Chaptar 11 Radiation
Dipole Radiation

What is Radiation?
® When charges accelerate, their fields can transport

energy irreversibly out to infinity—a process we call Source
radiation.

® Assume the source is localized near the origin; we
would like to calculate the energy it is radiating at time #,.

® Imagine a sphere, out at radius r. The power passing through its surface is the
1
integral of the Poynting vector: P (r,t)= j[ S-da= ™ ]{ EXB-da
0

® Because EM “news” travels at the speed of light, this energy actually left the

r
source at the earlier time r,=¢ ——, so the power : r
0 ’ . . t)=lmP | r,t,+—

¢ radiated is fad( 0) ( 0" ¢ )

 — o0

® This is energy (per unit time) that is carried away and never comes back.

® The area of the sphere is 4 mr?, so the Poynting vector must decrease (at large

r) no faster than iz . If it went —;, then P would go 1 , and P_, would be 0.
r r r



® According to Coulomb’s law, electrostatic fields fall off like lz (or faster, if the
r

charge is 0), and the Biot-Savart law says that magnetostaric fields go like —; (or
r

1 . : : : :
faster), so § ~ — for static configurations. So statfic sources do not radiate.
r

® Jefimenko’s equations indicate that time-dependent fields include terms

(involving p and J ) that go like l ; these are the terms that are responsible for
r

EM radiation.

® The study of radiation involves picking out the parts of E & B that go like l at
r

large distances from the source, constructing from them the lz term in S,
r

integrating over a large spherical surface, and taking the limit as r—oo.
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Electric Dipole Radiation (Hertzian dipole) -
® 2 tiny metal spheres are separated by a distance d and 7 {+¢ r
connected by a fine wire; the charge on the upper sphere 0
is g(1), and the charge on the lower sphere is —¢(7). Let that I
we drive the charge back and forth through the wire, at an
angular frequency w: d
g(1)=gycoswi = Pl1)=pycoswiz = py=g,d
electric dipole X —q
1 Cos w f, cCoswt, _ N
N (I)(l',t>: (QO +_QO ) — tr+:t—L
4 7€, r, r_ B c

2
where 1, :\/rzirdcose+%

® To make this physical dipole into a perfect dipole, we want the separation
distance to be extremely small:

d
approximation 1: d<<r: to [ orderind: = r, =r ( 1F¥—cos 6 )

2r
I, r dcos6
= coSwt, ,=cosw | t—— |=cosw | t——=* 5
c c c
wlct—r) wdcosl _ . wlct—r) . wdcosb
= oS Ccos + sin sin

C 2 C 2c

<Y



@ In the perfect dipole limit we have, further,

C 2Tc 1 1 d
Approximation 2: d < — = d <K<\ & A= , —=—|1x—cos¥b
9, W Ir"i r 2 r
r, wlict—r)_wd . wlct—r)
= cosw | t—— ] =cos + cos 6 sin
c c 2c c
cos @ (1 wlct—r . wlect—r
= <I>(r,9,t):p0 — COS ( )—Esm ( ) < po=4q,d
4me,r \r c c C
<
P, cos 0 , , ,
w—0 = ¢ 5 potential of a stationary dipole
47me,r +q r
® We are interested in the fields that survive at large dz
distances from the source, in the so-called radiation zone: r
] i C 1 W 0
approximation 3: r > o = > A2 <L —
r c
W cosh . wlct—r
=> &(r,0,t)=— Po sin ( )
4me,c 1 c
® The vector potential is determined by the current flowing
®
. . dg . : A —q
in the wire: I (t)z—qzz—qowsmwtz

5

<Y



izl (1iic080)
r, r 2r

coswtr+=cosw(Ct_r)lwdcosﬁsinw(”_r) e cosV=1 g 9«1
- C 2¢ C sin ¥ =~ 9}
coswt,, COS Wt

=> &(r,0,t)= L (qo _ 4o r_)
4 e, _
~ 4o < +—cosé’)( Ct_r) Cualcosﬁsinw(”_r))
4me,r 2¢ C
(1——0039)( Ct_r>+wdcosﬁsinw<6t_r>)
2 c C
To (iCOSQCOSw(Ct_r wdcos@sm <Ct_r))
4me,r \r C C C
cos 6 _ _
_ Po (l Osw(ct r>—£sinw(Ct r)) < pi=q.d
4me,r \ 1 C c c



Z=rcosf—6sin 0o

COSH(Sinw(ct—r)_l_wr w(ct—r))

>

COS
C C C

2
_ N w —
+81n298mw(ct r>0: Do 2Cosﬁcosuj(ct r)f
r C 4me,c” T C
0 A Mo Po W (COSHA smHA) wlct—r)
—=— r— 0 | cos
Ot 4 1 r r C
0 A w —r) A
L E=_V ____,uopo sm@cosw(ct r)e d
ot 4 r C
1 O 18Ar A Coaxial
VA= (7#”‘0)‘7 Y )<”
:—’uopow(gsinﬁcosw(Ct_r)+Smesinw(Ct_r)
4 1r c C r C
,uopowz sin 0 w(ct—r)A
= B=V XA~- COS 1)

4 7 c r C
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® Here E & B represent monochromatic waves of frequency w traveling in the
radial direction at the speed of light. The fields are in phase, mutually

E
perpendicular, transverse; the ratio of their amplitudes is —2=¢, as expected.

0
® These are spherical waves, not plane waves, and their amplitude decreases like

— as they progress. For large r, they are approximately plane over small region.
r

® The energy radiated by an oscillating electric dipole is determined by the
Poynting vector:

S(r,t):EXB:'uO

:uo C

2

psz sin 6 wlct—r)| . ,uop?)aﬁ sin” 6 ..
cOS r = (S)= S —T

4 r C 327 °c r

® There is no radiation along the axis of the dipole (here sin §=0); the intensity

profile takes the form of a donut, with its maximum in the equatorial plane.

® The total power radiated is found by integrating <S>
over a sphere of radius r:

P)=f(s)da

poPow’ [ sin®f Ho Po
:302 = / —r’sinfdfdp=——"w"
mw C

r 127c




Example 11.1: The strong frequency dependence of the power formula is what
accounts for the blueness of the sky. Sunlight passing through the atmosphere
stimulates atoms to oscillate as tiny dipoles.

® The incident solar radiation covers a broad range of frequencies (white light),
but the energy absorbed and re-radiated by the atmospheric dipoles is stronger
at the higher frequencies because of the w*.

® It is more intense in the blue than in the red. It is this re-radiated light that you
see when you look up in the sky (not directly at the sun).

Sun’s rays ———»

This dipole does not
L_\)\/radiate to the observer

A

This dipole radiates
to the observer



® In the celestial arc L the sun’s rays, where the blueness is most pronounced,
the dipoles oscillating along the line of sight send no radiation to the observer;
light received at this angle is polarized | the sun’s rays.

® The redness of sunset is the other side of the same coin: Sunlight coming in at
a tangent to the earth’s surface must pass through a much longer stretch of
atmosphere than sunlight coming from overhead. Accordingly, much of the blue
has been removed by scattering, and what’s left is red.

Atmosphere (thickness grossly exaggerated)

N

| Sun's
rays

AAAAAAA




Magnetic Dipole Radiation
® A wire loop of radius b with an alternating

current: J (t) =[,coswt

® This is a model for an oscillating magnetic dipole

@ The loop is uncharged, so the scalar potential=0 |

1 wlct—r /
= Afr,t)= MO/ > oS ( )dﬁ X
4mJ T c dr y
® For a point r directly above the x axis, A must aim in the y direction, since the x

components from symmetrically placed points on either side of the x axis cancel.

7r r c
r=rsin@x+rcos@z, b=bcos¢ X+bsing'y
= r=|r—b|=Vr*+b*—2rbcos=1r*+b>*—2r bsin  cos ¢’

I,b _
= A(r,t)Z'UJ:O ﬁ/lcosw<Ct Irn)cosqb/dgb/ = cos¢ for d £,

® For a “perfect” dipole, we want the loop to be extremely small:

° ° . / 1 ]. b . /
approximation 1: p <r = r~r—»>bsinfcos¢p = —=— (1+—s1n9c:0sqb )
r o r r



wict—r r b .
=  COS ( >:cosw(t——+—s1n9czosgb/)

c c ¢
wlct—r) wbsinfcos¢d . wlct—r) . whbsinfhcose
=Cos COS —sin sin
c c c c

® Assume the size of the dipole is small compared to the wavelength radiated:

. . C .
approximation 2: ) <« o & cos 9=~1, sind=9 for IK1

= cosw(Ct_T):cosw(Ct_r)—WbsinHCOSgb/sinw(Ct_r)
c c c c
I b 2T B /
= A(r,t):'uo 0 ﬁ/ cosw<cr r>+bsin9cosqb><
4mr 0 C
<lcosw<6t_r>—£sinw(6t_r)) cos¢p d ¢
r c c c
27 27 27
/ / 2 7 /I 2 _ 1 2,/ /_1
cos¢ d¢ =0, cos"dp dop =m vs (cos” ¢p)=— cos"dp dop ==
0 0 21 J | 2
m, si — — A
. A(r,&,t):'uo OsmH(lCOSw(ct r)_gsinw(ct r))¢
47 r r c C c
m,sin 6 . :
static limit w -0 = A (r, )= "0 the potential of

47  p a magnetic dipole



® In the radiation zone,

mywsinf . wlct—r) 4
approximation 3: r > Y =5 A (r , 0, t) = o™ sin ( )
c 471c r c
0A fo My w” sin 0 wlct—r) -
E=— s = i CoS ( ) @
R t 4 1 C 2 r C
Mo Myw sin 6 wlct—r) ;
B=VxA=—2 02 COS ( )0
47c r C
® These fields are in phase, mutually perpendicular, and transverse to the
E

propagation direction (r), the ratio of their amplitudes is 0= c, as expected.
0
® They are similar in structure to the fields of an oscillating electric dipole, only

this time it is B/E that points in the 6/ g?) direction, whereas for electric dipoles
it’s the other way around.

® The energy flux for magnetic dipole radiation is

EXB m w2 in @ f — 2 R
S(r,t)= :,uo( o > cosw<c r)) r
Ho ¢c \(4mc r c
po Mg w” sin® @ TN
= intensity (§)=—— r = total radiated power (P)=——"_w"

32717 127 ¢’



® The intensity profile has the shape of a donut, the power radiated goes like w*.

@® There is one important difference between electric and magnetic dipole
radiation: For configurations with comparable dimensions, the power radiated
electrically is enormously greater.

- 272
Pmagnetic_ mO . W b _ bZI _ d ] = d_ b
° P — "3 32— 2 & mMy=m7 o0 Po=40d, 1o=qowW, d=T
electric Po € C

Wb . : :

® —— is the quantity we assumed was very small, not to mention being squared.
C

@ Ordinarily one should expect electric dipole radiation to dominate. Only when

the system is carefully contrived to exclude any electric contribution will the

magnetic dipole radiation reveal itself.

Example: Find the radiation resistance for the magnetic dipole as described.
2

m p—
P=I’R = <P>:<12>Rmd o, _Haoo 03w4:l]§Rmd I(t)=I,coswt
127 ¢ 2 ——
v/ 5 4 4
= Rmd:’u,()gb4w4:8ﬂ- /J’()C(é) :32071'6(2) L— w:27TC
6c 3 A A A

For d=5cm, A=1km = R_,~2Xx10 ?Q~10°R,,



Linear Electric Quadrupole Radiation

loqod W sin 2 6 wlct—r) *

E=""" sin 0
8mc r c

Hodod W’ sin2 6 wlct—r) -

B = 00 5 sin
8mc r ¢ a
2 4 6 . 2

. . a w 26/\

= intensity <S>=MO 1o T sz r
128 7 ¢ r o149

Hodod
<P>: 010 w6

= total radiated power 3
60 7 ¢




Radiation from an Arbitrary Source
® A configuration of charge and current that is

entirely arbitrary, except that it is localized within
some finite volume near the origin.

® The retarded scalar potential is

®(r,t)= L lp rt—— |d7
4me,J T C

2 2
where r:\/r +r'“=2r-r

=Y

® Assume that r is far away, in comparison
to the dimensions of the source:

X

- / rr 1 1 rr
approximation 1: r <r = r~r| 1- = —~—( 1+
r r r r
rr

= p (r/,t—E):p (r/,to+u):p(r’,t0)+p(r/,to)%+--- < ty=t——
c c

® We can afford to drop them, provided
C —C e o o
Blpl" \plpl? .
® For an oscillating system, each of these ratios is o’ and we recover the old
approximation 2.

approximation 2: r’ < o« wavelength



® As a procedural matter approximations 1 and 2 amount to keeping only the I*-
order terms in r'.

® Discarding the higher-order terms

A

1 / / r / / /
@(r,t):m(/p(r ,fo)dT +7'/l' ,0(1' ,IO)dT
0
r r-p(t,) r-plz
+£i r/p(r/,to>d7/): 1 (Q+ p(0)+ p(O))

c dt 4dme, \ 1 2 rc
® Because charge is conserved, (O is independent of time. The other 2 integrals
represent the electric dipole moment at time #,.

® In the static case, the 1 2 terms are the monopole and dipole contributions to
the multipole expansion for ®; the 3™ term would not be present.

6J:ZJk ZJ o0, r= Z —ro, J ZV-(xiJ)fzi—(V-J)l’

/kJ(r dT—Z /V deT—/l'/l(V/°J)dT

X { ,0p d S 0p
Zi: X, x J a / P n T 17 P T=Pp < —8 [ V J

[Problem 5.7]



= A(r’t):&‘/l.’( t——)d'rz /J dT_No p<to)
4 1 4mr 4 r

® [t was unnecessary to carry the approximation of r beyond the 0"-order(r=r): p
is already 1° order in r/, any refinements are corrections of 2™ order (or higher).

® In the radiation we keep only those terms that go like l :
r

1
approximation 3: discard —; terms in E and B

r
® For instance, the Coulomb field, E = 1 Q2 r, from the 1% term in ®(r, 1),

does not contribute to the EM radiation.4 7 €o 7

® The radiation comes from the terms in which we differentiate the argument 7,

Vr_ r

r
f=— = t=t——
VO C C . 0 C
r-pt r-p(t r-p(t) .
V(I):V( 1 p(o)): 1 p<0)Vz0:— 1 P 1) .
4me, rc 4me, rc 47e,c r

= aA::“o p(%)
ot 47w r

M : M . Fo A ..
VXA:4 . pr<to>:47:rvtoxp(to):_ . rXp (1)




E(r,t)~—"[(f-p)F—p]=——f X (£ Xp)

- o A - p=p<ro>:p(r—§)
B(r,t)~————r¢Xp=—XE(r,1)
4mrc C

® Use spherical polar coordinates, with the 7z axis in the direction of p (t 0) =p Z
o P (1,) sin 6 5

E(r,0,t)~
4 1 r
i () A
B(r,e,t):“"p( o snd 5
477 r

EXB ,uol"ﬂz(to) sin” @ .
Ho 16 t2¢  r?

= Poynting vector S(r, )=~

w2
4
= P(r,t) :]{S (r,t)-da= M06p7r(c0) = Pmd(to) total radiated power

® K and B are mutually perpendicular, transverse to the direction of propagation

~ . . K
(r), and in the ratio — = ¢, as always.



Example 11.2: (a) In the case of an oscillating electric dipole,

2
A w I 0 t_ A
p(t)= PoCOSwWtZ E:—'uopo ik cosw<c r)H
- 4 2 r c ~ same as
R : ) . the earlier
[")(t):—wzpocoswtz B:_Nopow smHCOSw(ct r)
471c r C
(b) For a single point charge ¢, the dipole moment is
2 2
a
plt)=qgd(t) > p(t)=qga(t) = Larmor formula P:,ugq x a”
T C

® In this section for a multipole expansion of the retarded potentials, use the 1
lowest order in '’ that is capable of producing EM radiation (fields being like — ).

This turns out to be the electric dipole term. r

® Because charge is conserved, an electric monopole does not radiate.

® If charge were not conserved, 1 O (to) 1 Q (f 0) N

the 1°* term in ® would read mono — 4 ~ Lmono =~ 4 r
TE, T mTELC T

® You might think that a charged sphere whose radius oscillates in and out would
radiate, but it doesn’r—the field outside, according to Gauss’s law, is exactly

0

4me,r

5 r, regardless of the fluctuations in size.



® In the acoustical analog, monopoles do radiate: transverse vs longitudinal.

@ If the electric dipole moment or its 2" time derivative should happen to vanish,
then there is no electric dipole radiation, and one must look to the next term: the

one of 2™ order in .

® This term can be separated into 2 parts, one of which is related to the magnetic
dipole moment of the source, the other to its electric quadrupole moment.

® If the magnetic dipole and electric quadrupole contributions vanish, the r
term must be considered, etc.

Selected problems: 4, 10, 18, 22, 26



Point Charges
Power Radiated by a Point Charge
® The fields of a point charge ¢ in arbitrary motion

__ g c(1=-p)(r-p)+FX[(F—B)XB]
E<r’t)_47reolr°2 c(l1-¢-B8) $

A

B(r,t)zng(r,t)

The 1% term in ($) is the velocity field, and the 2™ one is the acceleration field.

ExXB EX(txE) E°f—(F-E)E

Ho Lo C Wy C
@ Not all of this energy flux constitutes radiation; some of it is just field energy
carried along by the particle as it moves.

e Poynting vector S (r, 1)~

® The radiated energy is the stuff that, in effect, detaches itself from the charge
and propagates off to infinity.

® To calculate the total power radiated by the particle at time 7., consider a huge
sphere of radius rr, centered at the position of the particle (at 7,), wait the

appropriate interval c(—f)=r for the radiation to reach the sphere, and at that
moment integrate the Poynting vector over the surface.



® Tthe area of the sphere  r? so any term in S that goes

like lz will yield a finite answer, but terms like ls or
I I

— will contribute nothing in the limit » —oo.
I

® So only the acceleration fields represent true radiation:

Radiation fields E_, = d TX[(T_:B >><3'B]
4mer c(l—r1-B)

® The velocity fields carry energy, as the charge moves this energy is dragged

along—but it’s not radiation. a
E2 p—(f ﬁ/ E E> r
Erad J_ ]?b — Srad ~ rad ( rad) rad — rad ]?b @
Mo € Mg €

Let v(z,)=0 atrest > fB(t.)=0

tX(FXB) MogC ., .
o B, = LEXEXB) Mol gyp g
4me,cr 4mr
1 ([ Heqc pocq B :
S~ ( ° ) B8P ="1 0 G2es (#) = cosO=5-B
poc \ 4mr 16 7 r

® No power is radiated in the forward or backward direction—rather, it is emitted
in a donut about the direction of instantaneous acceleration.



. a . a
® The total power radiated is v P= ;  P= ;
2 52 ) 2 2 Larmor
C 6 a
P:j[srad'da:'uo qzﬂ sz r’sinfdfd¢ = P:MOq formula
16 Ir 6rmc ,
(agam)

® Although we derived them on the assumption that v=0, the result actually holds
to good approximation as long as v<<c.

® Suppose someone is firing a stream of bullets out the window of a moving car.
The rate N, at which the bullets strike a stationary target is not the same as the

te N, at which they left th , b fth ti fth .
rate /V, at whic eyve e gun, because of the motion of the car. -

_b..

Ilb\ -
—— = — — — — — — — —
i

=

® We can check that N=(1 - B) N, if the car is moving towards the ——__

~ \ 4
target, and N,=(1—1-8) N, for arbitrary directions, where B=—, 8=|8|
c

dw

@ If 17 is the rate at which energy passes through the sphere at radius r, the
dw dW/dt¢ . dwW ot,

rate of energy left the charge = = (1 —I- ,B) — = = 1A
dt, o0t /ot dt ot 1-1t-8



Source Moving, Detector Stationary

BN
D
9 (a)
D
x < vt <Vt —
;’
v
(0) +—
—| A |~—
® Let source $ move toward D at speed vy
/ ;Y 1% 1% 1%
A=vT—v,T = f[f=7= = =f =
A vI—v, T vif—vlf V=V
C c 1
)\tZCTg—ng = f=—= = fg = f==
A, c¢T,—vT, 1-0 T

= N,=(1-B)N

t



f=t—— < r=r—x/(t, m:fr’|:\/r +x2-2r-X, p=—
¢ I
or (X—r)v .y 8 = v d x \
— — —Ccr: =— = —
atr r I dtr C
ot
c t c Ot, ot 1-r-B8

PX[(F—B)xBl=t-B(t—B)-(1-1B)B

=[5 x[(5 - B)x BIP=(5-BF (1-25-B+F)+(1-5-B)
~2#-B(#-B-B-B)(1-¢B)

=(#-B) (87 —1)+2(r-B)(B-B) (1 B)+(1—-# B) B
=3*[(B*—1)cos’O@+2 B coshcos® (1—-B)+(1—F-B)]

where £-B8=8Bcos®, B-B=0pcosv



® So the ratio of the energy rate is precisely the ratio of N , to N it’s a purely
geometrical factor.

® The power radiated by the particle into a patch of area r*sin 6 d d ¢=r*d (},
where d (2=sin 8d 6d ¢ is the solid angle, on the sphere is given by
2 2 2

dP oy Bl _ ¢ |ex[(E-B)xBIf _ ,_a _—
——=(1—1- — = - = =
d0 ( I ,3) 1, 1671'260 C(l-]f‘“ﬂ)s B - Y /1_/32

2 6 2 6
=~ pP= HoC4q 7 (52_ 1B X ﬂ|2) _Hod 7 (a2—|,3 ><a|2) Liénard’s generalization
6 6mc of the Larmor formula

® The factor v° means that the radiated power increases enormously as the
particle velocity approaches the speed of light.

Example 11.3: Let v & a are instantaneously collinear (at 7)) as in straight-line
motion. Find the angular distribution of the radiation & the total power emitted.

- . als o (o A 5 dP_ q2 |I?°><(]f°><,8)|2
evlali = BBz = (-p)xp=ixp = {o= b T EL
Px(ExB)=(F-B)F—B = [Fx(EXB)=5"~(F B)

dpP Hoq B*sin* 6 e gV oA oA
dQ_167rzeOc(1—ﬂcosé’)5 ﬁ_c’ p=pz. p=pm

=




Choose B=1%, ,B—smwx+cos¢z Y fixed _,
t =sin @ (co

=

=

/—dQ— /|T>< iy sinfdfdda¢

16 7 € C —]T",B
t-B=cos b, [A‘Iﬂzcosw
r- 0

= cos ® =cos 1) cos 6

+ + 0z
¢x smqby) COSU Z +sin 1 sin 6 cos ¢

(ﬁ-,é)zzcosz © =cos” ¥ cos” O +sin 2 1) cos O sin O cos ¢ +sin” ¥ sin” O cos” ¢
X[

tXx[(f—B)xB]*=B[(87—1)cos’@+2 Bcostpcos®(1—1-8)+(1—1-B8)°]
22 (2 cos” © _4_7T 32_g 7)2
PU&-1) [ T im0 d0dg=- 25" 58wy (8:)
cos © 32

25320051,0/ sin6’d9d¢:T7T76(,3'B)2

ﬁcos@)4
B/ 3s1n9ded¢:4m452
Bcos@

_ q AT 40 )2 3271 ¢ BV+d At B
P—16W2€OC( 37/3 8w (B-B)+ ; v (B-B) +4 75)

_q 8T 450 8T BTN n
e Gl s SULE I B LY




dP 9
——=r X|# for v=20 =0
o= (#) v=0 (§=0)
= dP 1 emalx
10> - for yoc(f—1) Vo
— |
(1—Bcosh) >
® Although there is still no radiation in precisely the
forward direction, most of it is concentrated within an
increasingly narrow cone about the forward direction.
2 2 . 2
a 0
°p= /—dﬂ_”oq2 /  __sinfd6do
167°cJ (1—Bcosh)
6
g d /1 (1-x%) dx:#oqzaz 4 maany
8mc J,(1-B8x) 8mc 3(1-p%) 6mc

consistent with the Liénard formula, for the case of collinear v and a.

® The angular distribution of the radiation is the same whether the particle is

accelerating or decelerating; it only depends on a?, and is concentrated in the
forward direction (with respect to the velocity) in either case.

® When a high speed electron hits a metal target it rapidly decelerates, giving off
what is called bremsstrahlung, or “braking radiation.”



Problem 11.15: Find @___ at which the maximum radiation is emitted in Ex. 11.3.

o ¢ dP_O L 0= d sin 6 _sinf(2cosf—2Bcos’d—5Bsin’H)
do dQ dé (1—Bcosb) (1-Bcosf)°
2,1 :
= 38cos’@+2cosf—58=0 = cosezi\/lsﬂ +1=1 choose + sign
3B tofit 3—0
2
= HmaX:cos_l\/15’8+1_1 and 6 . =0,7 for sinf_ =0 = ar =0
36 dﬂ|min
For ultra-rela- 1 1
= -1 = 1-— 5 kK1l = = ~__—
tivistic speeds g F= ! V1-p3° V2
L 154%+1-1_V15(1-6)+1-1 \/16 305 1 1+5 3_1_55)
33 3(1-6) 3
5 Hmax
~]—— = cosf ~1-— —1—— = 0
4 2 27
dP ,quz /B Slne ~ /,Loq /B max
dQ|max 16 €, c (1 —Bcos@max)s 160 e,c [1—(1-6)(1—-6/4)]
g B 5/2 o Bod BT 512 peqd B (i)578
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Radiation Reaction
® An accelerating charge radiates. This radiation carries off energy, which comes
at the expense of the particle’s kinetic energy.

® Under the influence of a given force, a charged particle accelerates less than a
neutral one of the same mass.

® The radiation exerts a force (F_,) back on the charge—a recoil force, like that
of a bullet on a gun—the radiation reaction force (from conservation of energy).

® For a nonrelativistic particle (v<<c), the total power radiated is given by the

2 2
a
Larmor formula: p = Ho 9
6mc
® Conservation of energy asks that this is also the rate at which the particle loses
(only correct averagely) K q2 4>

energy, under the influence of the radiation reaction force: F_ -v =

67c

® In the calculation of the radiated power the velocity fields played no part, since
they fall off too rapidly as a function of r to make any contribution.

® The velocity fields do carry energy—they just don’t transport it out to infinity.

® As the particle accelerates/decelerates, energy is exchanged between it and the
velocity fields, as energy is also radiated away by the acceleration fields.



® The earlier consideration accounts only for the latter. If we want to know the
recoil force by the fields on the charge, we should consider the total power lost at
any instant, not just the portion that eventually escapes in the form of radiation.

® The energy lost by the particle in any given time interval must equal the energy
carried away by the radiation plus the energy pumped into the velocity fields.

@ If we consider only intervals over which the system returns to its initial state,
eg, the periodic motion, then the energy in the velocity fields is the same at both

ends, and the only net loss is in the form of radiation.
Iy

t, 2
./ Frad'th:_lqu / adi = V(tl)zv(tz), a<t1):a(t2)

6breJ .

=Y / ( | /go 1 ) vdr=0 = F_, go q a Abraham-Lorentz formula
. T C T C

® The expression tells nothing about the component of F_, 1 v, it only tells the
time average of the parallel component—the average over special time intervals.

® However, it represents the simplest form the radiation reaction force could take,
consistent with conservation of energy.



® The Abraham-Lorentz formula has disturbing implications. Suppose a particle is

subject to no external forces; then Newton’s 2" law says
4

CBoqt L Hod
= a=ma = a(t)=a,e” & T=——
67mc 6mmc

F —6x10 s

T

rad electron

The acceleration increases exponentially with time unless a,=0!

® The systematic exclusion of such runaway solutions has a more unpleasant
consequence: If you do apply an external force, the particle starts to respond

before the force acts! [Problem 11.19]

@ This acausal preacceleration jumps the gun by only a short time 7; however,
it is unacceptable that the theory should countenance it at all.

Example 11.4: Calculate the radiation damping of a charged particle attached
to a spring of natural frequency w,, driven at frequency w.

® The equation of motion is

. _ 2 _
mx_Fspring+Frad+Fdrive_ mwOX+mT'X+Fdrive(w> i .X(t)—XOCOS(CUZ'l'(S)
. 2 . . : 2 _ : 2
= X=—w'x ® mitmyx+tmuw,x=F . damping factor y=w" 7
- F _ L 2 .
damping — — Y MX=—mMw" T X



The Mechanism Responsible for the Radiation Reaction
® The fields of a point charge blow up right at the particle, so it’s hard to see how
one can calculate the radiation reaction force they exert.

® Avoid this problem by considering an extended charge distribution with the
field is finite everywhere; then take the limit as the size of the charge goes to 0.

® In general, the EM force of one part (A) on another part (B) is
not equal and opposite to the force of B on A. e

@ If the distribution is divided up into infinitesimal chunks, and
the imbalances are added up for all such pairs, the result is a

net force of the charge on itself.

oQ

YA

@ It is this self-force, resulting from the breakdown g2 (1)
of Newton’s 3" law within the structure of the particle,| 7
that accounts for the radiation reaction. : I
d

l e
® Consider a “dumbbell” in which the total charge ¢ is : X
divided into 2 halves separated by a fixed distance d. l g2} ¥
® Although it’s an unlikely model for an elementary [ — (2)
particle: in the point limit (d¢—0) any model must
yield the Abraham-Lorentz formula, to the extent Retarded Present

that conservation of energy dictates that answer. position x(#,)  position x(f)



® Assume the dumbbell moves in the x direction, and is instantaneously at rest
[,B(t,,=0)=0] at the retarded time. The electric field at 1 due to 2 is

g2 c(1-p)(7-B)+ix[(F-B)xB]__q_ (c+F-B)F—1B
4me,r’ c(l-t-8) 8 €, cr’
r=(X+dy = r=vV0+d, r-B=10
® Only interested in the x component of E,, since the y components will cancel
when we add the forces on the 2 ends.

q lc—Bd°
87‘(’606 <£2+d2)3/2

E =

oF E, =E, bysymmetry

1x

2 2 2 2
q q bc"—ad” . g ( a Z)A
> F .=—(E,.+E.)= ~ {——d X for ¢ < d
et 2( ! 2) 87‘(’6062 (€2+d2)3/2 87reod3 2

x(f>=x(fr)+5€(fr)(t—tr)+%je (tr)<x—tr)2+%3e(tr)(t_tr)3+...

- sz(t)—x(tr)Z%aT2+%'T3+--- e T=t—t, ¥(t)=0

2 2 42 2 2 2 aT aT’ ’ a’ T
(CT) ={+d” = d:\/C T°—0"=cT41—- + +--- =cT — 4.
2¢c ©6¢ 8



® Need to solve the equation for 7T as a function of d. There is a systematic
procedure for doing this, known as reversion of series,

d

0" —order: d~cT = T~— J 2
¢ > T="+"_d°+0(d"
a d’ d ad c 8¢°
1" -order: d=cT——— = T=—+—
8¢ ¢ ¢ 8c¢
; 2 a(t alt )
= ZZ a2d2+ a3d3+0<d4) i Fself: q (_ (2r)+ <ri)%+0<d>)x
2¢ 6 c 4 e, 4c°d 12c¢

= a(tr)za(t)+c'l(t)(tr—t)+---=a(t)—c'l(t)T+---=a(t)—c'z(t)%+---
= _q—z — a(r) +a(t)+ X
Fself_47"€o( 4c¢*d 3¢° O(d))

® The 1% term o< a(?); if we pull it over to the other side of Newton’s 2™ law, it
simply adds to the dumbbell’s mass.

1 q2
4mey 4dc’

® In special relativity, it is not surprising that the electrical repulsion of the
charges should enhance the mass of the dumbbell.

® In effect, the total inertia of the charged dumbbell 7 = 2 my+



1 (q/2)

® For the potential energy of this configuration is and according
4me, d
to Einstein’s formula £ = m c?2, this energy contributes to the inertia of the object.
2 .
it HMod d

® The 2" term is the radiation reaction: F rad =
127c

® The term survives in the “point dumbbell” limit d—0. But it differs from the
Abraham-Lorentz formula by a factor of 2.

® But this is only the self-force associated with the inferaction between 1 and 2.
There remains the force of each end on itself. When the latter is included, the

2 .
resultis F_, = Iu60 74 , reproducing the Abraham-Lorentz formula exactly.
T C
n n ]-
Frad(q):Frazl(q>+2Frad (%) :Frazl<q>+2.§.Frad<Q) = Frad(Q) X qz
2 .
in Hod A
= Frad(Q>:2Frazl(Q): -

6m1c

® Conclusion: The radiation reaction is due to the force of the charge on itself—or
the net force exerted by the fields generated by different parts of the charge
distribution acting on one another.
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