Cnziptzr 9 Electromagnetic Waves

Waves in One Dimension

The Wave Equation

® A wave is a disturbance of a continuous medium that propagates with a fixed
shape at constant velocity.

@ In the presence of absorption, the wave will diminish in size as it moves; if the
medium is dispersive, different frequencies travel at different speeds; in 2-dim or

3-dim, as the wave spreads out, its amplitude will decrease; and standing waves
don’t propagate at all.

® f(z, 1) represents the displacement of the string at the point z, at time 7. Given
the initial shape of the string, g (z) =f(z, 0), the displacement at z, at ¢, is the
same as the displacement a distance vt to the left (ie. at z—v 1), back at r=0:

f(z,t)=Af(Z—vt,0)=g(z—vt)

® f(z, 1) depended on z and ¢ f(z, 0) f(z, 1)
only in the very special f
combination z—v¢; and f(z, 1) v
represents a wave of fixed
shape traveling in the 7

direction at speed v. >




® If A and b are constants f, (z,1)=A e_b(z_”)Z, f2<z ,t)=Asin[b(z—v1)],

fs(z’t): 5
b(z—vit)+
fslz,t)=Asin(bz)cos(bvt) donot.

® A stretched string supporting wave motion it follows from Newton’s 2™ law.

T

® If a string is displaced from equilibrium, the net
transverse force on the segment, for 0, 6'<1,

AF=Tsin® —Tsinf~=T (tan § — tan )

2
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all represent waves, but [, (Z , t) Ae
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® The wave eqn admits as solutions all functions of the form f (z : t) =g (z —V t)

that is, all functions that depend on the variables z & 7 in the special combination

u=z-—"vI.



of dgou dg oJOf dgou dg

T 9z duodz du’ 0r dudr  du

L O0f_o0dg d'gou_d'g 0f_ 0dg_ dgou_ .d'g
072 O0zdu du*dz du® 0+F ot du du® Ot du’

L _f_18f

du> 075 V' or

® ¢ (1) can be any (differentiable) function whatever. If the disturbance propagates
without changing its shape, then it satisfies the wave equation.

® Functions of the form g( z — v ¢ ) are not the only solutions. We can generate
another class of solutions by changing the sign of the velocity: f ( z, t) = h ( z+v t).

This represents a wave propagating in the negative z direction.

® The most general solution to the wave equation is the sum of a wave to the
right and a wave to the left: f(z,¢f)=g(z—vi)+h(z+v1)

® Since the wave eqn is linear: The sum of any 2 solutions is itself a solution.
® Like the simple harmonic oscillator eqn, the wave eqn is ubiquitous in physics.

If something is vibrating, the oscillator eqn is responsible, and if something is
waving, the wave eqn is bound to be involved.



Sinusoidal Waves
(i) Terminology: The sinusoidal wave form: f (z,t)=Acos[k(z—vt)+6]

® A is the amplitude of the wave (positive, the maximum displacement). The
argument of the cosine is called the phase, and ¢ is the phase constant (can

add 2 n 7 to d without changing f(z, f); One usually uses a value in 0=<0<27).

@At Z=VI— ; the phase is 0, ie, central maximum. If =0, the central maximum
. 4]
passes the origin at r=0; % is the distance by which the central max is delayed.
2

® L is the wave number; it is related to the wavelength \ by )\ = — for when

2T :
z advances by —, the cosine executes one complete cycle.

® As time passes, the wave train proceeds to right, at speed v. At any fixed point

Z, the string vibrates up
and down, undergoing
one full cycle in a period
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® The frequency v (number of oscillations/time) is v =—= =

T 27 A
® A more convenient unit is the angular frequency w, it represents the number
of radians swept out per unit time:

w=2n1v=kv = f(z,t)=Acos(kz—wt+d)

® A sinusoidal oscillation of wave number k and (angular) frequency w traveling
tothe left f(z,t)=Acos(kz+wt—6)=Acos(—kz—wt+d)

® We could simply switch the sign of k to produce f(z, 9) Cent.ral

a wave with the same amplitude, phase constant, maximum
frequency, and wavelength, traveling in the opposite /

direction.

: v
(ii) Complex notation: In Euler’s formula, / /T\ /\\ >

® The complex wave function
7(z, t)= Ak emv) < A=4e"’ complex amplitude = f(z,t)=%R [? (z,1)]

® The advantage of the complex notation is that exponentials are much easier to
manipulate than sines and cosines.




Example 9.1: show fgzm[73]:m[?1]+m[72] f1"'f2 = f3 f1"'f2

Let them have the same frequency and wave number,

f A k2= wt)—Ajeid"ei<kZ_wt>, j=1 2, 3

f3 f1+fz Zl+Zz = Age 3—A ¢ 1+A ¢ A; A,

= AS_(A:s )(A3e_i63):(A1ei51+Aze )(A e 161+Aze_i62) 5"
= A2+ A2+2 A, A, cos(8,—6)) 5 A

— ABZ\/A3+A§+2A1Azcos(52—51)

A, eiaBIAB(cos §,+isind,)=A, (cosd,+isind,)+A,(cosd,+isind,)
=(A,cosd,+A,cosé,)+i(A,sind,+A,sind,)

Agsind, A;sino,+A,sind,

A cos b, A, cosd +A,cosd,

= tan d,=

ijAjcos(kz—wt+5j),j=1,2,3 and f,=f,+f,

= A,[cosd,cos(kz—wt)—sind,sin(kz—wt)]
=(A,cosd,+A,cosd,)cos(kz—wt)—(A,sin,+A,sind,)sin(k z—wt)

A, sin §,+ A,sin 4,

2 2
= A3=\/A1+A2+2A1 A,cos(6,—d,) & tan 6,= A cos .+ A, cos 0, the same




(iii) Linear combinations of sinusoidal waves: Any wave can be expressed

Y

as a linear combination of sinusoidal ones: f (z,1)= / A (k) e d k

® The formula for Z ( k), in terms of the initial conditions f(z, 0) and f (Z , 0), can
be obtained from the theory of Fourier transforms.

® So any wave can be written as a linear combination of sinusoidal waves, and if
you know how sinusoidal waves behave, you know how any wave behaves.



Phase velocity and group velocity

dx w

® k x —w t = constant phase = phase velocity v Sy ==

dtr k&

® In some cases, waves of different frequencies propagates with different phase
velocities, since information-bearing signals consist of a band of frequencies.

® Waves of the component frequencies travel with different phase velocities,
causing a distortion in the signal wave shape, called dispersion.

® Such signal normally has a small spread of frequencies (side bands) around a
high carrier frequency. Such a signal comprises a "group" of frequencies and
forms a wave packet.
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@ A group velocity is the velocity of propagation of the wave-packet envelope (of
a group of frequencies).

® Consider a wave packet that consists of 2 traveling waves with equal amplitude
and slightly different angular frequencies w,*Aw (Aw<<w,) and wave numbers

k,+Ak (Ak<k,), then the combined wave is
flx,t)=f,cos[(ky+Ak)x—(w,+Aw)t]+f,cos[(kg—Ak)x—(w,—Aw)t]
=2 focos(x Ak—tAw)cos(kyx—w,t)

@ This expression represents a rapidly oscillating wave wit an angular frequency
w, and an amplitude that varies slowly with an angular frequency Aw.

dx w
® The wave inside the envelope propagates with a phase velocity v ,= P = ko
0
® The velocity of the envelope (ie, group velocity) can be determined by
dx Aw 1

x A k—t A w=constant phase = group velocity VgEdt_Ak_Ak/A
w

1
dk/dw

® In a normal dispersion, v,=V,; in an anomalous dispersion v <v, .

As Aw—-0 = Vv, =



Boundary Conditions: Reflection and Transmission
® What happens to a wave depends a lot on how the string is attached—ie, on the
specific boundary conditions to which the wave is subject.

® If the string is simply tied onto a 2™ string. The tension 7 is the same for both,
but the mass per unit length p presumably is not, and hence the wave velocities

v, and v, are different ( y = \/% ).

® [ et the knot occurs at z=0. The incident wave: ?, (Z , t) . Z, ei<k1z_w) , z<0
~ ~ i(—kjz—w

@ The reflected wave travels back along string 1: f,(z,7)=A.e “hizmwr , z<0

® The transmitted wave continues onto the right: 7T (z : t) . ZT g!hae e , z>0

in string 2.

@ The incident wave f,(z, f) is a sinusoidal oscillation that extends all the way to
—o0, and doing so for all of history. Same as f, and f, (to +00).

® All parts of the system are oscillating at the same frequency w.
@ Since the wave velocities are different in the 2 strings, the wavelengths and

wave numbers are also different: — —
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A

(a) Incident pulse (b) Reflected and transmitted pulses

® With incident and reflected waves of infinite extent traveling on the same piece
of string, it’s going to be hard to tell them apart.

® No finite pulse is truly sinusoidal. They can be built up as linear combinations of

sinusoidal functions, but only by putting together a whole range of frequencies
and wavelengths.

® For a sinusoidal incident wave, the net disturbance of the string is:

7( t)_ Zlei(klz—wt)_l_ZRei(—klz—wt), 7<0
TS e
Ae , z>0

® At the join (z=0), the displacement just slightly to the left (z=07) must equal the
one slightly to the right (z=0%). So the real wave f(z, t) is continuous at z=0:

flo,r)=r(0",1)



T
T :/- Knot Knot
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(a) Discontinuous slope; force on knot (b) Continuous slope; no force on knot

® If the knot is of negligible mass, the derivative of f must also be continuous:

19
G_f = —f Otherwise there would be a net force on the knot, and
0z |0- 07 |y therefore an infinite acceleration.
707, 0)=F (01
® The complex wave function obeys the same rules: g f _of
a < |O_ a < O+

® These boundary conditions determine the outgoing amplitudes in terms of the
incoming one:

NAI+NAR:ATN R ZR:k1_k2 levz_v1 Zl’ ZT: 2 k ZI: 2 v, Zl
ki (A, —A,)=k, A, kyt+k, Vit v, kit ik, Vit v,
. V,—V . . 2V .
= Apei=-2—1A " A e=—"2-A¢" forreal wave

v, +V, v, +v,



® If the 2" string is lighter than the 1° (u,<u, = v,>v,), all 3 waves have the

same phase angle (0,=0,=0,), and the outgoing amplitudes are
V,— Vv, 2v,

A, A=

Vit Vv, Vitv,

Ap= A,
® If the 2" string is heavier than the 1* (v,<v,), the reflected wave is out of phase
by 180° (§,+7=8,=0,). Since cos (—k, z—wt+§,—m)=—cos (—k, z—wt+J,)

vV, =V, 2v,

Ay, Ar=
Vitv, VitV

the reflected wave is “upside down,” and A, =

® If the 2" string is infinitely massive—or if the 1% string is simply nailed down at
the end—then A,=A,, A,=0, no transmitted wave—all of it reflects back.



Polarization
® The waves that travel down a string when you shake it are called transverse,
because the displacement | the direction of propagation.

® [t is also possible to stimulate compression waves by giving the string little tugs.

These waves are called longitudinal, because the VY
displacement from equilibrium is along the

direction of propagation. N0 0 0 0 O0O0ONMNOY @ Q Q Q Q0OQONINA0 @ Q Q Q Q000NN

® Sound waves, compression in air, are longitudinal; EM waves are transverse.

® There are 2 dimensions | any given line of propagation. Accordingly transverse
waves occur in 2 independent states of polarization.

XA XA

LY, v
E—— —_—

e Yy A
W Wz Z

(a) Vertical polarization (b) Horizontal polarization




® You can shake the string up-and-down,
ie, “vertical” polarization 7}

?v<z’t>zze(kz—wt)ﬁ |

!

or left-and-right, ie,“horizontal” polarization, :
fh<Z,t):Z€i(kZ_wt)§’ :

Y

or along any other direction in the xy plane

~~

f(Z, t>:Zei(kz—wt)ﬁ

e The polarization vector n defines the plane of vibration. Because the waves

A A

are transverse, n L the direction of propagation: n-z=0

(c) Polarization vector

@ In terms of the polarization angle §, n=cos @ X+sin 0 y

® The wave along any direction in the xy plane can be considered a superposition
of 2 waves—one horizontally polarized, the other vertically:

Y

f(z,t)=(Acosb)e k2= wt)f(+(As1n9) ik 2 ‘”))A'



Electromagnetic Waves in Vacuum

The Wave Equation for E and B
@ In regions of space without charge or current, Maxwell’s equations read

OB oE
V‘E:O, VXE:—E, V‘B:O, VXB:/LOEOE

® They constitute a set of coupled, 1*-order, partial differential eqns for E and B.

® They can be decoupled by
Vx(VxE)zV(%)—VzE

OB 0 o
— X — | = - XPB)=— -
Vi =R )= S VxB= e T
Vx(VxB)zV(V/})—VZB
OE 0 o
= X(NOGOE):NOEOE<VXE>:_NOGOFB
O°E O°B
2 2
= V'E=p,¢, PYER VB =y, 5 2

® We now have separate equations for E and B, but they are of 2™-order.



® In vacuum, each Cartesian component of E and B satisfies the 3d wave eqn,

1 0°
Vif=5d
V- Ot
® So Maxwell’s equations imply that empty space supports the propagation of EM
1
waves, traveling at a speed v = =3%x10°m/s=c
Vg €

® The implication is astounding: Light is an EM wave.

® ¢, & u, came into the theory as constants in Coulomb’s law and the Biot-Savart
law. You measure them in experiments having nothing whatever to do with light.
But according to Maxwell’s theory, you can calculate ¢ from these 2 numbers.

0 E

® The crucial role played by Maxwell’s contribution (u, e, —— ) to Ampere’s law;
Ho € ey

without it, the wave equation would not emerge, there would be no EM theory of
light.



xA

Monochromatic Plane Waves

® We now confine our attention to sinusoidal
waves of frequency w. Since different v
frequencies in the visible range correspond

to different colors, such waves are called

€ £ € € >
monochromatic. <
® If the waves are traveling in the 7 E TE lE E

direction and no x or y dependence; ¥

these are called plane waves, because the
fields are uniform over every plane | the direction of propagation.

oF (z, t):ﬁo e"(’”_‘"’), B (z, t):ﬁo k79t where ﬁoand ﬁo are the
(complex) amplitudes.

® The physical fields are the real parts of E and B, and w=ck

® Whereas every solution to Maxwell’s equations (in empty space) must obey the

wave equation, the converse is not true; Maxwell’s equations impose extra
constraints on E 0’ B o

eV-E=0, V-B=0 = E, =B, .=0.Thatis, EM waves are transverse: the
electric and magnetic fields L the direction of propagation.



oFE. dE. 0 d E dE d
- V- E= _l:Z l SO:Zki—IZk- = (k-E)=0
F 0x; T de dx, T do de do
- k-E=constant=>0 = k1lE < wave, not constant (static)
Similiarly, k 1 B

Thus E and B, when plane waves, are always transverse to the motion of the wave.

VXE:ZVEixﬁl:Z (Lﬁjxle) = VX(fA)=V fxA+fV XA

i,J

d E . dE
:Z( ’k><x,.):k>< _ 4 (kXE)
- \do dep dy
0B dB O
——=— 90: d (wB)
ot de 0t do
0B d
VXE:—E = d—(kXE—wB):O = Kk XE —wB=constant = 0
¥

- EXE=YB=vB - E.B, £=y - K.lE.B
k p B 7



The Electromagnetic Spectrum

Frequency (Hz)

Type

Wavelength (m)

1022
1021
1020
]019
1018
1017
10“3
1015
1014
1013
]012
]011
1010
10°
10°
107
10°
10°
10
10°

gamma rays

X-rays
ultraviolet

visible
infrared

microwave

TV, FM

AM

RF

10—]3




&

cB

1=0

L

+a

2
SR

¥y

¥y



The Visible Range
Frequency (Hz) Color Wavelength (m)
1.0 x 10" near ultraviolet 3.0 x 1077
7.5 x 10 shortest visible blue 4.0 x 1077
6.5 x 10 blue 4.6 x 1077
5.6 x 10 green 5.4 x 1077
5.1 x 10" yellow 5.9 x 1077
4.9 x 10 orange 6.1 x 1077
3.9 x 10 longest visible red 7.6 x 1077
3.0 x 10 near infrared 1.0 x 107°
® Faraday’s law, \V/ X E = — Ga_B , implies a relation between the electric and
4
magnetic amplitudes, to wit: —k ﬁoy =w INBOX , k EOXZ W §Oy = ﬁoz g Z X ﬁo

e E & B are in phase and mutually * A perpendicular; their (real) amplitudes are

k E IR
related by B,= o E,= 2 £ E
C N G » 7 G

OE
e VXB=y,¢, a7 doesn’t yield

a\

an independent condition. Eylc 2 \y | & __ _ _






Example 9.2: If K points in the x direg:ion, then B points in the y direction,

~ ~ ~ E
C

ikz—wt) A

E(z, t)ZEO elkimen g , B(z,t)= Y . Take the real part

0
A EO A
E(z,t)=E,cos(kz—wt+§)X, B(z,t)=—cos(kz—wt+d)y
C
the paradigm for a monochromatic plane wave.

® The wave is said to be polarized in the x direction (by using the direction of E).

® Generalize to monochromatic plane waves traveling in an arbitrary direction by
introducing the propagation (or wave) vector, k, pointing in the direction of

propagation, whose magnitude is the wave number «.

@ With k- r as the appropriate generalization of k z, M as the polarization vector,

Y

N o L E. .. .~  kxE
B(r,)=F * h B(r,t):_oel(krwt)kxll:k //(

C C

A

@ Because E is transverse, n-k=0. (Sois B.)

@® The actual (real) electric and magnetic fields in a monochro- r
matic plane wave with propagation vector k and polarization

N are r
E A

E(r,t)=E,cos(k'r—wt+d)n, B(r,t)=—cos(k-r=wt+d)kxn
C



® In some cases the direction of K of a plane wave at a given point may change
with time.

® Consider the superposition of 2 linearly polarized waves: one polarized in the x-
direction, and the other in the y-direction and lagging/leading 7r/2 in time phase:

E(z,t)=E,(z,t)+E, (z,t)=E cos(kz—wt)X+E, cos(kz—wtxm/2)y
=E, cos(wt—kz)X+E, sin(wt—kz)y

ellipticall
2 g2 ; : E. #E, lp . dy
= —-+—=cos (wi—kz)+sin"(wt—kz)=1 = polarize
Bl B g —p circularly
a1 Ey <O’ ! ) v > polarized
® When E,=EFE, = wt=tan
E, (0,1t
e If w=0, ie, counterclockwise/ Elliptically Polarized L e

clockwise, it is called positive/
negative (right-/left-hand)
circularly polarized wave.

amplitudes and differ with arbitrary
phase. Their sum E will be elliptically
polarized with tilt principal axes.



® A linearly polarized plane wave can be resolved into a right-hand (circularly)
polarized wave and a left-hand (circularly) polarized wave of equal amplitude.

E(z,t)=E,cos(kz—wt)X
E

=7O[cos(wt—kz)ﬁ+ sin(wt—kz)y]

E
+70[cos(wt—kz)ﬁ—sm(Wt_kz)g']



Energy and Momentum in Electromagnetic Waves

1 B’
® The energy per unit volume in electromagnetic fields is u = E ( €, E g ™ )
0

E’ .
@ In the case of a monochromatic plane wave B’ = — =M€ E ?, so the electric
C

. . . 2 2 2
and magnetic contributions are equal: u=¢€, E°=¢€, Egcos” (k z—w 1 +0)

® As the wave travels, it carries this energy along with it. The energy flux density

E XB
Ho

(energy/area/time) transported by the fields is the Poynting vector: S =

® For monochromatic plane waves propagating in the z direction,
S=ce,E cos’ (kz—wt+6)Z=cuz

® So S is the energy density (1) times the velocity of the waves (¢ zZ)—as it should.

® For in a time Af, a length ¢ At passes through area A

A, carrying with it an energy u A ¢ At. The energy per C
unit time, per unit area, transported by the wave is

therefore u c.

c/A\t



® EM fields not only carry energy, they also carry momentum. The momentum

S
density stored in the fieldsis g =—

2
¢ €
B . _ 0 2 2 A l/l A
@ For monochromatic plane waves g=— E_ cos (kz—w t+5)z——z
C C

® In the case of light, the wavelength is short (~5%x107"m), and the period brief
(~107'°s), that any macroscopic measurement will encompass many cycles.

® Therefore we’re not interested in the fluctuating cosine-squared term in the
energy and momentum densities; all we want is the average value.

® The average of cosine-squared over a complete cycle is 1/2, so
€0 .2 C€ 24 _
(u)=—Ey, (S)=—E;z, (g)= —E
2 2
The brackets <> denote the (time) average over at least one complete cycle.
® The average power/area transported by an EM wave is called the intensity:
C €,

IE<S>—7E

® When light falls (at normal incidence) on a perfect absorber, it delivers its
momentum to the surface.



® In Af, the momentum transfer is Ap=<g>A cAt, so the radiation pressure

€
(average force/area) is P = 1 Ap_% E2—£

AAt 27° ¢
® On a perfect reflector the pressure is twice as great, because the momentum
switches direction, instead of simply being absorbed.

® Explanation: The electric field drives charges in the x direction, and the

magnetic field then exerts on them a force ¢ v X B in the z direction. The net
force on all the charges in the surface produces the pressure.

Example: Fields of a Laser Beam: Consider a He-Ne laser beam of 100 W/mm?.

For its average energy density in such a beam,
)= (S) 1007J/s/(10"°m?)
C 3%x10°m/s

3
Lo o \/ 0:33)/m
8.8xX10 "C/mV

E2
=0.33J/m° = E’ =(E*= 2°=<”>

€o

=1.94x10°V/m

€

Erms -4
> B_ = =6.5x10 "T(=6.5G)

rms
C



Electromagnetic Waves in Matter
Propagation in Linear Media
® In Inside matter, but no free charge or free current, Maxwell’s eqns become

oB oD
V‘D:O, VXE:—E, V’B:O, VXH:E

® If the medium is linear, D=e E, H= % B , and homogeneous (e and 1 do not

vary from point to point), the equations reduce to

OB o V!
V'E:O, VXE:—E, V'B:O, VXB:HGE

which differ from the vacuum analogs only in the replacement of u,€, by L e.

® EM waves propagate through a linear homogeneous medium at a speed

V= 1_ ¢ < n= \/ €M index of refraction
Ve n €o Mo

e For most materials, y is very close to i, so n=+€, < ¢, : dielectric constant

® Since € =1, light travels more slowly through matter.

® All of our previous results carry over, with the simple transcription €,—€, p,—u,
and hence c—v.



2 2
® The energy density is y = eL + B , and the Poynting vector is § = EXB
2  2u H

® For monochromatic plane waves, the frequency and wave number are related

by w=kv, also B= E , and the intensity is [/ = % E(z)
v

® What happens when a wave passes from one transparent medium into another
—air to water, say, or glass to plastic? It’s related to the boundary conditions.

® As in the case of waves on a string, there is a reflected wave and a transmitted
wave. The details depend on the electrodynamic boundary conditions,

B, B,
Hy o Mo

® These equations relate the electric and magnetic fields just to the left and just
to the right of the interface between 2 linear media.

1

61Ef:€2E2’ EQZEQ, Bf:Bé’




Reflection and Transmission at E @

Normal Incidence
® [et the xy plane forms the boundary v
between 2 linear media. A plane wave !

of frequency w, traveling in the z B,

direction and polarized in the x
direction, approaches the interface  Ep

from the left: Bg
ﬁ ( ) (klz—wt) }A( v,

Interface
ﬁ (Z t) i(kyz—wt) A
Vq
_ = i(—k,z—wt) A
( )‘ Lype
® The reflected wave ~ back to the left in medium 1.
( )_ E OR i(—kjz—wt) A
= e
V4
ET<Z’I):EOT (kyz—wt) A
@ The transmitted wave E on to the right in medium 2.
i~ __For ilkyz—wt) A
B, (z, t) = e

® The minus sign in B »» as required by v ﬁ i l:t X ﬁ — or by the fact that the
Poynting vector aims in the direction of propagation.



® At z=0, the combined fields on the left, E,+E; and B,+ B, must join the field
on the right, E, and B, in accordance with the boundary conditions.

@ In this case there are no components L the surface, so

Ly, +Ey = Ey;

E, —E E ~ ~ ~ U, v, M n
01 or _ Zor B o-F . =8F, < _ BV a7
HqVyq Ko Vo HoVy Moy

. B,=1BE B -2 7

S — E
OR — Ly, 0T 01
1+ 1+
® These results are similar to the ones for waves on a string.
v, ~ Vo=V ~ ~ 2V, ~

If py=p, = f=—= E .~ E, , E, = E,, asinstring
Va Vity, Vity,

® In that case, the reflected wave is in phase if v,>v, and out of phase if v,<v,.

® The real amplitudes are related by

vV, —V, n,— n, 2v, 2n,
N Ly, = N Loy Egr= N Ly, = N
VitV, n,+n, Vit V, n,+n,

E E

OR — 01



® The ratio of the reflected intensity to the incident intensity is (for pu; = p,= tty)

i E? n.—n. \>
Reflection coefficient R = — = (;R = ( L 2 )
I, Ej3, n,+n,

® The ratio of the transmitted intensity to the incident intensity is

2
/ €. v, E 4n. n
. . . T 2 72 oT 17°%2
Transmission coefficient 7 = — —

2
I, €v Ey,

(n1+n2)2

® R and T measure the fraction of the incident energy that is reflected and
transmitted. R+7=1, as conservation of energy requires.

® When light passes from air (n,=1) into glass (n,=1.5), R=0.04 and 7=0.96. So
most of the light is transmitted.



-
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Reflection and Transmission at Obligue Incidence

® The more general case of oblique incidence, in kp

which the incoming wave meets the boundary at kr

an arbitrary angle 6. 0r 0y
-
Z

® Normal incidence is a special case of oblique

o : _ 0
incidence, with 6,=0. . [ Plane of Incidence

® Monochromatic plane wave

©

ST A S

B, (r,t)=—
N
=~ = i(kyr—wt) 1 ~ = ik, r—wt)
® Reflected E, (r ’ t> B ]::OR eN transmitted E; (r ’ )_ ]?OT eN
wave  ~ k. <XE ) wave ~ k.- XE
B, (r, 1)=—— B, (r 1)=—
Vq V)

® All 3 waves have the same frequency w—that is determined once and for all at

_w _ _ _ _g Y2, M
thesource:v—; = k,vi=k,v,=k,v,=w = kl_kR_v kT_n k..
1 2

® The combined fields in medium 1, E E and B + B ., must be joined to the
fields E and B in medium 2, using the boundary conditions

ik, r—wt)_l_ i(kpyr—wt)

¢ — ik, r—wt)

e at z=0




® Because the boundary conditions must hold at all points on the plane, and for all
times, these exponential factors must be equal (when z=0)

= k, r=k,r=k, r at z=0 = k,sinf,=k,sinf,=k,sinb,
k,,=kp,=ks,, x=0

= Xk1x+yk1y:xka+ykRy:'Xka+ykTy ~ k :ka:k

I x T x° y:O

6, is the angle of incidence, 0, is the angle of reflection, 0, is the angle of
refraction (or the angle of transmission), measured with respect to the normal.

e Orient our axes so that k, lies in the xz plane (ie, k,,=0); so too will k, and k;.

1 Law: The incident, reflected, and transmitted wave vectors form a plane
(called the plane of incidence), which also includes the normal to the

surface (here, the 7z axis).

2" Law: The angle of incidence = the angle of reflection, §, =6, law of reflection

a sinf, n, . ,
3" Law: — = law of refraction—Snell’s law
sinf, n,
® These are the 3 fundamental laws of geometrical optics. Little electrodynamics

went into them: no specific boundary conditions involved. Therefore, any other
waves can be expected to obey the same “optical” laws when they pass from one
medium into another.




‘Total Reflection
® For Snell's law with n,>n,, ie, when the wave in medium 1 is incident on a less

dense medium 2, then In that case, 0.>0,.

@ When 0,=7/2, at which angle the refracted wave glazes along the interface; a
further increase in 6, would result in no refracted wave, and the incident wave is
then said to be totally reflected. The angle of incidence in this situation is called

- : _ny o7 _ ..y
the critical angle : sinf/ =—sin— = 6 =sin —
n, 2 n,
n
oIf §,>0 = sinf,=—sinf,=y>1 = COSHT:i\/l—Sinngi’—i\/’yz—l
n, A

Critical case

= HT:§+iln(fy+\/fyz—1)
L

® 1, < n, tells us that total

internal reflection cannot
occur when the incident light
is in the medium of lower
index of refraction.

® This effect is heavily
applied to optical fibers.



@ After taking care of the exponential factors, the boundary conditions becomes

~y ~y

€1 <EOI+EOR)L — € <EOT)L , (ﬁ01+ﬁOR)L = <B0 T)J_ , L : normal to the plane

~ ~ ~ (ﬁ +B )|| (ﬁ >||
(Eg,+Eo )=  (Eg.)y Olu = L(L)T ’
1 2

| : parallel to the plane

v, Bp=k XE,
® Suppose the polarization of the incident wave | the plane of incidence (the xz

plane); it follows that the reflected and transmitted waves are also polarized in
this plane (Prob. 9.15). Br

AX Er

_ oy . kR ER \\

® The boundary conditions give N Ky
~ ~ €y N\
—EOIsin01+EORsin9R=—€—2E0Tsin9T S
1 N
N
0=0 S
E,,cos0,+E,,cos0,=FE,, cosl; N
EOI_EOR: Loy S
M1 V4 oV S
® By the laws of reflection & reféaction k; @ §
~ ~ ~ COS N
Ly tEyz,=aky, < a= - N\
cos 0, B N\
{ \

HiVy M7y

E —-E =BE.. <
o ox=F Eor g HoVy oy




= . = a—p fa T = 2 % Fresnel’s equations
OR ™ I 0T — 07 . . . . .
at+f a+f polarization in the plane of incidence

® The transmitted wave is always in phase with the incident one; the reflected

wave is either in phase (“right side up”), if >0, or 180" out of phase (“upside
down”), if a<p.

® In the case of normal incidence (6’I=O), a=1,

~ 1 — = - 2
= E,,= g E,,, E ;= E,,, as before
1+3 1+
® The amplitudes of the transmitted and n, . ’
reflected waves depend on the angle of \/ 1 —sin20 1- P sin ¢,
incidence, because « is a function of 9,: o= _ 2
cos 0, cos 0,

® At grazing incidence (9,=90°), « diverges, and the wave is totally reflected.

@ There is an intermediate angle, 0, (called Brewster’s angle), at which the
reflected wave is completely extinguished. This occurs when

1-3°

nq i 2
() 7
ny

a=8 = a’=8> > sin29B=



1.0 ¢

i air (n,=1) to glass (n,=1.5)
0.8 T
o5l ~or :
. I EO] ]
04} 7
i 0 i
0.2+ b ]
00 | | 1 l | l ] | | | | | | I | | > e[
i 20° 40° 60° 80°
—0.2 y
i Loy, ]
—04 B EO[ -
i . ny o, B U
® For the typical case pu,~pu, = [f=— = sin"0,= ; = tanf,=—
ny 1+ ny
® The power per unit area striking the interface is §-z . Thus the incident
€1V

€,V
intensity /, = E. cos@,, the reflected intensities /,= 12 ~ E; . cos 0,

the transmitted intensities [ = €2 Vs E?
= o7 €0s 0.,



1.0 ———

0.8| T

0.6 d
i air (n,=1) to glass (n,=1.5)

0.4 r

0.2: l &l

0.0 | | | ] ] I
0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

® The reflection and transmission coefficients for waves polarized | the plane of
incidence are

REQZ(EOR)ZZ( a—ﬂ)z P (EOR)ZcoseT: 4ap
I, E,, at+f ) I, v, \ £y, cost, (a+p)
® R is the fraction of the incident energy that is reflected—it goes to 0 at
Brewster’s angle 0,; T is the fraction transmitted—it goes to 1 at 6,.

® R+T=1, as required by conservation of energy: the energy per unit time
reaching a particular patch of area on the surface is equal to the energy per unit
time leaving the patch.



® Now consider the case of polarization

1 the plane of incidence. a
® The boundary conditions give Reflected -
0=0 wave e )
% ’E % Transmitted
—sin 0, +—% sin §, =— sin @  vave
V V V ! !
1 1 2 -5
Lo tE g=Eqp <
E, cosO, _ Eqgcos 0. _ E,; €080, ncident
M1V HqV1q po v,  Wave L
@ By the laws of reflection & refraction : H.
!
E E T?OT, EOI—EOR:aﬂEOT Medium 1 | Medium 2
~ l1-afB~ -~ 2 o (€1, 1) | L2, p2)
= L= orr Eor= Ly, z=
l+a B 1+a g z=0

Fresnel’s equations, polarization L the plane of incidence

® The transmitted wave is always in phase with the incident one; the reflected
wave is either in phase if « 3< 1, or 180° out of phase if « 8> 1.

® In the case of normal ~ 1-8 i ~ 2

incidence (6,=0), a=1, ~ For= 1+8 Eors Eor= 1+8 Eo,, asbefore



T

2

n
® The amplitudes of the transmitted and — \/ —2 —sin” @ I
reflected waves depend on the angle of B \/ 1—sin" 0., IR
incidence, because « is a function of §: &~ = cos 6, T cos 6,
2
® [s there a Brewster’s angle? E, =0 meansa f=1 = T2 _ sin” 9, + ] cos” 0
) OR 2 B 2 B
(ot P—1 ny Hq
n,ln, ) — n n
cos’ 9, =20 o1 o B2 lang o B2y
(ko) py) =1 Hioony Hioony

® For p,~u, = n,~n,, only true for indistinguishable media, so no reflection. But

that becomes true at any angle, not just at a special “Brewster’s angle.”
)

e If /1, were substantially different ; |
from p,, and the conditions above _g _

are satisfied, it would be possible .8
to get a Brewster’s angle, but the .7 4
media would be very peculiar. -6 -

® The reflection and transmission -4 -
coefficients ‘

R= Eor 2: 1-ap "2
-\ E,, l+aB ) .14 arr (n,=1) to glass (n,=1.5)

L i 1 L 1 A L 1 >

2
€2V (EOR) cosbr __4aB ¢ 10 20 30 40 50 60 70 80 90 O
e, v, \ E cosf, (1+aB) R+T=1

I
01



Absorption and Dispersion
Electromagnetic Waves in Conductors
® The free charge density p, and the free current density Jf being O is perfectly

reasonable when you’re talking about wave propagation through a vacuum or
through insulating materials such as glass or (pure) water.

@® But in the case of conductors we do not independently control the flow of
charge, and in general Jf is certainly not 0.

® According to Ohm’s law, the (free) current density in a conductor is
proportional to the electric field: J=7J. . +J ; = J=0K

® Thus Maxwell’s equations for linear media assume the form

0B OE
VE= VxE=—22, V.B=0, VxB=poE+ue’—
€ Ot Ot
® The continuity equation for free charge
op 0p; o -2
V'Jf:_ﬁ—tf = —=-oV-E=—"p, = pl1)=p,(0)e
any initial free charge p,(0) dissipates in a characteristic time 7= g :

@ So if you put some free charge on a conductor, it will flow out to the edges. The
time constant 7 affords a measure of how “good” a conductor is.



® For a “perfect” conductor, o0=00 and 7=0; for a “good” conductor, 7is much less
. . . : 1
than the other relevant times in the problem (in oscillatory systems, 7 < o ); for

a “poor” conductor, 7is greater than the characteristic times (7 > ) ).

@ Not interested in this transient behavior. From then on, we focus on p=0, Jf:O,

OB OE
V-E=0, V- B=0, VXE=——, VXB=pocE+ue—
Ot ot
® These differ from the corresponding equations for nonconducting media only in
the last term—which is absent when o=0. ) O°E OE
VE=pe—5+po s
® Manage to obtain modified wave equations for E / B: 82t !
V2B o°B N 0B
=€ o —
APy

® These equations still admit plane-wave solutions,

~y

E(Z’t):ﬁoei(%z_wt), ﬁ(Z,I>=§Oei(Ez_wt) =
- %=k+i§ = kE\/%(\/sz2+02+ew), ﬁE\/%(\/ezw2+02—ew)

~y

kzzuewzﬂ',uaw e C

® The imaginary part of k results in an attenuation of the wave

~~ ~y ~~

E (Z, t):EO e_EZei(kz—wt), B (Z ’ t>:§0 e—fzei(kz—wt)



0B OE
V-:E=0, V- B=0, VXE=———, VXB=puocE+ue—

Ot ot
0B 5 OB 0
X XE=——— %— E=—Vx—=-—(VXB
v (V az) - V< ) v v Ot arW )
0 OE ol OE
- —V’E=——-— E + — = E = + —
V at(,ua ,ueat) V ,ue@z ,uaat
The equation for B is similar to the one for E .
772 2 2 2 2 kz_ 2 __ 2
k"= (k+i &) =k™+2k&i—-E=pew+ipow = T =pew
2ké=pow
o W 2 u o w ’ 2 4 2 72 ,u20'2w2
= §='u = k—( )Z,uew = k' —pew k— =0
2k 2k 4
keR = k22“6w2+\/“262w4+“202w2=“wWezw2+az+ew)
2 2

= kEi\/%(\/ezw2+az+ew) = SEi\/%(\/ezw2+az—ew)

Choosing + or — dependson e **<1. Choose + if e **—e¢ 19,



® The distance taken to reduce the amplitude by a factor of — (about —) is the
e

skin depth: J = € a measure of how far the wave penetrates into the conductor.

® The real part of k determines the wavelength, the propagation speed, and the

.. 2T W ck
index of refraction, in the usual way: A\ = a V= i n=-——

® The attenuated plane waves satisfy the modified wave eqn for any E jand B,
But Maxwell’s equations impose further constraints, which serve to determine

the relative amplitudes, phases, and polarizations of E and B.

e V-E=0 and V-B=0 rule out any z components: the fields are transverse. We
orient our axes so that E is polarized along the x direction:

- g . o T lkimwn g ~ OB
E(z,t)ZEoe_gzel(kZ_m)x, B(z,t)= kE Cepilhameng o VXE:_E

® Define k =K ¢'¥ « KE|%|=\/k2+§2=\/,uw3/62w2+02, ngtanl%

= the complex amplitudes E,=E, e’ B,=B, e’ = - Lo ¢

® The electric and magnetic fields are no longer in phase: 0 ,— 0. =¢; the
magnetic field lags behind the electric field.



k=k+i& = kE\/%(\/ezw2+az+ew), fE\/%(\/ezwzﬂfz—ew)

— _w_2¢
= 2ké=pow = Vp_k_,LLO‘
)\—27T ZW\/ 2 \/\/€w+0 —ew_47T£
Lo w
El \/ \/\/6 W tHotew= 2k _ _4m — ‘
¢ Qo w ,uaw)\ pov,
KE%:\/ Z%uw\/e W+ o’
r/;:Ke”p = 2 2, 2 ™
ngtan_lé:tn_l\/e w+00 EW — as o — oo
— 0O0as o— 0
- kv
~ W _ W —is_ W . . » .
===— = —(k — — k —
Vi & Ke K2< lﬁ) K2< l§>
. ~

~ :Ck:Ck+iC€_C<1+i%):n(1+z\/€w+a —ew)
1%
p

o



Y

B |
® The (real) amplitudes of E and B are related by E_O = g = % 4\}/62 wi+ o’
0

® The (real) electric and magnetic fields are,
E(z,t)ZEOe_gzcos(kz—wt+5E ) X

B(z,t)=B8, e‘gzcos(kz—wt+5E+q§)§7:§Eoe_“cos(k I—wt+d, . +P)y



Insulator (cw>o0):

2 2
k=wvep | 1+—2— |, e=Z /B K~wep (1+ 7 ), tangp=—2
1 o 2T o b, o
= 1— , =~ — ]_— , _—~ ./ 1+
g VEN( 8€2wz) w Ve 862w2) E, " 8¢ w

Good conductor (e w<0):

~ |HWO cw ~ |[HWO _Ew ~ ~1_E&W
k ~ 5 (1+20),§ \/ 5 (1 20),[( Juwo, tang =1 -

B B
) - 2_w(1_g), N (1_2), By [po Bo
wo

® For o—o,

0 |insulator

e [pwO N _m 2w |2ew
k_g_ 2 ’ tan¢_1 = ¢_4) Vp_ ,U/O'_ o Vp,insulator—>0
A227r\/i=27r5
b wo
® For copper, o0 =6x10"/(Ohm-meter) = c¥~10 "%y <« €€,

o

6.5% 10" * met _
p=p, = 0~ 7 T 510 % meter for v ~10° Hz microwave



Material ¢ (S/m) f =60 (Hz) 1 (MHz) 1 (GHz)
Silver 6.17 x 107 8§27 (mm)  0.064 (mm)  0.0020 (mm)
Copper 5.80 x 107 8.53 0.066 0.0021
Gold 4.10 x 107 10.14 0.079 0.0025
Aluminum 3.54 x 107 10.92 0.084 0.0027
Iron (u, = 10°) 1.00 x 107 0.65 0.005 0.00016
Seawater 4 32 (m) 0.25 (m) f

Example: The electric field of a linearly polarized uniform plane wave propagating
in the +z-direction in seawater is E (z = O) =x 100 cos (107 T t) V/m. The
constitutive parameters of seawater are € =72, u =1, and 0=4 S/m, S=(".

w=10"71 =

Wave number k _
Attenuation constant &

phase velocity v

skin depth d =

.87

o 4
We € 10" 7rx72x8.85x10
U wo

2
W 10 s 6
— =3.53X10 " m/s, wavelength A=
~k 8.85

1__1 =0.112m

~200>1

good
conductor

—J57x10°X4 7 X107 xX4=8.89/m

T
—=0.707
A m




Distance z; at which the amplitude of wave decreases to 1% of its value at z=0:

In 100 _ 4.605 _ ) c1g 1
3 9

e *7=0.01 > ¢£7=100 = gz,=
The expression of E (V/m) & B (T):

E(z,t)=E e *“cos(kz—wt)Xx=100¢ ***cos(8.89z—-10"7t)Xx < 6§,=0
K~Vpwo=p, pyowo=47m/m

= B(z,t):BOe_fzc:OS(kZ—wt+¢)§’:§Eo€_£ZCOS(kZ_Wt+7rl4)§’
=4%x10""e ***cos (8.89z—10777f+%) y

At 7z=0.8m:
E(0.8m,7)=100¢ **“cos(8.89 z— 10" 7 ¢)x=0.0815cos (10" mt—7.11) X
B(0.8m,7)=4%x10"¢ > “cos (8.89 z— 107m+§) y

=3.26 X 10" ° cos (107 Tt—7.9)y



Reflection at a Conducting Surface
® The boundary conditions used to analyze reflection/refraction at an interface
between 2 dielectrics do not hold in the presence of free charges and currents.

® The more general relations

B! B )
e,Ey—e,E;=0,, B,=B,, El-E}=0, ——-2=K xn
Hi B
o free surface charge - normal vector to the surface
K , : free surface current from medium 2 to 1

@ For ohmic conductors (J, = o E) there can be no free surface current, since this

would require an infinite electric field at the boundary, K ~0.

® Let the xy plane forms the boundary between a nonconducting linear medium 1
and a conductor 2. A monochromatic plane wave, traveling in the z direction and
polarized in the x direction, approaches from the left

~y

~~

-~ T ] - A L ilkjz—wt) A
EI(Z, t):EOIez(klz wt)X ’ BI(Z, t): 017 ¢ (k, t)y

Vi~
~ ~ e —w ~ ~ E (= W N
the reflected wave ER(Z,t):EORe’( et g B (z,1)=——2F o hzmwr)
Vi
- N kz ~

the transmitted wave B, (z,7)=E,, ¢ “'x, B,(z,1)=

which is attenuated as it penetrates into the conductor.



® At z=0, the combined wave in medium 1 must join the wave in medium 2,
pursuant to the boundary conditions.

El‘L:Ezl:O(transverse)z o,=0 Bf:BZLZO(transverse): 0=0

[ 3 T T _ T
E, =E, N = Ly, tEg, Loy
Eoj—Eor _ ky ~ ~ ~ > >_ MV
K,=0 = Y Eop = Eo—Egw=BE,;, = B= T Ky
- 1-8 ~ - 2
i OR:1+’B‘ Eoy,, OT:mEOI

® These results are formally identical to the ones that apply at the boundary
between nonconductors, but notice 3 is now a complex number.

Eyr=—Eg,
E,,= 0
® In the case the wave is totally reflected, with a 180" phase shift, standing wave.

® For a perfect conductor 0 >0 = k,—>o0 = [f—oo0 =

® That’s why excellent conductors make good mirrors. You can paint a thin
coating of silver onto the back of a pane of glass—the glass has nothing to do

with the reflection; it’s just there to support the silver.

® Since the skin depth in silver at optical frequencies is less than 1004, you don’t
need a very thick layer.



OForaperfectconductora—mo = k2—>oo = rB—mo = IEOR:_EOI
E 0]

" R N 0T
E1:EI+ER
— T i(k Z_Wt)’* T i(—k z—wt),\ ”
_EOIe 1 X+E0Re 1 X wl = 3n/2
= ik, z —k,z —ilwt & w1=!/2 &”'—-‘-5‘[/4
=FE_ (e "—e e X
OI,\(, Ciwt ) ol =n/4.,3n/4 wt =0
=2iE,, e “'sink,zx
B =B +B,
_EOI i(k,z—wt) A EOR i(—k,z—wt) A
o € o (a) E) versus z.
V1 vl
E

=— (e ") ey Wl = /2 ur-:oj
E wl =7 =

0l —iwt A Yo
=2——e¢ “'cosk,zy g
V1

standing wave s

(b) H, versus z.




The Frequency Dependence of Permittivity
® The propagation of EM waves through matter is governed by 3 properties of
the material: the permittivity €, the permeability u, and the conductivity o.

® Each of these parameters depends on the frequency of the waves. It is well
known from optics that n=./€, is a function of wavelength.

@ A prism or a raindrop bends blue light more sharply than red, and spreads
white light out into a rainbow of colors—dispersion.

® Whenever the speed of a wave depends on its frequency, the supporting

medium is called dispersive.

1.480

= _

R

Q

S 1470

2

Y — o

g 1 A (Angstrom)

'qé 1.460 1 =10"""m=0.1nm
1.450

4000 5000 6000 7000 Angstroms
Wavelength, A (in air)



® Because waves of different frequency travel at different speeds in a dispersive
medium, a wave form that incorporates a range of frequencies will change shape
as it propagates.

® A sharply peaked wave typically flattens out, and whereas each sinusoidal

: . W
component travels at the ordinary wave (or phase) velocity, v = —

k
® The packet as a whole (the “envelope”) moves at the so-called group velocity
_dw
YT dk

® While the disturbance by dropping rock into water as a whole spreads out in a
circle at v,, the ripples making it up travel twice as fast (v,=2v, in this case).

® They appear at the back end of the packet, growing as they move forward to
the center, then shrinking again and fading away at the front.

® The energy carried by a wave packet in a dispersive medium does not travel at

the phase velocity. Therefore, in some circumstances v, comes out greater than c.
vV

—
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® Try to account for the frequency dependence of in dielectrics by using a
simplified model for the behavior of the electrons.

® The classical model of atomic-scale phenomena is an approximation to the

truth; nevertheless, it does yield qualitatively satisfactory results, and it provides

a plausible mechanism for dispersion in transparent media. Electron
X

® The electrons in a nonconductor are 4 E

bound molecules. Here we shall picture v kspﬁng

each electron as attached to the end of a — >

spring, with force constant k

spring:
_ _ 2
Fbinding o spring X=—"mwW,Xx W

k spring . .
w,=4/—— natural oscillation frequency

m

® Any binding force can be approximated this way for sufficiently small
1

displacements from equilibrium, since U (x)=U (0)+ U (0) x+§ U (0) PRI

Set U(0)=0, and —F=U (0)=0, k_. =U"(0)

spring

d x

® There will be some damping force on the electron: F damping = — 1Y d_
[

® One possible damping is the EM radiation.

M



® In the presence of an EM wave of frequency w, polarized in the x direction, the
E

electron is subject to a driving force F =qE=qgE,coswt < B C

driving
® Putting all this into Newton’s 2™ law gives negligible
d” x d* x dx 9
m d f2 — © tot _Fbinding+Fdamping+Fdriving m d l‘z +m Y E'l'm wO X—=(q EO COS w ft

@ Our model describes the electron as a damped harmonic oscillator, driven at
frequency w. (The much more massive nucleus remains at rest.)

® Regard the equation as the real part of a complex equation:
d2 Rj d % ~ —lw ~ ~ —lw ~ E
> T +w§x=iEoe L= X=Xp€ L= xo:q 5 20.
dz d1 m mw,—w —i7vyw
g E,e'” lex dipol t
~ () — o~ () — 0 complex dipole momen
= Plt)=q%(1)=2——5— v
m wy—w"—1ivw use thereal part
® The imaginary term in the denominator means that p is out of phase with E—
1 Yw
2

2

lagging behind by an angle tan
when w>>w,. Wo— W

, very small when w<<w, and rises to 7

® In general, differently situated electrons within a given molecule experience
different natural frequencies and damping coefficients.



@ If there are ]j electrons with frequency w, and damping 7; in each molecule, and
N molecules per unit volume, the polarization P is given by the real part of

VLY S BeoxE e xS
j w —wi—iy w j susceptibility

® We used to use P=¢, x E. In the present case, P is not proportional to E (not a
linear medium) because of the difference in phase.

® All of the manipulations carry over, on the understanding that the physical _
polarization is the real part of P, just as the physical field is the real part of E.

e D=FE < € (1 +%,) complex permittivity
= € = L1+ Ng- Z > {j complex dielectric constant  ($)
€o me, 7 wi—w iy w

@ Ordinarily, the imaginary term is negligible; however, when w is very close to
one of the resonant frequencies w, it plays an important role.

~~

® In a dispersive medium, the wave eqn for a given frequency V2 —r L,

ot

E o/ k:-1) with the complex wave

It admits plane wave solutions, E ( z, t) =—E,e

number ’Ez\/zuo w=k+i& = E(Z,t):ﬁoe—ﬁzei(kz—wt)



az

® The wave is attenuated because the intensity o< E? o< e “*=¢~ 2*%, where a =2 ¢

is called the absorption coefficient.

ck
® The wave velocity v,= % and the index of refraction n = xE

® Here k and £ have nothing to do with conductivity; they are determined by the
parameters of our damped harmonic oscillator.

® For gases, the 2™ term in ($) is small, by using v1+x~1 +% for x <1

¢ ¢ me, " w?—w —i7,
_ck _ qu f,-(w?_wz)
n—7—1 2 m € ( 2 2)2+ 2
= o J \W; j
_ N ¢ w’ Ji,
a—2§2 me.c Z( 2 2\2 2 2
0 j wj—(,U)+’ij

® Most of the time the index of refraction i
rises gradually with increasing w; —2Y; w0 W; +27;
frequency, consistent with our experience from optics.

® However, in the immediate neighborhood of a resonance
the index of refraction drops sharply—anomalous dispersion.



® The region of anomalous dispersion (w,<w<w,) coincides with the region of
maximum absorption; the material may be opaque in this frequency range.

® The is because the electrons are driven at their “favorite” frequency; the
amplitude of their oscillation is relatively large, and thus a large amount of
energy is dissipated by the damping mechanism.

® It shows n<1 above the resonance, suggesting that the wave speed exceeds c.
But it is ok since energy does not travel at the wave velocity.

® We also need to consider the contributions of other terms in the sum, which

add a relatively constant “background” that, in some cases, keeps n>1 on both
sides of the resonance.

® The group velocity can also exceed c in the vicinity of a resonance in this
model. But no causality is violated.

® Staying away from the resonances, the damping can be ignored, and the
Ngq > /

2

formula for the index of refraction simplifies: n=1+ 5
2 meg, j wj — W
® For transparent materials, the nearest significant resonances typically lie in the

. 1 B 1 . w2 —1N 1 . wz
ultraviolet, so w<w; = 5 = S ~— +—

wj—w wj W 0y

J J J



= n21+ Zf— wz Z_J
me, w]. 2me0 ;oW
= n:1+A(1+%) Cauchy’s formula < )\:27r£

A the coefficient of refraction , B : the coefficient of dispersion

® Cauchy’s equation applies reasonably well to most gases, in the optical region.

Selected Problems: 9, 13, 18, 21, 26, 29, 35, 39



Guided Waves

Wave Guides

® Consider EM
waves confined to
the interior of a L
hollow pipe—wave guide.

® Assume the wave guide is a perfect conductor, so E=B=0 inside the material,
and hence the boundary conditions at the inner wall are E'=0 ., B =0

® Charges and currents will be induced on the surface in such a way as to
enforce these constraints.

® For monochromatic waves propagating down the tube, E & B have the form
E (x,y,2, t)ZEO(x, y)ei(kz_w), B (x,vy,z, t):]NSO(x, y)ei(kz_w)
® The electric & magnetic fields must satisfy Maxwell’s equations, in the interior

of the wave guide: V- E=0, V-B=0, VXE:—%—I:, VXBZ%%—?
C

® The problem is to find functions ﬁo and ﬁo such that the fields obey the
Maxwell’s equations, and subject to the boundary conditions.

—



® Confined waves are not (in general) transverse; in order to fit the boundary
conditions we have to include longitudinal components (£_and B)):

ﬁo(x,y)zgxﬁ+5y§'+gzi, ﬁo(x,y)ZBxf(+By§'+BZi, ¢B#kxE in general
® Putting this into Maxwell’s equations, ¢ k # w here

OB OE . .
Use VXE:_E’ VXB:%E — Ei:gi el(kz—wt) Bi:Bi ez(kz—wt)
C
0E, 0E, 0E. | | 0E.
ax_éy: iwB_, ay—zké’y: iwB._, zké’x—ax: szy
0B. 0B y " 0B "

y x:_._g, z_.kB:_._g, kB_ z:_._g
ox Oy lcz 0y PR lcz 0 FEELTEY lcz ’
e__id (L 0& 0B\ il ( 06 0B

= + — —

. X wz_czkz ﬁx i 8y ’ Yy wz_czkz ay i ax
T (kazsz_waf:z) o id (kazsuwasz)
W=k ox >0y )’ W=k’ oy ¢* 0x

Use V- E=0, V-B=0

2 2 2 2 2 2
= ( 82+ 82+w2—k2)82:0, ( 62+ 0 +w2—k2)BZ:O decoupled
ox" Oy 0 x

C




o0&

. . d . 2 . _ Z
lka—leyzax 3 lkgx—lkay—kax
oB 2 oB
. W . Z . W .
—i—=& +ikB = —1— = -
L e D, 3y i EFikwbB, way
2 o0& oB ic? o0& oB
. kz_W_ £ =k z z £ = k z z
N ( ) e ey T wz—czkz( ax“"ay)
Similarly. € ic’ (kﬁgz 6[32)
1milarly, = —
y y wZ_CZk2 ay 1 ax

E(x,y,z)=E(x,y) e

OE. OFE, OF . o 0€&
0= E = X y z_ i(kz—wt) x y k&
v 8x+8y+8z (8x+8y+l ‘
o, 0€&
= 0= +—2+i k€
ox Oy -
ic’ 0°E. 0° B, ic? 0 €. 0° B |
=——5 5 | k St w +————5 | k W +ik &,
w —c k 0 X xdy w —c k 0y yox

2 2 2
0



@ It is convenient to classify the propagating waves in a uniform waveguide into 3
types according to whether £_or B_ exists:

1. Transverse electromagnetic (TEM) waves. These are waves with £ =B =0.
2. Transverse magnetic (TM) waves:  These are waves with B =0 but £ _#0.
3. Transverse electric (TE) waves: These are waves with £ =0 but B_#0.

® It turns out that TEM waves cannot occur in a hollow wave guide.

OE. OF
E.=0 = “+—==0 <« V-E=0 V =x o . 0
Proof: Ox 0Oy = = 8_ y@y
OE OF, ~ 0B =
B.=0 = L — =0 « VXE=—— V,E,=V,xE,=0
: 0 X 0y Ot
~a V=0
= EO__VICI) = 0P = ®=constant = E,=0
EO,boundary:O E| :O
boundar

® This argument applies only to a comp{etely empty pipe—if you run a separate

conductor down the middle, the potential at its surface need not be the same as

on the outer wall, eg, the coaxial cable and the parallel-wire transmission line,
and hence a nontrivial potential is possible.



vl

The Coaxial Transmission LineT a | il .
® A coaxial transmission line does ? z
admit modes with EZ=O and BZ=O,
ie, the TEM waves.

® In this case Maxwell’s equations yield k = Y o5 vy = ¢, and are nondispersive

C
= ¢B=E, ¢cB=—E, ELB, V-E=0, V:-B=0
OFE, OE OFE, OFE,

+—2=0, > — =0
ox Oy 0 X 0y
0B, 0B, 0B, OB,

+ =0 , — —
ox Oy ox 0y
® These are precisely the eqns of electrostatics and magnetostatics, for empty

space, in 2D; the solution with cylindrical symmetry can be borrowed from the
case of an infinite line charge and an infinite straight current

E0<S,¢>:%§, Bo(s,qb)Z%q?b < A: some constant

=

0

E(s,¢,z,t)= écos(kz—wt)§
s

B(s,¢,z,t)=icos(kz—wt)$

CS

= the real part



Transverse Magnetic (TM) Waves
® TM waves do not have a component of the magnetic field in the direction of

propagation, B,=0. The behavior of TM waves can be analyzed, subject to the

. . . 0’ o wt ., _
boundary conditions of the guide, by solving ( + t— - kK | E = 0

ox° 0y ¢
. [0 ] n 0]
_ i’k |ox o 1 dlw 0y |
2 242| 9 z? 2 242 0 z
| w¢ kK“| ¢ g| w—¢ kK| 9
LY 0y L, 0 x
. 2
A ~ ic" k WA ., 0 . 0
= E=F x+FE y= E., B=—22ZXE < V,=X—+y —
t X yy wz_czkzvt z c2k V ax yay

e [t is easy to see that the constant w”—c¢*k* must be nonnegative because E,
must be oscillatory to satisfy boundary conditions on the sides of the cylinder.

@ There will be a spectrum of eigenvalues w”—c” kf and corresponding solutions
E_,, A=1, 2,3, ..., which form an orthogonal set. These different solutions are

called the modes of the guide.



@ For a given frequency w, the I N T L
wave number k, is determined N

for each value of \:

2 2
W)\:\/w —C k}\ = k)\:

cutoff frequency l /

® For w > w,, the wave number &k, is real; 0 o 0y O 0F 07
waves of the A mode can propagate in the 0 —
guide. For w < w,, k, is imaginary; such modes cannot propagate and are called

cutoff modes or evanescent modes.

@ It is often convenient to choose the dimensions of the guide so that at the
operating frequency only the lowest mode can occur.

W
@ Since the wave number k,<—, the wavelength in the guide is always greater

C
W C
than the free-space wavelength. Thus the phase velocity V,= Y — >C

[ 2 2
k)\ w _CU)\

® The phase velocity becomes infinite exactly at the cutoff frequency.




TM Waves in a Rectangular Wave Guide

® The TM wave (B,=0) problem is to solve /
o o° W 2 using .\a 3
st 5tk )E€.=0 I A
ox~ 0y ¢ E'=0 3
b N .
® Do it by separation of variables \ b -
E.=X(x)Y(y) ; N
2 2 2 N N
S v S x LY (Y2 ) xy=o0 SN
d x> dy2 -2 Nvaag
1 d*X , 1d%Y 2 2 2w 2w o
I 2:—kx, v 2:_ky < kx+ky:_2_k :_2_kz
X dx Y dy c
= X (x)=Asink_x+Bcosk, x
£ iy =0 = X(0)=X(a)=0 = B=0, k,="T m=0, 1,2,
’ a
nTm w” m> n’
Similarly k, ==, n=0, 1, 2, = k=——-7 [ —5+—
b c a b
= Szmn:EOmnsinmﬁxsinnW = EZZZEOmnSinmﬂxsinnZy
a _— a




® The other field components are

. m MmMmTX . NTY
£ i e k —— COS sin
=D — a a b B=—"7XE
_ Omn ’ ) Z
W —ck nNT . MTX nmy c k
gy < — sin COS 2
. a

@ The solution is called the TM  mode, assuming a=b. Neither one of the indices
can be 0.

2 2
n

o If w<cmy—+ E =w,,, , the wave number k_is imaginary, and instead of a

traveling wave we have exponentially attenuated fields. For this reason, w,  is
called the cutoff frequency for the mode in question.

) 2Tc 2ab
® The cutoff wavelength: \ = o=

\/ b’m’+a’n’
® The lowest cutoff frequency for a given wave guide occurs for the mode TM ;:

1 1
Wi =CT \/ — + ? Frequencies less than this will not propagate at all.

® The wave number can be written in terms of the cutoff frequency:

I _\/wz_win h loc: W e
- = phase velocity vp—

Z
¢ \/w —w




x/a

y/ba y/ba

The TM,, mode Electric field: solid lines, magnetic field: dashed lines
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1.0

o 0 /2 g 3x/2 2r Bz
® However, the energy carried by the wave travels at the group velocity:
dw 1 c
— — = — \/wz — wi W <C
* dk, dk/dw W

® Another way to visualize the propagation %f an EM wave in a rectangular pipe.

v

A—>
® Consider an ordinary \
plane wave, traveling at \
an angle 6 to the z axis,
and reflecting perfectly off 0
each conducting surface. »Z
® In the x & y directions,

A\ AN

the (multiply reflected) ¢ 3 X
waves interfere to form standing

f 1 h
wave patterns, ol wavelengt Wave fronts

\ :2—aand)\ :ﬁ(kXZZﬂ':WLﬂ" ' :27r:n7r
Y m Y n \ a S} b

X y




® In the 7z direction there remains a traveling wave, with wave number kZ=k,

2 2
;O MT . NT . R / m- n
kK'=—3%+—3y+k .2 = w=clk |:c\/k§+7r2 (—2+—2) =\/czk§+wfnn
a b a b
@ Only certain angles will lead to one of the allowed standing wave patterns:
k. \/wz—win
cos=—-=
k| W

® The plane wave travels at speed ¢, but because it is going at an angle 6 to the z

L : : : C 2 2
axis, its net velocity down the wave guide is V,=CCOs 0 = ) \/ w —w,

® The wave (phase) velocity is the speed of the wave fronts down the pipe. Like
the intersection of a line of breakers with the beach, they can move much faster

C W C

005«9—\/ 2_ 2
w —w

than the waves themselves—in fact v, =




T]"n"ln Mode




Transverse Electric (TE) Waves
® TE waves do not have a component of the electric field in the direction of

propagation, £ =0. The behavior of TE waves can be analyzed, subject to the

82 82 2
boundary conditions of the guide, by solving ( + + wz — K’ B,=0

ox° 0y ¢

L [ D . [0
_ P idw | 3y . B itk ox |,
2 242 0 z? 2 272| 5 Z

w'—c k7| 9 w —c k7| 9

£y 0 x B 0y

| | iczlk w | | |

= B,=B,x+By=————V,B.,, E=——12XB

w —c "k k

® TE waves follow the same rules for the propagation modes as TM waves do.



TE Waves in a Rectangular Wave Guide ,
® The TE wave (EZ=O) problem is to solve \

0’ AT using
( pt otk )Bz:O 1
ox~ 0y ¢ B =0

® Do it by separation of variables

B.=X(x)Y(y)

&’x _ d’v 2 b
= Y ——+X 2+(“’—2—1c2)x1/:0
dx dy C

y
- lde:_ 2’ lsz:_kz - ki+k2:w—2—k2:w—2—k2
X dx2 X Ydyz y y C2 C2 Z
= X (x)=Asink_x+Bcosk_x
B, e =0 = 2 (0)=9%(a)=0 = A=0, £, =" m=0, 1, 2,
o DOTREEY d x d x a

2 2 2
similarly ky:nTﬂ-, I’t:O, ]_, 2, = k?:w—z—ﬂ-z(ﬂz+n_)
C

mm X nmYy
COS COS

0
mn a b Z — a

= B,,,=B



® The other field components are

- mm . MTX nmTYy
BX i c k ——sin COS
Z a a b E_ W A B
o Omn ’ =———ZX
B mon W —C kZ nm mmX . Iy k
y —— COS sin
- - a

® The solution is called the TE, mode, assuming a=b. At least one of the indices

must be nonzero.

2 2
n

m
oIf w<cmy—+t ? =w,,, the wave number k_is imaginary, and instead of a
a

traveling wave we have exponentially attenuated fields. For this reason, w,  is
called the cutoff frequency for the mode in question.

2#0 2ab
wmn \/b2m2+a2n2
® The lowest cutoff frequency for a given wave guide occurs for the mode TE

® The cutoff wavelength: \

CT
Wiy = 7 . Frequencies less than this will not propagate at all.

® The velocity analysis is the same as in the TM modes.
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Example: Standard air-filled waveguides have been designed for the radar bands
(300MHz-300 GHz). One type, designated WG-16, is suitable for X-band (8 GHz-

12.4GHz) applications. Its dimensions are: a=2.29cm and b=1.02cm. If it is
desired that a WG-16 waveguide operate only in the dominant TE,, mode and that
the operating frequency be at least 25% above the cutoff frequency of the TE,

mode but no higher than 95% of the next higher cutoff frequency, what is the
allowable operating-frequency range?

——  f.=-2=655x10°Hz, f,,=<=13.1x10° Hz
i W,, Cc |m~ n 2a a
o= 2\ T 1 1
" ¢ f11:£ _+_:16.1><109HZ
2 \a® b°

@ Thus the allowable operating-frequency range under the specified conditions is
1.25 f,,<f<095f,, = 8.19GHz<f<12.45GHz
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