
  

Chapter 11Chapter 11 Radiation

What is Radiation?What is Radiation?
 When charges accelerate, their fields can transport 

energy irreversibly out to infinity—a process we call 
radiation.

 Assume the source is localized near the origin; we 
would like to calculate the energy it is radiating at time t0.

 Imagine a sphere, out at radius r. The power passing through its surface is the 

integral of the Poynting vector:

 Because EM “news” travels at the speed of light, this energy actually left the 

source at the earlier time                 , so the power 
                                                               radiated is

 This is energy (per unit time) that is carried away and never comes back.

 The area of the sphere is 4 π r 2, so the Poynting vector must decrease (at large 

r) no faster than      . If it went       , then P would go      , and Prad would be 0.
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 According to Coulomb’s law, electrostatic fields fall off like       (or faster, if the 

charge is 0), and the Biot-Savart law says that magnetostatic fields go like      (or 

faster), so            , for static configurations. So static sources do not radiate.

 Jefimenko’s equations indicate that time-dependent fields include terms 

(involving    and    ) that go like     ; these are the terms that  are responsible for 

EM radiation.

 The study of radiation involves picking out the parts of E & B that go like      at 

large distances from the source, constructing from them the       term in S, 

integrating over a large spherical surface, and taking the limit as r.
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Electric Dipole Radiation (Hertzian dipole)Electric Dipole Radiation (Hertzian dipole)
 2 tiny metal spheres are separated by a distance d and 

connected by a fine wire; the charge on the upper sphere 
is q(t), and the charge on the lower sphere is −q(t). Let that 
we drive the charge back and forth through the wire, at an 
angular frequency ω:

 To make this physical dipole into a perfect dipole, we want the separation 
distance to be extremely small:
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 In the perfect dipole limit we have, further,

Approximation 2: 

 We are interested in the fields that survive at large 
distances from the source, in the so-called radiation zone:

approximation 3:

 The vector potential is determined by the current flowing 

in the wire: I (t )=
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d t
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 Here E & B represent monochromatic waves of frequency ω traveling in the 
radial direction at the speed of light. The fields are in phase, mutually 

perpendicular, transverse; the ratio of their amplitudes is            , as expected.

 These are spherical waves, not plane waves, and their amplitude decreases like  

     as they progress. For large r, they are approximately plane over small region.

 The energy radiated by an oscillating electric dipole is determined by the 
Poynting vector:

 There is no radiation along the axis of the dipole (here sin θ=0); the intensity 
profile takes the form of a donut, with its maximum in the equatorial plane.

 The total power radiated is found by integrating <S> 

over a sphere of radius r:
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Example 11.1: The strong frequency dependence of the power formula is what 
accounts for the blueness of the sky. Sunlight passing through the atmosphere 
stimulates atoms to oscillate as tiny dipoles.

 The incident solar radiation covers a broad range of frequencies (white light), 
but the energy absorbed and re-radiated by the atmospheric dipoles is stronger 
at the higher frequencies because of the ω 4.

 It is more intense in the blue than in the red. It is this re-radiated light that you 
see when you look up in the sky (not directly at the sun).



  

 In the celestial arc  the sun’s rays, where the blueness is most pronounced, 
the dipoles oscillating along the line of sight send no radiation to the observer; 
light received at this angle is polarized  the sun’s rays.

 The redness of sunset is the other side of the same coin: Sunlight coming in at 
a tangent to the earth’s surface must pass through a much longer stretch of 
atmosphere than sunlight coming from overhead. Accordingly, much of the blue 
has been removed by scattering, and what’s left is red.



  

Magnetic Dipole RadiationMagnetic Dipole Radiation
 A wire loop of radius b with an alternating 

current:

 This is a model for an oscillating magnetic dipole

 The loop is uncharged, so the scalar potential=0

 For a point r directly above the x axis, A must aim in the y direction, since the x 

components from symmetrically placed points on either side of the x axis cancel.

 For a “perfect” dipole, we want the loop to be extremely small:
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 Assume the size of the dipole is small compared to the wavelength radiated:

approximation 2:
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 In the radiation zone,

approximation 3:

 These fields are in phase, mutually perpendicular, and transverse to the 

propagation direction (   ), the ratio of their amplitudes is            , as expected.

 They are similar in structure to the fields of an oscillating electric dipole, only 
this time it is B/E that points in the          direction, whereas for electric dipoles 
it’s the other way around.

 The energy flux for magnetic dipole radiation is
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 The intensity profile has the shape of a donut, the power radiated goes like ω 4.

 There is one important difference between electric and magnetic dipole 
radiation: For configurations with comparable dimensions, the power radiated 
electrically is enormously greater.

         is the quantity we assumed was very small, not to mention being squared.

 Ordinarily one should expect electric dipole radiation to dominate. Only when 
the system is carefully contrived to exclude any electric contribution will the 
magnetic dipole radiation reveal itself.

Example: Find the radiation resistance for the magnetic dipole as described.
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Linear Electric Quadrupole RadiationLinear Electric Quadrupole Radiation
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Radiation from an Arbitrary SourceRadiation from an Arbitrary Source
 A configuration of charge and current that is 

entirely arbitrary, except that it is localized within 
some finite volume near the origin.

 The retarded scalar potential is

 Assume that r is far away, in comparison
to the dimensions of the source:

approximation 1:

 We can afford to drop them, provided
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 As a procedural matter approximations 1 and 2 amount to keeping only the 1st-
order terms in r.

 Discarding the higher-order terms

 Because charge is conserved, Q is independent of time. The other 2 integrals 

represent the electric dipole moment at time t0.

 In the static case, the 1st 2 terms are the monopole and dipole contributions to 
the multipole expansion for Φ; the 3rd term would not be present.
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 It was unnecessary to carry the approximation of � beyond the 0th-order(�≅r): p 

is already 1st order in r, any refinements are corrections of 2nd order (or higher).

 In the radiation we keep only those terms that go like     :

approximation 3: discard       terms in E and B

 For instance, the Coulomb field,                           , from the 1st term in Φ(r, t), 
does not contribute to the EM radiation.

 The radiation comes from the terms in which we differentiate the argument t0,
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ṗ (t0)

r

∇ t 0=−
∇ r

c
=−

r̂
c

⇐ t0= t −
r
c

⇒

∇ Φ≃∇ ( 1
4 π ϵ0

r̂⋅ṗ (t0)

r c
)≃

1
4 π ϵ0

r̂⋅p̈ (t0)

r c
∇ t 0=−

1
4 π ϵ0 c2

r̂⋅p̈ (t0)

r
r̂

∂ A
∂ t

≃
μ0

4 π

p̈ (t0)

r

∇ ×A≃
μ0

4 π r
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 Use spherical polar coordinates, with the z axis in the direction of 

  E and B are mutually perpendicular, transverse to the direction of propagation 

(   ), and in the ratio            , as always.
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Example 11.2: (a) In the case of an oscillating electric dipole,

(b) For a single point charge q, the dipole moment is

 In this section for a multipole expansion of the retarded potentials, use the 
lowest order in r that is capable of producing EM radiation (fields being like     ). 
This turns out to be the electric dipole term.

 Because charge is conserved, an electric monopole does not radiate.

 If charge were not conserved, 
the 1st term in Φ would read

 You might think that a charged sphere whose radius oscillates in and out would 
radiate, but it doesn’t—the field outside, according to Gauss’s law, is exactly

                  , regardless of the fluctuations in size.
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 In the acoustical analog, monopoles do radiate: transverse vs longitudinal.

 If the electric dipole moment or its 2nd time derivative should happen to vanish, 
then there is no electric dipole radiation, and one must look to the next term: the 
one of 2nd order in r.

 This term can be separated into 2 parts, one of which is related to the magnetic 

dipole moment of the source, the other to its electric quadrupole moment.

 If the magnetic dipole and electric quadrupole contributions vanish, the r3 
term must be considered, etc.

Selected problems: 4, 10, 18, 22, 26



  

Point Charges
Power Radiated by a Point ChargePower Radiated by a Point Charge
 The fields of a point charge q in arbitrary motion

The 1st term in ($) is the velocity field, and the 2nd one is the acceleration field.

 

 Not all of this energy flux constitutes radiation; some of it is just field energy 
carried along by the particle as it moves.

 The radiated energy is the stuff that, in effect, detaches itself from the charge 
and propagates off to infinity.

 To calculate the total power radiated by the particle at time tr , consider a huge 

sphere of radius �, centered at the position of the particle (at tr ), wait the 

appropriate interval  c(t−tr)=�  for the radiation to reach the sphere, and at that 
moment integrate the Poynting vector over the surface.
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 Tthe area of the sphere ∝ �2, so any term in S that goes 

like       will yield a finite answer, but terms like          or 

      will contribute nothing in the limit r ∞.

 So only the acceleration fields represent true radiation:

 The velocity fields carry energy, as the charge moves this energy is dragged 
along—but it’s not radiation.

 No power is radiated in the forward or backward direction—rather, it is emitted 
in a donut about the direction of instantaneous acceleration. 

Radiation fields E rad =
q

4 π ϵ0 �

�̂×[(�̂−β)× β̇ ]

c (1− �̂⋅β)
3

E rad ⊥ �̂ ⇒ S rad ≃
E rad

2 �̂−(�̂⋅E rad) E rad

μ0 c
=

E rad
2

μ0 c
�̂

Let v (t r)=0  at rest ⇒ β (tr )=0

⇒ E rad =
q �̂×(�̂× β̇)

4 π ϵ0 c �
=

μ0 q c

4 π �
[(�̂⋅β̇) �̂− β̇ ]

⇒ S rad≃
1

μ0 c
( μ0 q c

4 π �
)

2

[ β̇
2
−( �̂⋅β̇)

2
] �̂=

μ0 c q2
β̇

2

16 π
2 �2 sin2

Θ �̂ (#) ⇐ cos Θ= �̂⋅^̇β

1
�3

Θ

1
�2

1
�4

�⃗

�⃗



  

 The total power radiated is

 Although we derived them on the assumption that v=0, the result actually holds 

to good approximation as long as v≪c.

 Suppose someone is firing a stream of bullets out the window of a moving car. 
The rate Nt at which the bullets strike a stationary target is not the same as the 

rate Ng at which they left the gun, because of the motion of the car.

 We can check that Ng=
 ( 1 − β ) Nt, if the car is moving towards the 

target, and                               for arbitrary directions, where                          .

 If          is the rate at which energy passes through the sphere at radius �, the 

rate of energy left the charge

 β̇=
a
c

, β̇ =
a
c

P=∮ S rad⋅d a=
μ0 c q2

β̇
2

16 π
2
∫ sin2

θ

�2
�2 sin θ d θ d ϕ ⇒ P=

μ0 q2 a2

6 π c

Larmor
formula
(again)

d W
d t

d W
d tr

=
d W /d t
∂ t r / ∂ t

=(1− �̂⋅β)
d W
d t

⇐
∂ tr

∂ t
=

1
1− �̂⋅β

N g=(1− �̂⋅β) N t β≡
v
c

, β =|β|



  

Source Moving, Detector StationarySource Moving, Detector Stationary

Let source S move toward D at speed vS

λ

=v T −vS T ⇒ f 

=
v
λ

 =
v

v T −vS T
=

v
v / f − vS / f

= f
v

v−vS

⩾ f

λt =c T g−v T g ⇒ f t =
c
λt

=
c

c T g −v T g

=
f g

1−β
⇐ f =

1
T

⇒ N g =(1−β) N t



  

t r = t − �
c

⇐ �⃗=r− �⃗ (tr) , �=|⃗�|=√r2
+�2

−2 r⋅�⃗ , �̂=
�⃗
�

⇒
∂ �
∂ t r

=
(�⃗−r )⋅v

�
=

− �⃗⋅v
�

=−c �̂⋅β ⇐ v=
d �⃗

d t r

, β=
v
c

t = t r +
�
c

⇒
∂ t
∂ t r

=1+
1
c

∂ �
∂ tr

=1− �̂⋅β ⇒
∂ tr

∂ t
=

1
1− �̂⋅β

�̂×[(�̂−β)× β̇ ]= �̂⋅β̇ (�̂−β)−(1− �̂⋅β) β̇

⇒ |�̂×[(�̂−β)× β̇ ]|
2
=(�̂⋅β̇)

2
(1−2 �̂⋅β+ β

2
)+(1− �̂⋅β)

2
β̇

2

−2 �̂⋅β̇ (�̂⋅β̇−β⋅β̇) (1− �̂⋅β)

=(�̂⋅β̇)
2
(β

2
−1)+2 (�̂⋅β̇) (β⋅β̇) (1− �̂⋅β)+(1− �̂⋅β)

2
β̇

2

= β̇
2
[(β

2
−1) cos2

Θ+2 β cos ψ cos Θ (1− �̂⋅β)+(1− �̂⋅β)
2
]

where �̂⋅β̇= β̇ cos Θ , β⋅β̇=β β̇ cos ψ



  

 So the ratio of the energy rate is precisely the ratio of Ng to Nt; it’s a purely 
geometrical factor.

 The power radiated by the particle into a patch of area �2 sin θ  d θ d ϕ= �2 d Ω, 
where d Ω=sin θ d θ d ϕ is the solid angle, on the sphere is given by

 The factor γ 6 means that the radiated power increases enormously as the 
particle velocity approaches the speed of light.

Example 11.3: Let v & a are instantaneously collinear (at tr) as in straight-line 
motion. Find the angular distribution of the radiation & the total power emitted. 

 

d P
d Ω

=(1− �̂⋅β)
E rad

2 �2

μ0 c
=

q2

16 π
2

ϵ0

|�̂×[(�̂−β)× β̇ ]|
2

c (1− �̂⋅β)
5 ⇐ β̇=

a
c

⇒ γ ≡
1

√1−β
2

⇒ P=
μ0 c q2

γ
6

6 π
(β̇

2
−|β× β̇|

2
)=

μ0 q2
γ

6

6 π c
(a2

−|β×a|2) Liénard’s generalization
of the Larmor formula

v∥a∥ẑ ⇒ β∥β̇∥ẑ ⇒ (�̂−β)× β̇= �̂×β̇ ⇒
d P
d Ω

=
q2

16 π
2

ϵ0

|�̂×(�̂× β̇)|
2

c (1− �̂⋅β)
5

�̂×(�̂× β̇)=(�̂⋅β̇) �̂−β̇ ⇒ |�̂×(�̂× β̇)|
2
= β̇

2
−(�̂⋅β̇)

2

⇒
d P
d Ω

=
μ0 q2

16 π
2

ϵ0

β̇
2 sin2

θ

c (1−β cos θ )
5

⇐ β ≡
v
c

, β=β ẑ , β̇= β̇ ẑ



  

P =∫ d P
d Ω

d Ω=
q2

16 π
2

ϵ0 c
∫ |�̂×[(�̂−β)× β̇ ]|

2

(1− �̂⋅β)
5

sin θ d θ d ϕ

Choose β̂= ẑ , ^̇β=sin ψ x̂ + cos ψ ẑ , ψ  fixed
�̂= sin θ (cos ϕ x̂ +sin ϕ ŷ )+ cos θ ẑ

⇒
�̂⋅β̂=cos θ , β̂⋅^̇β=cos ψ

�̂⋅^̇β=cos Θ=cos ψ cos θ

+sin ψ sin θ cos ϕ

⇒ (�̂⋅ ^̇β)
2
=cos2

Θ=cos2
ψ cos2

θ +sin 2 ψ cos θ sin θ cos ϕ +sin2
ψ sin2

θ cos2
ϕ

⇒ |�̂×[( �̂−β)× β̇ ]|
2
= β̇

2
[(β

2
−1) cos2

Θ+2 β cos ψ cos Θ (1− �̂⋅β)+(1− �̂⋅β)
2
]

⇒ [
β̇

2
(β

2
−1) ∫ cos2

Θ

(1−β cos θ)
5 sin θ d θ d ϕ =−

4 π

3
γ

4
β̇

2
−8 π γ

6
(β⋅β̇)

2

2 β β̇
2 cos ψ ∫ cos Θ

(1−β cos θ)
4

sin θ d θ d ϕ=
32 π

3
γ

6
(β⋅β̇)

2

β̇
2 ∫ 1

(1−β cos θ )
3

sin θ d θ d ϕ =4 π γ
4

β̇
2

⇒ P=
q2

16 π
2

ϵ0 c
(−

4 π

3
γ

4
β̇

2
−8 π γ

6
(β⋅β̇)

2
+

32 π

3
γ

6
(β⋅β̇)

2
+4 π γ

4
β̇

2 )

=
q2

16 π
2

ϵ0 c
( 8 π

3
γ

4
β̇

2
+

8 π

3
γ

6
(β⋅β̇)

2)=
μ0 c q2

γ
6

6 π
(β̇

2
−|β× β̇|

2
)



  

 Although there is still no radiation in precisely the 
forward direction, most of it is concentrated within an 
increasingly narrow cone about the forward direction.

consistent with the Liénard formula, for the case of collinear v and a.

 The angular distribution of the radiation is the same whether the particle is 
accelerating or decelerating; it only depends on a2, and is concentrated in the 
forward direction (with respect to the velocity) in either case.

 When a high speed electron hits a metal target it rapidly decelerates, giving off 
what is called bremsstrahlung, or “braking radiation.”

P=∫ d P
d Ω

d Ω=
μ0 q2 a2

16 π
2 c
∫ sin2

θ

(1−β cos θ )
5 sin θ d θ d ϕ

=
μ0 q2 a2

8 π c
∫

1
(1− x2

)

(1−β x )
5

d x =
μ0 q2 a2

8 π c
4

3 (1−β
2
)
3
=

μ0 q2 a2
γ

6

6 π c−1

⇒

d P
d Ω

=�2
×(# ) for v=0 (β =0)

d P
d Ω

∝ 1
(1−β cos θ )

5  for v  c (β  1)



  

Problem 11.15: Find θmax at which the maximum radiation is emitted in Ex. 11.3.

 
d

d θ

d P
d Ω

=0 ⇒ 0=
d

d θ

sin θ
2

(1−β cos θ)
5
=

sin θ (2 cos θ −2 β cos2
θ−5 β sin2

θ )

(1−β cos θ)
6

⇒ 3 β cos2
θ +2 cos θ −5 β =0 ⇒ cos θ =

±√15 β
2
+1−1

3 β

choose   sign
 to fit β  0

⇒ θmax=cos−1 √15 β
2
+1−1

3 β
and θmin =0, π   for sin θmin =0 ⇒

d P
d Ω ∣min

=0

For ultra-rela-
tivistic speeds

⇒ β  1 ⇒ β =1−δ , δ ≪ 1 ⇒ γ =
1

√1−β
2
≃

1

√2 δ

⇒
√15 β

2
+1−1

3 β
=

√15 (1−δ )
2
+1−1

3 (1−δ )
≃

√16−30 δ −1
3 (1−δ )

≃
1+ δ

3
( 3−

15
4

δ )
≃1−

δ

4
⇒ cos θmax≃1−

θmax
2

2
≃1−

δ

4
⇒ θmax ≃√ δ

2
≃√1−β

2
≃

1
2 γ

⇒
d P
d Ω∣max

=
μ0 q2

16 π
2

ϵ0 c

β̇
2 sin θmax

2

(1−β cos θmax)
5 ≃

μ0 q2
β̇

2

16 π
2

ϵ0 c

θmax
2

[1−(1−δ ) (1−δ /4)]
5

≃
μ0 q2

β̇
2

16 π
2

ϵ0 c
δ /2

[1−(1−δ ) (1−δ /4)]
5 ≃

μ0 q2
β̇

2

16 π
2

ϵ0 c
δ /2

(5 δ /4)
5 ≃

μ0 q2
β̇

2

2 π
2

ϵ0 c
( 4

5
)5

γ
8



  



  

Radiation ReactionRadiation Reaction
 An accelerating charge radiates. This radiation carries off energy, which comes 

at the expense of the particle’s kinetic energy.

 Under the influence of a given force, a charged particle accelerates less than a 
neutral one of the same mass.

 The radiation exerts a force (Frad) back on the charge—a recoil force, like that 
of a bullet on a gun―the radiation reaction force (from conservation of energy).

 For a nonrelativistic particle (v≪c), the total power radiated is given by the

Larmor formula:

 Conservation of energy asks that this is also the rate at which the particle loses 
                                         (only correct averagely)
energy, under the influence of the radiation reaction force:

 In the calculation of the radiated power the velocity fields played no part, since 
they fall off too rapidly as a function of � to make any contribution.

 The velocity fields do carry energy—they just don’t transport it out to infinity.

 As the particle accelerates/decelerates, energy is exchanged between it and the 
velocity fields, as energy is also radiated away by the acceleration fields.

P=
μ0 q2 a2

6 π c

F rad⋅v=−
μ0 q2 a2

6 π c



  

 The earlier consideration accounts only for the latter. If we want to know the 
recoil force by the fields on the charge, we should consider the total power lost at 
any instant, not just the portion that eventually escapes in the form of radiation.

 The energy lost by the particle in any given time interval must equal the energy 
carried away by the radiation plus the energy pumped into the velocity fields.

 If we consider only intervals over which the system returns to its initial state, 
eg, the periodic motion, then the energy in the velocity fields is the same at both 
ends, and the only net loss is in the form of radiation.

 The expression tells nothing about the component of Frad  v, it only tells the 
time average of the parallel component—the average over special time intervals. 

 However, it represents the simplest form the radiation reaction force could take, 
consistent with conservation of energy.

∫
t1

t2

F rad⋅v d t =−
μ0 q2

6 π c
∫

t 1

t 2

a2 d t ⇐ v (t1)=v (t2) , a (t1)=a (t2)

∫
t1

t2

a2 d t = ∫
t1

t2 d v
d t

⋅
d v
d t

d t = v⋅
d v
d t |

t1

t2

− ∫
t1

t2 d2 v
d t2

⋅v d t

⇒ ∫
t1

t2( F rad −
μ0 q2

6 π c
ȧ )⋅v d t =0 ⇒ F rad =

μ0 q2

6 π c
ȧ Abraham-Lorentz formula



  

 The Abraham-Lorentz formula has disturbing implications. Suppose a particle is 
subject to no external forces; then Newton’s 2nd law says

The acceleration increases exponentially with time unless a0=0!

 The systematic exclusion of such runaway solutions has a more unpleasant 
consequence: If you do apply an external force, the particle starts to respond 

before the force acts! [Problem 11.19]

 This acausal preacceleration jumps the gun by only a short time τ; however, 
it is unacceptable that the theory should countenance it at all.

Example 11.4: Calculate the radiation damping of a charged particle attached
to a spring of natural frequency ω0, driven at frequency ω.

 The equation of motion is

F rad =
μ0 q2

6 π c
ȧ =m a ⇒ a (t)= a0 e

t
τ ⇐ τ ≡

μ0 q2

6 π m c
⇒ τ electron=6×10−24 s

m ẍ =F spring+ F rad + F drive=−m ω0
2 x+ m τ x⃛+ F drive (ω) ⇒ x (t )= x0 cos (ω t + δ )

⇒ x⃛=−ω
2 ẋ ⇒ m ẍ + m γ ẋ + m ω0

2 x =F drive ⇐ damping factor γ =ω
2

τ

⇒ F damping=−γ m ẋ=−m ω
2

τ ẋ



  

The Mechanism Responsible for the Radiation ReactionThe Mechanism Responsible for the Radiation Reaction
 The fields of a point charge blow up right at the particle, so it’s hard to see how 

one can calculate the radiation reaction force they exert.

 Avoid this problem by considering an extended charge distribution with the 
field is finite everywhere; then take the limit as the size of the charge goes to 0.

 In general, the EM force of one part (A) on another part (B) is 
not equal and opposite to the force of B on A.

 If the distribution is divided up into infinitesimal chunks, and 
the imbalances are added up for all such pairs, the result is a 
net force of the charge on itself.

 It is this self-force, resulting from the breakdown 
of Newton’s 3rd law within the structure of the particle, 
that accounts for the radiation reaction.

 Consider a “dumbbell” in which the total charge q is

divided into 2 halves separated by a fixed distance d.

 Although it’s an unlikely model for an elementary 
particle: in the point limit (d0) any model must 
yield the Abraham-Lorentz formula, to the extent 
that conservation of energy dictates that answer.

�⃗



  

 Assume the dumbbell moves in the x direction, and is instantaneously at rest 
[β(tr=0)=0] at the retarded time. The electric field at 1 due to 2 is

 Only interested in the x component of E1, since the y components will cancel 
when we add the forces on the 2 ends.

 E1 x =
q

8 π ϵ0 c
ℓ c− β̇ d 2

(ℓ2
+ d2

)
3 /2 ⇒ E2 x= E1 x  by symmetry

⇒ F self =
q
2

(E1+E2)=
q2

8 π ϵ0 c2

ℓ c2
−a d 2

(ℓ2
+d2

)
3 /2 x̂≃

q2

8 π ϵ0 d3 ( ℓ−
a

c2 d2) x̂  for ℓ ≪ d

x (t)= x (t r)+ ẋ (t r) (t − tr)+
1
2

ẍ (tr ) ( x− t r)
2
+

1
3!

x⃛ (t r) (t − tr )
3
+⋯

⇒ ℓ= x (t )− x (tr )=
1
2

a T 2
+

1
6

ȧ T 3
+⋯ ⇐ T ≡ t − tr , ẋ (t r)=0

(c T )
2
= ℓ2

+ d2
⇒ d =√c2 T 2

− ℓ2
=c T √1−( a T

2 c
+

ȧ T 2

6 c
+⋯)2

=c T −
a2 T 3

8 c
+⋯

E1=
q /2

4 π ϵ0 �
2

c (1−β
2
) (�̂−β)+ �⃗×[(�̂−β)× β̇ ]

c (1− �̂⋅β)
3

=
q

8 π ϵ0

(c+ �⃗⋅β̇) �⃗−�2
β̇

c �3

�⃗= ℓ x̂ + d ŷ ⇒ �=√ℓ2
+ d2 , �⃗⋅β̇= ℓ β̇



  

 Need to solve the equation for T as a function of d. There is a systematic 
procedure for doing this, known as reversion of series,

 The 1st term ∝ a(t); if we pull it over to the other side of Newton’s 2nd law, it 
simply adds to the dumbbell’s mass.

 In effect, the total inertia of the charged dumbbell

 In special relativity, it is not surprising that the electrical repulsion of the 
charges should enhance the mass of the dumbbell. 

0th -order: d ≃c T ⇒ T ≃
d
c

1st -order: d ≃c T −
a2

8 c
d3

c3
⇒ T ≃

d
c

+
a2 d3

8 c5

⇒ T =
d
c

+
a2

8 c5
d 3

+O (d 4
)

⇒ ℓ=
a

2 c2
d2

+
ȧ

6 c3
d3

+O (d4
) ⇒ Fself ≃

q2

4 π ϵ0

(−
a (t r)

4 c2 d
+

ȧ (tr)

12 c3
+O (d )) x̂

⇒ a (tr )=a (t)+ ȧ (t ) (t r − t)+⋯=a (t )− ȧ (t) T +⋯=a (t )− ȧ (t )
d
c

+⋯

⇒ Fself =
q2

4 π ϵ0

(−
a (t)

4 c2 d
+

ȧ (t )

3 c3
+O (d )) x̂

m=2 m0+
1

4 π ϵ0

q2

4 d c2



  

 For the potential energy of this configuration is                          and according 

to Einstein’s formula E = m c 2, this energy contributes to the inertia of the object.

 The 2nd term is the radiation reaction:

 The term survives in the “point dumbbell” limit d0. But it differs from the 
Abraham-Lorentz formula by a factor of 2.

 But this is only the self-force associated with the interaction between 1 and 2. 
There remains the force of each end on itself. When the latter is included, the 

result is                        , reproducing the Abraham-Lorentz formula exactly.

 Conclusion: The radiation reaction is due to the force of the charge on itself—or 
the net force exerted by the fields generated by different parts of the charge 
distribution acting on one another.

F rad (q)= F rad
int

(q)+2 F rad ( q
2
)= F rad

int
(q)+2⋅

1
22⋅F rad (q) ⇐ F rad (q) ∝ q2

⇒ F rad (q)=2 F rad
int

(q)=
μ0 q2 ȧ

6 π c

1
4 π ϵ0

(q /2)
2

d

F rad
int

=
μ0 q2 ȧ

12 π c

F rad =
μ0 q2 ȧ

6 π c
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