ λ

∂ xμ

□ Aμ
=−μ0 J μ

⇐ d’Alembertian □≡
∂

∂ xμ

∂

∂ xμ =∇
2
−

1
c2

∂
2

∂ t2

∂ Fμ ν

∂ xν =
∂

∂ xμ

∂ Aν

∂ xν −
∂

∂ xν

∂ Aμ

∂ xν =μ0 J μ
(&)
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