
  

Chapter 9Chapter 9 Electromagnetic Waves

The Wave EquationThe Wave Equation
 A wave is a disturbance of a continuous medium that propagates with a fixed 

shape at constant velocity.

 In the presence of absorption, the wave will diminish in size as it moves; if the 
medium is dispersive, different frequencies travel at different speeds; in 2-dim or 
3-dim, as the wave spreads out, its amplitude will decrease; and standing waves 
don’t propagate at all.

 f (z, t) represents the displacement of the string at the point z, at time t. Given 

the initial shape of the string, g (z) ≡ f (z, 0), the displacement at z, at t, is the 

same as the displacement a distance v t to the left (ie. at z−v t), back at t=0:

 f (z, t) depended on z and t
only in the very special 
combination z−v t; and f (z, t) 
represents a wave of fixed 
shape traveling in the z
direction at speed v. 

Waves in One Dimension

f (z , t)= f (z−v t , 0)= g (z− v t)



  

 If A and b are constants

                                          all represent waves, but

                                                     do not.

 A stretched string supporting wave motion it follows from Newton’s 2nd law.

 If a string is displaced from equilibrium, the net 
transverse force on the segment, for θ, θ'≪1,

 The wave eqn admits as solutions all functions of the form
that is, all functions that depend on the variables z & t in the special combination 

u  ≡ z − v t.
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 g (u) can be any (differentiable) function whatever. If the disturbance propagates 
without changing its shape, then it satisfies the wave equation.

 Functions of the form g( z − v t ) are not the only solutions. We can generate 
another class of solutions by changing the sign of the velocity:                              . 
This represents a wave propagating in the negative z direction.

 The most general solution to the wave equation is the sum of a wave to the 
right and a wave to the left:

 Since the wave eqn is linear: The sum of any 2 solutions is itself a solution.

 Like the simple harmonic oscillator eqn, the wave eqn is ubiquitous in physics. 
If something is vibrating, the oscillator eqn is responsible, and if something is 
waving, the wave eqn is bound to be involved.
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Sinusoidal WavesSinusoidal Waves
(i) Terminology: The sinusoidal wave form:

 A is the amplitude of the wave (positive, the maximum displacement). The 
argument of the cosine is called the phase, and δ is the phase constant (can 
add 2 n π to δ without changing f ( z, t); One usually uses a value in 0≤δ<2π).

 At                 , the phase is 0, ie, central maximum. If δ=0, the central maximum 

passes the origin at t=0;      is the distance by which the central max is delayed.

 k is the wave number; it is related to the wavelength λ by               , for when 

z advances by        , the cosine executes one complete cycle. 

 As time passes, the wave train proceeds to right, at speed v. At any fixed point 

z, the string vibrates up 
and down, undergoing 
one full cycle in a period

δ

k

f (z , t)= A cos [k (z−v t )+ δ ]

2 π

k

T =
2 π

k v

z=v t − δ

k
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2 π

k



  

 The frequency ν (number of oscillations/time) is

 A more convenient unit is the angular frequency ω, it represents the number 
of radians swept out per unit time:

 A sinusoidal oscillation of wave number k and (angular) frequency ω traveling
to the left

 We could simply switch the sign of k to produce 
a wave with the same amplitude, phase constant, 
frequency, and wavelength, traveling in the opposite 
direction.

(ii) Complex notation: In Euler’s formula,

 The complex wave function

 The advantage of the complex notation is that exponentials are much easier to 
manipulate than sines and cosines.

f (z , t)= A cos (k z+ω t −δ )= A cos (−k z−ω t + δ )

ei θ
=cos θ+ i sin θ ⇒ f (z , t)=ℜ [ A ei (k z−ω t +δ )

]

ω=2 π ν =k v ⇒ f (z , t )= A cos (k z−ω t + δ )

~f (z , t)≡~A ei (k z−ω t )
⇐

~A≡ A ei δ  complex amplitude ⇒ f (z , t )=ℜ [
~f (z , t)]

ν =
1
T
=

k v
2 π

=
v
λ



  

Example 9.1: show

Let them have the same frequency and wave number,
~f j=

~A j ei (k z−ω t )
= A j ei δ j ei (k z−ω t ) , j=1, 2, 3

~f 3=
~f 1+

~f 2 ⇒
~A3=

~A1+
~A2 ⇒ A3 ei δ3= A1 ei δ1+ A2 ei δ2

⇒ A3
2
=(A3 ei δ3) (A3 e−i δ3)=(A1 ei δ1+ A2 ei δ2) (A1 e− i δ1+ A2 e−i δ2)

= A1
2
+ A2

2
+2 A1 A2 cos (δ2−δ1)

⇒ A3=√ A1
2
+ A2

2
+2 A1 A2 cos (δ2−δ1)

A3 ei δ3= A3 (cos δ3+ i sin δ3)= A1 (cos δ1+ i sin δ1)+ A2 (cos δ2+ i sin δ2)

=(A1 cos δ1+ A2 cos δ2)+ i (A1 sin δ1+ A2 sin δ2)

⇒ tan δ3=
A3 sin δ3

A3 cos δ3

=
A1 sin δ1+ A2 sin δ2

A1 cos δ1+ A2 cos δ2

f j= A j cos (k z−ω t + δ j) , j=1, 2, 3 and f 3= f 1+ f 2

⇒ A3 [cos δ3 cos (k z−ω t )−sin δ3 sin (k z−ω t)]
=(A1 cos δ1+ A2 cos δ2) cos (k z−ω t )−(A1 sin δ1+ A2 sin δ2) sin (k z−ω t )

⇒ A3=√ A1
2
+ A2

2
+2 A1 A2 cos (δ2−δ1)  & tan δ3=

A1 sin δ1+ A2 sin δ2

A1 cos δ1+ A2 cos δ2

the same

f 3=ℜ [
~f 3]=ℜ [

~f 1]+ℜ [
~f 2]= f 1+ f 2 ⇐

~f 3=
~f 1+

~f 2

A1

δ2

A2

δ3

δ1

A3



  

(iii) Linear combinations of sinusoidal waves: Any wave can be expressed

as a linear combination of sinusoidal ones:

 The formula for          , in terms of the initial conditions f ( z, 0) and              , can 
be obtained from the theory of Fourier transforms.

 So any wave can be written as a linear combination of sinusoidal waves, and if 
you know how sinusoidal waves behave, you know how any wave behaves.

ḟ (z , 0)~A (k )

~f (z , t)= ∫
−∞

+∞
~A (k ) ei (k z−ω t ) d k



  

Phase velocity and group velocityPhase velocity and group velocity

 In some cases, waves of different frequencies propagates with different phase 
velocities, since information-bearing signals consist of a band of frequencies.

 Waves of the component frequencies travel with different phase velocities, 
causing a distortion in the signal wave shape, called dispersion.

 Such signal normally has a small spread of frequencies (side  bands) around a 
high carrier frequency. Such a signal comprises a "group" of fre quencies and 
forms a wave packet.

k x−ω t=constant phase ⇒ phase velocity v p≡
d x
d t

=
ω

k



  

 A group velocity is the velocity of propagation of the wave-packet envelope (of 
a group of frequencies).

 Consider a wave packet that consists of 2 traveling waves with equal amplitude 
and slightly different angular frequencies ω0±Δω (Δω≪ω0) and wave numbers 

k0±Δk (Δk≪k0), then the combined wave is

 This expression represents a rapidly oscillating wave wit an angular frequency 
ω0 and an amplitude that varies slowly with an angular frequency Δω.

 The wave inside the envelope propagates with a phase velocity

 The velocity of the envelope (ie, group velocity) can be determined by

 In a normal dispersion,            ; in an anomalous dispersion             .

f ( x , t )= f 0 cos [(k0+Δ k ) x−(ω0+Δ ω) t ]+ f 0 cos [(k0−Δ k ) x−(ω0−Δ ω) t ]
=2 f 0 cos (x Δ k− t Δ ω) cos (k 0 x−ω0 t )

v p≤vg

x Δ k− t Δ ω=constant phase ⇒ group velocity vg≡
d x
d t

=
Δ ω

Δ k
=

1
Δ k / Δ ω

As Δ ω  0 ⇒ vg≡
1

d k /d ω

v p≡
d x
d t

=
ω0

k0

v p≥vg



  

Boundary Conditions: Reflection and TransmissionBoundary Conditions: Reflection and Transmission
 What happens to a wave depends a lot on how the string is attached—ie, on the 

specific boundary conditions to which the wave is subject.

 If the string is simply tied onto a 2nd string. The tension T is the same for both, 
but the mass per unit length μ presumably is not, and hence the wave velocities 

v1 and v2 are different (              ).

 Let the knot occurs at z=0. The incident wave:

 The reflected wave travels back along string 1:

 The transmitted wave continues onto the right:
                                                               in string 2.

 The incident wave fI
 ( z, t) is a sinusoidal oscillation that extends all the way to 

−∞, and doing so for all of history. Same as fR and fT (to +∞).

 All parts of the system are oscillating at the same frequency ω.

 Since the wave velocities are different in the 2 strings, the wavelengths and 

wave numbers are also different:

~f R (z , t )=~AR ei (− k1 z−ω t ) , z<0

v=√T
μ

λ1

λ2

=
k2

k1

=
v1

v2

~f I (z , t )=~AI ei (k1 z−ω t) , z<0

~f T (z , t)=~AT ei (k2 z−ω t ) , z>0



  

 With incident and reflected waves of infinite extent traveling on the same piece 
of string, it’s going to be hard to tell them apart.

 No finite pulse is truly sinusoidal. They can be built up as linear combinations of 
sinusoidal functions, but only by putting together a whole range of frequencies 
and wavelengths.

 For a sinusoidal incident wave, the net disturbance of the string is:

 At the join (z=0), the displacement just slightly to the left (z=0−) must equal the 

one slightly to the right (z=0+). So the real wave f ( z, t) is continuous at z=0:

f (0− , t )= f (0 , t)

~f (z , t)= [
~A I ei (k1 z−ω t )

+
~AR ei (−k1 z−ω t ) , z<0

~AT ei (k2 z−ω t ) , z>0



  

 If the knot is of negligible mass, the derivative of f must also be continuous:

                                   Otherwise there would be a net force on the knot, and 
                                   therefore an infinite acceleration.

 The complex wave function obeys the same rules:

 These boundary conditions determine the outgoing amplitudes in terms of the 
incoming one: 

∂ f
∂ z |0–

=
∂ f
∂ z |0

~f (0– , t )=~f (0 , t)
∂
~f

∂ z |0–

=
∂
~f

∂ z |0
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k1 (
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~AR)=k2
~AT

⇒
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k1−k2

k1+ k2

~AI=
v2−v1

v1+ v2

~AI , ~AT =
2 k1

k1+ k2

~A I=
2 v2

v1+ v2

~AI

⇒ AR ei δ R=
v2−v1

v1+ v2

AI ei δ I , AT ei δT =
2 v2

v1+ v2

AI ei δ I for real wave



  

 If the 2nd string is lighter than the 1st (μ2<μ1 ⇒ v2>v1), all 3 waves have the 

same phase angle (δR=δT=δI), and the outgoing amplitudes are

 If the 2nd string is heavier than the 1st (v2<v1), the reflected wave is out of phase 

by 180̊ (δR+π=δT=δI). Since

the reflected wave is “upside down,” and

 If the 2nd string is infinitely massive—or if the 1st string is simply nailed down at 

the end—then AR=AI ,  AT=0, no transmitted wave—all of it reflects back.

cos (−k 1 z−ω t + δ I−π )=−cos (− k1 z−ω t + δ I)

AR=
v2−v1

v1+ v2

AI , AT =
2 v2

v1+ v2

AI

AR=
v1−v2

v1+ v2

AI , AT =
2 v2

v1+ v2

AI



  

PolarizationPolarization
 The waves that travel down a string when you shake it are called transverse, 

because the displacement  the direction of propagation.

 It is also possible to stimulate compression waves by giving the string little tugs. 
These waves are called longitudinal, because the 
displacement from equilibrium is along the 
direction of propagation.

 Sound waves, compression in air, are longitudinal; EM waves are transverse.

 There are 2 dimensions  any given line of propagation. Accordingly transverse 
waves occur in 2 independent states of polarization. 



  

 You can shake the string up-and-down,
ie, “vertical” polarization 

or left-and-right, ie,“horizontal” polarization,

or along any other direction in the xy plane

 The polarization vector     defines the plane of vibration. Because the waves 
are transverse,      the direction of propagation:

 In terms of the polarization angle θ,

 The wave along any direction in the xy plane can be considered a superposition 
of 2 waves—one horizontally polarized, the other vertically:

n̂

~f (z , t)=(
~A cos θ) ei (k z −ω t ) x̂ +(~A sin θ) ei (k z−ω t ) ŷ

n̂=cos θ x̂ +sin θ ŷ

n̂

~f (z , t)=~A ei (k z−ω t ) n̂

n̂⋅ẑ=0

~f h (z , t)=~A ei (k z−ω t ) ŷ

~f v (z , t)=~A ei (k z−ω t ) x̂



  

Electromagnetic Waves in Vacuum
The Wave Equation for The Wave Equation for EE and  and BB
 In regions of space without charge or current, Maxwell’s equations read

 They constitute a set of coupled, 1st-order, partial differential eqns for E and B.

 They can be decoupled by

 We now have separate equations for E and B, but they are of 2nd-order.

∇×(∇×E )=∇ (∇⋅E )−∇
2 E

=∇×( −
∂ B
∂ t
)= −

∂

∂ t
(∇×B )=−μ0 ϵ0

∂
2

∂ t2
E

∇×(∇×B)=∇ (∇⋅B)−∇
2 B

=∇×( μ0 ϵ0

∂ E
∂ t
)=μ0 ϵ0

∂

∂ t
(∇×E )=−μ0 ϵ0

∂
2

∂ t2 B

⇒ ∇
2 E =μ0 ϵ0

∂
2 E
∂ t2 , ∇

2 B=μ0 ϵ0

∂
2 B
∂ t2

∇⋅E=0 , ∇×E =−
∂ B
∂ t

, ∇⋅B=0 , ∇×B=μ0 ϵ0

∂ E
∂ t



  

 In vacuum, each Cartesian component of E and B satisfies the 3d wave eqn,

 So Maxwell’s equations imply that empty space supports the propagation of EM 

waves, traveling at a speed

 The implication is astounding: Light is an EM wave.

 ϵ0 & μ0 came into the theory as constants in Coulomb’s law and the Biot-Savart 
law. You measure them in experiments having nothing whatever to do with light. 
But according to Maxwell’s theory, you can calculate c from these 2 numbers.

 The crucial role played by Maxwell’s contribution (                 ) to Ampère’s law; 

without it, the wave equation would not emerge, there would be no EM theory of 
light.

μ0 ϵ0

∂ E
∂ t

∇
2 f =

1
v2

∂
2 f

∂ t2

v=
1

√μ0 ϵ0
=3×108 m /s=c



  

Monochromatic Plane WavesMonochromatic Plane Waves
 We now confine our attention to sinusoidal 

waves of frequency ω. Since different 
frequencies in the visible range correspond 
to different colors, such waves are called 
monochromatic.

 If the waves are traveling in the z 
direction and no x or y dependence; 
these are called plane waves, because the 
fields are uniform over every plane  the direction of propagation.

                                                                          ,  where      and        are the  
                                                                               (complex) amplitudes.

 The physical fields are the real parts of      and     , and ω = c k.   

 Whereas every solution to Maxwell’s equations (in empty space) must obey the 
wave equation, the converse is not true; Maxwell’s equations impose extra 
constraints on      ,     .

                                                                 . That is, EM waves are transverse: the 
electric and magnetic fields  the direction of propagation. 

~B0

~B

~E0

∇⋅E=0 , ∇⋅B=0 ⇒
~E0 z=

~B0 z=0

~E

~B0
~E0

~E (z , t )=~E0 ei (k z−ω t ) , ~B (z , t)=~B0 ei (k z−ω t )



  

E =E (k⋅r−ω t )=E (φ) ⇐ φ≡ k⋅r−ω t , r=∑
i

xi x̂ i

⇒ ∇⋅E=∑
i

∂ E i

∂ x i

=∑
i

d E i

d φ

∂ φ

∂ xi

=∑
i

k i

d E i

d φ
= k⋅

d E
d φ

=
d

d φ
(k⋅E )=0

⇒ k⋅E=constant ⇒ 0 ⇒ k̂ ⊥ E ⇐  wave, not constant (static)
Similiarly, k̂ ⊥ B

Thus E  and B , when plane waves, are always transverse to the motion of the wave.

∇×E=∑
i
∇ E i× x̂ i=∑

i , j
( ∂ E i

∂ x j

x̂ j× x̂ i) ⇐ ∇×( f A)=∇ f ×A + f ∇×A

=∑
i
( d E i

d φ
k× x̂ i )= k×

d E
d φ

=
d

d φ
(k×E )

−
∂ B
∂ t

=−
d B
d φ

∂φ

∂ t
=

d
d φ

(ω B )

∇×E=−
∂ B
∂ t

⇒
d

d φ
(k×E−ω B)=0 ⇒ k×E−ω B=constant ⇒ 0

⇒ k̂×E=
ω

k
B=v p B ⇒ E ⊥ B ,

E
B
=v p ⇒ k ⊥ E ⊥ B



  



  



  

 Faraday’s law,                          , implies a relation between the electric and 

magnetic amplitudes, to wit:

 E & B are in phase and mutually        perpendicular; their (real) amplitudes are 

related by

                    doesn’t yield 

an independent condition.

∇×B=μ0 ϵ0

∂ E
∂ t

−k ~E0 y=ω
~B0 x , k ~E 0 x=ω

~B0 y ⇒
~B0=

k
ω

ẑ×~E0

B0=
k
ω

E 0=
E 0

c

∇×E=−
∂ B
∂ t



  

~E (z , t)=~E0 ei (k z−ω t )
=(

~E 0 x x̂ +~E0 y ŷ ) ei (k z−ω t )
=
~E x x̂ +~E y ŷ

~B (z , t)=~B0 ei (k z−ω t )
=(

~B0 x x̂ +~B0 y ŷ ) ei (k z−ω t )
=
~Bx x̂ +~By ŷ

⇒
~E x=

~E0 x ei (k z−ω t ) , ~E y=
~E 0 y ei (k z−ω t )

~Bx=
~B0 x ei (k z−ω t ) , ~By=

~B0 y ei (k z−ω t )

⇒

∇×
~E =|

x̂ ŷ ẑ
∂ x ∂y ∂z
~E x

~E y 0 |=−∂z
~E y x̂ +∂z

~E x ŷ +(∂ x
~E y−∂ y

~E x) ẑ

= i (−k ~E y x̂ + k ~E x ŷ )
∂
~B

∂ t
=− i ( ω

~B x x̂ +ω
~Bx ŷ )

∇×
~E=−

∂
~B

∂ t
⇒ −k ~E y=ω

~Bx , k ~E x=ω
~By ⇒

~B=
k
ω

ẑ ×~E=
ẑ ×~E

c



  

~E (r , t)=~E 0 ei (k⋅r −ω t) n̂ , ~B (r , t )=
~E 0

c
ei ( k⋅r −ω t ) k̂× n̂ =

k̂×~E
c

Example 9.2: If E points in the x direction, then B points in the y direction,

                                                                                 . Take the real part

the paradigm for a monochromatic plane wave.

 The wave is said to be polarized in the x direction (by using the direction of E).

 Generalize to monochromatic plane waves traveling in an arbitrary direction by 
introducing the propagation (or wave) vector, k, pointing in the direction of 

propagation, whose magnitude is the wave number k.

 With kr as the appropriate generalization of k z,     as the polarization vector,

 Because E is transverse,               . (So is B.)

 The actual (real) electric and magnetic fields in a monochro-
matic plane wave with propagation vector k and polarization
     are

E (z , t)=E 0 cos (k z−ω t + δ ) x̂ , B (z , t)=
E 0

c
cos (k z−ω t + δ ) ŷ

n̂

~E (z , t )=~E 0 ei (k z−ω t ) x̂ , ~B (z , t)=
~E 0

c
ei (k z−ω t ) ŷ

E (r , t)=E0 cos (k⋅r−ω t + δ ) n̂ , B (r , t )=
E 0

c
cos (k⋅r −ω t+ δ ) k̂× n̂

n̂⋅k̂=0

n̂



  

 In some cases the direction of E of a plane wave at a given point may change 
with time. 

 Consider the superposition of 2 linearly polarized waves: one polarized in the x-

direction, and the other in the y-direction and lagging/leading π/2 in time phase:

 If ω≷0, ie, counterclockwise/

clockwise, it is called positive/
negative (right-/left-hand) 
circularly polarized wave. 

 In general, E1 & E2 can have unequal 
amplitudes and differ with arbitrary
phase. Their sum E will be elliptically 
polarized with tilt principal axes.  

E (z , t)=E1 (z , t )+E2 (z , t )=E10 cos (k z−ω t ) x̂ +E20 cos (k z−ω t ±π /2) ŷ
=E10 cos (ω t−k z) x̂±E 20 sin (ω t−k z) ŷ

⇒
E1

2

E10
2
+

E2
2

E 20
2
=cos2

(ω t−k z)+sin2
(ω t− k z)=1 ⇒

E 10≠E20
elliptically
polarized

E 10=E20
circularly
polarized

When E10=E 20 ⇒ ω t = tan−1 E2 (0 , t)

E1 (0 , t)



  

 A linearly polarized plane wave can be resolved into a right-hand (circularly) 
polarized wave and a left-hand (circularly) polarized wave of equal amplitude.

E (z , t)=E 0 cos (k z−ω t ) x̂

=
E0

2
[cos (ω t−k z) x̂ + sin (ω t− k z) ŷ ]

+
E0

2
[cos (ω t− k z) x̂−sin (ω t− k z) ŷ ]



  

Energy and Momentum in Electromagnetic WavesEnergy and Momentum in Electromagnetic Waves

 The energy per unit volume in electromagnetic fields is

 In the case of a monochromatic plane wave                               , so the electric 

and magnetic contributions are equal:

 As the wave travels, it carries this energy along with it. The energy flux density 

(energy/area/time) transported by the fields is the Poynting vector:

 For monochromatic plane waves propagating in the z direction,

 So S is the energy density (u) times the velocity of the waves (     )—as it should.

 For in a time Δt, a length c Δt passes through area 

A, carrying with it an energy u A c Δt. The energy per 
unit time, per unit area, transported by the wave is 
therefore u c. 

u= ϵ0 E2
= ϵ0 E0

2 cos2
(k z−ω t +δ )

S=
E ×B

μ0

S=c ϵ0 E 0
2 cos2

(k z−ω t + δ ) ẑ =c u ẑ

B2
=

E2

c2 =μ0 ϵ0 E2

u=
1
2
( ϵ0 E 2

+
B2

μ0
)

c ẑ



  

 EM fields not only carry energy, they also carry momentum. The momentum 

density stored in the fields is

 For monochromatic plane waves

 In the case of light, the wavelength is short (~5×10−7m), and the period brief 
( 10∼ −15s), that any macroscopic measurement will encompass many cycles.

 Therefore we’re not interested in the fluctuating cosine-squared term in the 
energy and momentum densities; all we want is the average value.

 The average of cosine-squared over a complete cycle is 1/2, so

The brackets <> denote the (time) average over at least one complete cycle.

 The average power/area transported by an EM wave is called the intensity:

 When light falls (at normal incidence) on a perfect absorber, it delivers its 
momentum to the surface.  

g=
S
c2

I≡⟨S ⟩=
c ϵ0

2
E 0

2

g=
ϵ0

c
E0

2 cos2
(k z−ω t+ δ ) ẑ= u

c
ẑ

⟨u ⟩=
ϵ0

2
E 0

2 , ⟨S ⟩=
c ϵ0

2
E 0

2 ẑ , ⟨g ⟩=
ϵ0

2 c
E0

2 ẑ



  

 In Δt, the momentum transfer is Δ p=<g> A c Δ t, so the radiation pressure 

(average force/area) is

 On a perfect reflector the pressure is twice as great, because the momentum 
switches direction, instead of simply being absorbed.

 Explanation: The electric field drives charges in the x direction, and the 

magnetic field then exerts on them a force q  v × B  in the z direction. The net 
force on all the charges in the surface produces the pressure.

Example: Fields of a Laser BeamFields of a Laser Beam: Consider a He-Ne laser beam of 100 W/mm2. 

For its average energy density in such a beam,

P=
1
A

Δ p
Δ t

=
ϵ0

2
E 0

2
=

I
c

⟨u ⟩=
⟨S ⟩
c

=
100 J /s /(10−6 m2

)

3×108 m /s
=0.33 J /m3

⇒ E rms
2

=⟨E 2
⟩=

E 0
2

2
=
⟨u ⟩
ϵ0

⇒ E rms=√ ⟨u⟩ϵ0
=√ 0.33 J /m3

8.8×10−12 C /m V
=1.94×105 V /m

⇒ B rms=
E rms

c
=6.5×10−4 T (=6.5 G)



  

Electromagnetic Waves in Matter
Propagation in Linear MediaPropagation in Linear Media
 In Inside matter, but no free charge or free current, Maxwell’s eqns become

 If the medium is linear,                                  , and homogeneous (ϵ and μ do not 

vary from point to point), the equations reduce to

which differ from the vacuum analogs only in the replacement of μ0 ϵ0 by μ ϵ.

 EM waves propagate through a linear homogeneous medium at a speed

 For most materials, μ is very close to μ0, so

 Since ϵr≥1, light travels more slowly through matter.

 All of our previous results carry over, with the simple transcription ϵ0ϵ, μ0μ, 

and hence cv. 

n≃√ϵr ⇐ ϵr :  dielectric constant

∇⋅D=0 , ∇×E=−
∂ B
∂ t

, ∇⋅B=0 , ∇×H=
∂ D
∂ t

D=ϵ E , H=
1
μ

B

∇⋅E=0 , ∇×E =−
∂ B
∂ t

, ∇⋅B=0 , ∇×B=μ ϵ
∂ E
∂ t

v=
1

√μ ϵ
=

c
n

⇐ n≡√
ϵ μ

ϵ0 μ0
index of refraction



  

 The energy density is                         , and the Poynting vector is

 For monochromatic plane waves, the frequency and wave number are related 

by ω = k v, also            , and the intensity is

 What happens when a wave passes from one transparent medium into another
—air to water, say, or glass to plastic? It’s related to the boundary conditions.

 As in the case of waves on a string, there is a reflected wave and a transmitted 
wave. The details depend on the electrodynamic boundary conditions,

 These equations relate the electric and magnetic fields just to the left and just 
to the right of the interface between 2 linear media.

u=
ϵ E2

2
+

B2

2 μ
S=

E ×B
μ

ϵ1 E1

=ϵ2 E 2

 , E1
∥
=E2

∥ , B1

=B2

 ,
B1

∥

μ1
=

B2
∥

μ2

B=
E
v

I=
ϵ v
2

E0
2



  

Reflection and Transmission at Reflection and Transmission at 
Normal IncidenceNormal Incidence
 Let the x y plane forms the boundary 

between 2 linear media. A plane wave 
of frequency ω, traveling in the z 
direction and polarized in the x 
direction, approaches the interface 
from the left: 

 The reflected wave                                                  back to the left in medium 1.

 The transmitted wave                                            on to the right in medium 2.

 The minus sign in      , as required by                     — or by the fact that the 
Poynting vector aims in the direction of propagation.

~ET (z , t )=~E0 T ei (k2 z−ω t ) x̂

~BT (z , t)=
~E0 T

v2

ei (k2 z−ω t ) ŷ

~E I (z , t )=~E0 I ei (k1 z−ω t ) x̂

~B I (z , t )=
~E0 I

v1

ei (k1 z−ω t ) ŷ

~BR

~E R (z , t )= ~E 0 R ei (− k1 z−ω t ) x̂

~BR (z , t )=−

~E 0 R

v1

ei (−k1 z−ω t ) ŷ

v ~B= k̂×~E



  

 At z=0, the combined fields on the left,              and              , must join the field 
on the right,       and      , in accordance with the boundary conditions.

 In this case there are no components  the surface, so

 These results are similar to the ones for waves on a string.

 In that case, the reflected wave is in phase if v2>v1 and out of phase if v2<v1.

 The real amplitudes are related by

~BT

~B I +
~BR

~E I +
~E R~ET

[
~E0 I +

~E 0 R=
~E 0 T

~E0 I −
~E0 R

μ1 v1

=

~E0 T

μ2 v2

⇒
~E 0 I −

~E0 R=β
~E 0 T ⇐ β=

μ1 v1

μ2 v2

=
μ1 n2

μ2 n1

⇒
~E 0 R=

1−β

1+β

~E0 I , ~E0 T =
2

1+ β

~E 0 I

E 0 R=|
v1−v2

v1+ v2
|E 0 I =|

n2− n1

n1+ n2
|E 0 I , E 0 T =

2 v2

v1+ v2

E0 I =
2 n1

n1+n2

E0 I

If μ1≃μ2 ⇒ β≃
v1

v2

⇒
~E0 R≃

v2−v1

v1+ v2

~E 0 I , ~E 0 T ≃
2 v2

v1+ v2

~E0 I as in string



  

 The ratio of the reflected intensity to the incident intensity is (for                     )

 The ratio of the transmitted intensity to the incident intensity is

 R and T measure the fraction of the incident energy that is reflected and 
transmitted. R+T=1, as conservation of energy requires.

 When light passes from air (n1=1) into glass (n2=1.5), R=0.04 and T=0.96. So 
most of the light is transmitted.

Transmission coefficient T =
I T

I I

=
ϵ2 v2

ϵ1 v1

E0 T
2

E 0 I
2
=

4 n1 n2

(n1+ n2)
2

μ1=μ2=μ0

Reflection coefficient R=
I R

I I

=
E 0 R

2

E 0 I
2

=( n1−n2

n1+n2

)
2



  

Reflection and Transmission at Oblique IncidenceReflection and Transmission at Oblique Incidence
 The more general case of oblique incidence, in 

which the incoming wave meets the boundary at 
an arbitrary angle θI.

 Normal incidence is a special case of oblique 
incidence, with θI=0.

 Monochromatic plane wave

 Reflected                                               transmitted
      wave                                          ,             wave

 All 3 waves have the same frequency ω—that is determined once and for all at 

the source:

 The combined fields in medium 1,               and             , must be joined to the 
fields        and        in medium 2, using the boundary conditions

~ET (r , t )=~E0 T ei (kT⋅r −ω t )

~BT (r , t )=
k̂T ×

~ET

v2

v= ω

k
⇒ k I v1= k R v1=kT v2=ω ⇒ k I= k R=

v2

v1

kT =
n1

n2

kT

~E R (r , t)=~E0 R ei (k R⋅r−ω t )

~BR (r , t )=
k̂ R×

~E R

v1

~E I (r , t)=~E0 I ei (k I⋅r −ω t )

~B I (r , t )=
k̂ I ×

~E I

v1

~BT

~B I +
~BR

[ ] ei (k I⋅r−ω t )
+ [ ] ei (k R⋅r−ω t )

= [ ] ei (kT⋅r−ω t )  at z=0

~ET

~E I +
~E R



  

 Because the boundary conditions must hold at all points on the plane, and for all 
times, these exponential factors must be equal (when z=0)

θI is the angle of incidence, θR is the angle of reflection, θT is the angle of 
refraction (or the angle of transmission), measured with respect to the normal.

 Orient our axes so that kI lies in the x z plane (ie, kIy=0); so too will kR and kT.

1st Law: The incident, reflected, and transmitted wave vectors form a plane 
              (called the plane of incidence), which also includes the normal to the 
              surface (here, the z axis).

2nd Law: The angle of incidence = the angle of reflection,

3rd Law:

 These are the 3 fundamental laws of geometrical optics. Little electrodynamics 

went into them: no specific boundary conditions involved. Therefore, any other 
waves can be expected to obey the same “optical” laws when they pass from one 
medium into another.

sin θT

sin θ I

=
n1

n2

law of refraction—Snell’s law

⇒ k I⋅r = k R⋅r = kT⋅r  at z=0 ⇒ k I sin θ I =k R sin θR= kT sin θT

⇒ x k I x+ y k I y= x k R x+ y k R y= x kT x+ y kT y ⇒
k I y=k R y= kT y , x=0
k I x= k R x=kT x , y=0

θ I =θR law of reflection



  

Total ReflectionTotal Reflection
 For Snell's law with n1>n2, ie, when the wave in medium 1 is incident on a less 

dense medium 2, then In that case, θT>θI.

 When θT=π/2, at which angle the refracted wave glazes along the interface; a 

further increase in θI would result in no refracted wave, and the incident wave is 

then said to be totally reflected. The angle of incidence in this situation is called 

the critical angle θc: 

 

 n2 < n1 tells us that total 
internal reflection cannot 
occur when the incident light 
is in the medium of lower 
index of refraction.

 This effect is heavily 
applied to optical fibers.   

If θ I >θc ⇒ sin θT =
n1

n2

sin θ I ≡γ >1 ⇒ cos θT =±√1−sin2
θT ⇒− i √γ

2
−1

⇒ θT =
π

2
+ i ln (γ +√γ

2
−1)

sin θc=
n2

n1

sin π

2
⇒ θc=sin−1 n2

n1



  

 After taking care of the exponential factors, the boundary conditions becomes

 Suppose the polarization of the incident wave ‖ the plane of incidence (the x z 
plane); it follows that the reflected and transmitted waves are also polarized in 
this plane (Prob. 9.15).

 The boundary conditions give

 By the laws of reflection & refraction
~E 0 I +

~E0 R=α
~E 0 T ⇐ α≡

cos θT

cos θ I

~E 0 I −
~E 0 R=β

~E 0 T ⇐ β≡
μ1 v1

μ2 v2

=
μ1 n2

μ2 n1

ϵ1 (
~E0 I +

~E0 R)=ϵ2 (
~E0 T ) , (

~B0 I +
~B0 R)=(

~B0 T ) ,  :  normal to the plane

(
~E0 I +

~E0 R)∥= (
~E0 T )∥ ,

(
~B0 I +

~B0 R)∥
μ1

=
(
~B0 T )∥
μ2

, ∥ :  parallel to the plane

v p
~B0= k̂×~E0

−
~E0 I sin θ I +

~E 0 R sin θR=−
ϵ2

ϵ1

~E 0 T sin θT

0=0
~E 0 I cos θ I +

~E0 R cos θR=
~E 0 T cos θT

~E0 I−
~E0 R

μ1 v1

=

~E 0 T

μ2 v2



  

 The transmitted wave is always in phase with the incident one; the reflected 
wave is either in phase (“right side up”), if α>β, or 180̊ out of phase (“upside 
down”), if α<β.

 In the case of normal incidence (θI=0), α=1,

 The amplitudes of the transmitted and 
reflected waves depend on the angle of 
incidence, because α is a function of θI:

 At grazing incidence (θI=90̊), α diverges, and the wave is totally reflected.

 There is an intermediate angle, θB (called Brewster’s angle), at which the 
reflected wave is completely extinguished. This occurs when

α=
√1−sin2

θT

cos θ I

=
√1−( n1

n2

sin θ I )
2

cos θ I

⇒
~E 0 R=

α−β

α+β

~E0 I , ~E0 T =
2

α+β

~E 0 I
Fresnel’s equations
polarization in the plane of incidence

α=β ⇒ α
2
=β

2
⇒ sin2

θB=
1−β

2

( n1

n2

)
2

−β
2

⇒
~E 0 R=

1−β

1+β

~E0 I , ~E0 T =
2

1+β

~E0 I ,  as before



  

 For the typical case

 The power per unit area striking the interface is        . Thus the incident 

intensity                                 , the reflected intensities

the transmitted intensities 

air (n1=1)  to glass (n2=1.5)

IT =
ϵ2 v2

2
E 0 T

2 cos θT

S⋅ẑ

μ1≃μ2 ⇒ β≃
n2

n1

⇒ sin2
θB=

β
2

1+ β
2

⇒ tan θB≃
n2

n1

I I =
ϵ1 v1

2
E0 I

2 cos θ I
I R=

ϵ1 v1

2
E0 R

2 cos θR



  

 The reflection and transmission coefficients for waves polarized ‖ the plane of 
incidence are

 R is the fraction of the incident energy that is reflected—it goes to 0 at 

Brewster’s angle θB; T is the fraction transmitted—it goes to 1 at θB.

 R+T=1, as required by conservation of energy: the energy per unit time 
reaching a particular patch of area on the surface is equal to the energy per unit 
time leaving the patch.

R≡
I R

I I

=( E 0 R

E 0 I

)
2

=( α−β

α+β
)2

, T ≡
I T

I I

=
ϵ2 v2

ϵ1 v1

( E 0 R

E 0 I

)
2 cos θT

cos θ I

=
4 α β

(α+ β)
2

air (n1=1)  to glass (n2=1.5)



  

 Now consider the case of polarization 
 the plane of incidence.

 The boundary conditions give

 By the laws of reflection & refraction

 The transmitted wave is always in phase with the incident one; the reflected 
wave is either in phase if α β < 1, or 180̊ out of phase if α β > 1.

 In the case of normal 
 incidence (θI=0), α=1,

0=0
~E0 I

v1

sin θ I +

~E0 R

v1

sin θR=

~E 0 T

v2

sin θT

~E 0 I +
~E0 R=

~E0 T
~E 0 I cos θ I

μ1 v1

−

~E0 R cos θ R

μ1 v1

=

~E0 T cos θT

μ2 v2

⇒
~E 0 R=

1−β

1+β

~E0 I , ~E0 T =
2

1+β

~E0 I ,  as before

~E 0 I +
~E0 R=

~E0 T , ~E 0 I −
~E 0 R=α β

~E0 T

⇒
~E0 R=

1−α β

1+α β

~E0 I , ~E0 T=
2

1+α β

~E0 I

Fresnel’s equations, polarization ⊥ the plane of incidence



  

 The amplitudes of the transmitted and 
reflected waves depend on the angle of 
incidence, because α is a function of θI:

 Is there a Brewster’s angle?                means

 For μ2≈μ1  n2≈n1, only true for indistinguishable media, so no reflection. But 
that becomes true at any angle, not just at a special “Brewster’s angle.”

 If μ2 were substantially different 
from μ1, and the conditions above
are satisfied, it would be possible 
to get a Brewster’s angle, but the 
media would be very peculiar.

 The reflection and transmission 
coefficients 

R+T =1

~E 0 R=0

α β=β
√1−sin2

θT

cos θ I

=
μ1

μ2

√
n2

2

n1
2
−sin2

θ I

cos θ I

⇒ cos2
θB=

(n2 /n1)
2
−1

(μ2 /μ1)
2
−1

≤1 ⇒
μ2

μ1
≥

n2

n1

≥1   or  
μ2

μ1
≤

n2

n1

≤1

α β=1 ⇒
n2

2

n1
2 =sin2

θB+
μ2

2

μ1
2 cos2

θB

R≡( E 0 R

E 0 I

)
2

=( 1−α β

1+α β
)2

T ≡
ϵ2 v2

ϵ1 v1

( E 0 R

E 0 I

)
2 cos θT

cos θ I

=
4 α β

(1+α β )
2

air (n1=1)  to glass (n2=1.5)



  

Absorption and Dispersion
Electromagnetic Waves in ConductorsElectromagnetic Waves in Conductors
 The free charge density ρf and the free current density Jf being 0 is perfectly 

reasonable when you’re talking about wave propagation through a vacuum or 
through insulating materials such as glass or (pure) water.

 But in the case of conductors we do not independently control the flow of 
charge, and in general Jf is certainly not 0.

 According to Ohm’s law, the (free) current density in a conductor is 
proportional to the electric field:

 Thus Maxwell’s equations for linear media assume the form

 The continuity equation for free charge

any initial free charge ρf (0) dissipates in a characteristic time            .

 So if you put some free charge on a conductor, it will flow out to the edges. The 
time constant τ affords a measure of how “good” a conductor is.

τ ≡
ϵ
σ

∇⋅E=
ρ f

ϵ
, ∇×E=−

∂ B
∂ t

, ∇⋅B=0 , ∇×B=μ σ E +μ ϵ
∂ E
∂ t

∇⋅J f =−
∂ ρ f

∂ t
⇒

∂ ρ f

∂ t
=−σ ∇⋅E=−

σ
ϵ

ρ f ⇒ ρ f (t)=ρ f (0) e
−

σ
ϵ

t

J= J induced+ J f ⇐ J=σ E



  

 For a “perfect” conductor, σ=∞ and τ=0; for a “good” conductor, τ is much less 

than the other relevant times in the problem (in oscillatory systems,             ); for 

a “poor” conductor, τ is greater than the characteristic times (             ).

 Not interested in this transient behavior. From then on, we focus on ρf=0, Jf́=0,

 These differ from the corresponding equations for nonconducting media only in 
the last term—which is absent when σ=0.

 Manage to obtain modified wave equations for E / B:

 These equations still admit plane-wave solutions,

 The imaginary part of     results in an attenuation of the wave

∇
2 E =μ ϵ

∂
2 E
∂ t2 +μ σ

∂ E
∂ t

∇
2 B=μ ϵ

∂
2 B
∂ t2 +μ σ

∂ B
∂ t

∇⋅E=0 , ∇⋅B=0 , ∇×E =−
∂ B
∂ t

, ∇×B=μ σ E +μ ϵ
∂ E
∂ t

~E (z , t )=~E0 e−ξ z ei (k z−ω t ) , ~B (z , t )=~B0 e−ξ z ei (k z−ω t )

~k

~E (z , t )=~E0 ei (~k z−ω t ) , ~B (z , t )=~B0 ei (~k z−ω t )
⇒

~k 2
=μ ϵ ω

2
+ i μ σ ω ∈ ℂ

⇒
~k =k + i ξ ⇐ k≡√

μ ω

2
(√ϵ

2
ω

2
+σ

2
+ϵ ω) , ξ≡√

μ ω

2
(√ϵ

2
ω

2
+σ

2
− ϵ ω)

τ ≫
1
ω

τ ≪
1
ω



  

∇⋅E=0 , ∇⋅B=0 , ∇×E=−
∂ B
∂ t

, ∇×B=μ σ E +μ ϵ
∂ E
∂ t

∇×( ∇×E =−
∂ B
∂ t
) ⇒ ∇ (∇⋅E )−∇

2 E =−∇×
∂ B
∂ t

=−
∂

∂ t
(∇ ×B)

⇒ −∇
2 E =−

∂

∂ t
( μ σ E +μ ϵ

∂ E
∂ t
) ⇒ ∇

2 E=μ ϵ
∂

2 E
∂ t2 +μ σ

∂ E
∂ t

The equation for B  is similar to the one for E .

~k 2
=(k+ i ξ )

2
=k2

+2 k ξ i−ξ
2
=μ ϵ ω

2
+ i μ σ ω ⇒ k2

− ξ
2
=μ ϵ ω

2

2 k ξ=μ σ ω

⇒ ξ=
μ σ ω

2 k
⇒ k2

−( μ σ ω

2 k
)2

=μ ϵ ω
2

⇒ k4
−μ ϵ ω

2 k2
−

μ
2

σ
2

ω
2

4
=0

k∈ℝ⇒ k2
=

μ ϵ ω
2
+√μ

2
ϵ

2
ω

4
+μ

2
σ

2
ω

2

2
=

μ ω

2
(√ϵ

2
ω

2
+σ

2
+ϵ ω)

⇒ k≡±√
μ ω

2
(√ϵ

2
ω

2
+σ

2
+ϵ ω) ⇒ ξ≡±√

μ ω

2
(√ϵ

2
ω

2
+σ

2
−ϵ ω)

Choosing   or –  depends on e−ξ z
<1.   Choose   if e−ξ z

 e− ξ |z| .



  

 The distance taken to reduce the amplitude by a factor of      (about     ) is the 

skin depth:          , a measure of how far the wave penetrates into the conductor.

 The real part of     determines the wavelength, the propagation speed, and the 

index of refraction, in the usual way:

 The attenuated plane waves satisfy the modified wave eqn for any      and       . 
But Maxwell’s equations impose further constraints, which serve to determine 
the relative amplitudes, phases, and polarizations of E and B.

 ∇⋅E=0 and ∇⋅B=0 rule out any z components: the fields are transverse. We 

orient our axes so that E is polarized along the x direction:

 Define

 The electric and magnetic fields are no longer in phase:                   ; the 
magnetic field lags behind the electric field. 

1
3

~k

λ=
2 π

k
, v= ω

k
, n=

c k
ω

~B0

δ B−δ E=ϕ

~E (z , t )=~E 0 e−ξ z ei (k z−ω t ) x̂ , ~B (z , t )=
~k
ω
~E0 e−ξ z ei (k z−ω t ) ŷ ⇐ ∇×

~E =−
∂
~B

∂ t
~k =K ei ϕ

⇐ K ≡|
~k|=√k2

+ ξ
2
=√μ ω

4
√ϵ

2
ω

2
+σ

2 , ϕ≡ tan−1 ξ

k

⇒  the complex amplitudes ~E 0=E0 ei δ E , ~B0=B0 ei δ B=
K ei ϕ

ω
E0 ei δE

~E0

d≡
1
ξ

1
e



  

~k = k+ i ξ ⇐ k ≡√
μ ω

2
(√ϵ

2
ω

2
+σ

2
+ ϵ ω) , ξ≡√

μ ω

2
(√ϵ

2
ω

2
+σ

2
− ϵ ω)

⇒ 2 k ξ=μ σ ω ⇒ v p=
ω

k
=

2 ξ
μ σ

λ=
2 π

k
=

2 π
σ √ 2

μ ω √√ϵ
2

ω
2
+σ

2
− ϵ ω=

4 π ξ
μ σ ω

d≡ 1
ξ
=

1
σ √ 2

μ ω √√ϵ
2

ω
2
+σ

2
+ ϵ ω=

2 k
μ σ ω

=
4 π

μ σ ω λ
=

2
μ σ v p

~k =K ei ϕ
⇐

K≡|
~k|=√k2

+ ξ
2
=√μ ω

4
√ϵ

2
ω

2
+σ

2

ϕ≡ tan−1 ξ

k
= tan−1 √ϵ

2
ω

2
+σ

2
− ϵ ω

σ


π

4
 as σ ∞

 0  as σ  0

~v p≡
ω
~k
=

ω

K
e−i ϕ

=
ω

K 2
(k− i ξ)=

k v p

K 2
(k− i ξ )

~n≡
c
~v p

=
c~k
ω

=
c k
ω

+ i
c ξ
ω

=
c
v p

( 1+ i ξ

k
)= n( 1+ i √ϵ

2
ω

2
+σ

2
− ϵ ω

σ
)



  

 The (real) amplitudes of E and B are related by

 The (real) electric and magnetic fields are, 

B0

E 0

=
K
ω
=√

μ

ω
4
√ϵ

2
ω

2
+σ

2

E (z , t)=E 0 e−ξ z cos (k z−ω t+ δ E ) x̂

B (z , t )=B0 e−ξ z cos (k z−ω t+ δ E+ϕ) ŷ= K
ω

E0 e−ξ z cos (k z−ω t + δE +ϕ) ŷ



  

Insulator (ϵ ω≫σ):

Good conductor (ϵ ω≪σ):

 For σ∞,

 For copper, 

μ≃μ0 ⇒ δ≈
6.5×10−2 meter

√ν
 10−6 meter for ν ∼109 Hz microwave

k≃ω √ϵ μ ( 1+ σ
2

8 ϵ
2

ω
2 ) , ξ≃

σ

2 √
μ
ϵ

, K ≃ω √ϵ μ( 1+ σ
2

4 ϵ
2

ω
2 ) , tan ϕ≃

σ

2 ϵ ω

v p≃
1

√ϵ μ
( 1− σ

2

8 ϵ
2

ω
2 ) , λ≃

2 π

ω √ϵ μ
( 1− σ

2

8 ϵ
2

ω
2 ) ,

B0

E0

≃√ϵ μ( 1+ σ
2

8 ϵ
2

ω
2 )

k≃√
μ ω σ

2
( 1+ ϵ ω

2 σ
) , ξ≃√

μ ω σ

2
( 1− ϵ ω

2 σ
) , K ≃√μ ω σ , tan ϕ≃1− ϵ ω

σ

v p≃√ 2 ω
μ σ
( 1− ϵ ω

2 σ
) , λ≃2 π √ 2

μ ω σ
( 1− ϵ ω

2 σ
) ,

B0

E0

≃√
μ σ
ω

≫
B0

E 0 |insulator

k≃ξ≃√
μ ω σ

2
, tan ϕ≃1 ⇒ ϕ=

π

4
, v p≃√ 2 ω

μ σ
≃√ 2 ϵ ω

σ
v p , insulator  0

λ≃2 π √ 2
μ ω σ

=2 π δ

σ=6×107
/ (Ohm-meter ) ⇒

ϵ ω
σ

≃10−18
ν ⇐ ϵ≃ ϵ0



  

Example: The electric field of a linearly polarized uniform plane wave propagating 
in the +z-direction in seawater is                                                          . The 
constitutive parameters of seawater are ϵr=72, μr=1, and σ=4 S/m, S=Ω−1. 

ω=107
π ⇒

σ
ω ϵ

=
σ

ω ϵr ϵ0
=

4
107

π×72×8.85×10−12 ≈200≫ 1 good
conductor

Wave number k
Attenuation constant ξ

≈ √
μ ω σ

2
=√5 π×106

×4 π×10−7
×4=8.89 /m

phase velocity v p=
ω

k
=

107
π

8.85
=3.53×106 m /s , wavelength λ=

2 π

k
=0.707 m

skin depth d=
1
ξ
=

1
8.87

=0.112 m

E (z=0)= x̂ 100 cos (107
π t ) V /m



  

Distance zl at which the amplitude of wave decreases to 1% of its value at z=0:

The expression of E (V/m) & B (T):

At z=0.8m:

E (0.8 m , t)=100 e−8.89 z cos (8.89 z−107
π t ) x̂=0.0815 cos (107

π t−7.11) x̂

B (0.8 m , t)=4×10−5 e−8.89 z cos( 8.89 z−107
π t + π

4
) ŷ

=3.26×10−8 cos (107
π t−7.9) ŷ

e−ξ z1=0.01 ⇒ eξ z1=100 ⇒ z1=
ln 100

ξ
=

4.605
8.89

=0.518 m

E (z , t)=E 0 e−ξ z cos (k z−ω t) x̂=100 e−8.89 z cos (8.89 z−107
π t ) x̂ ⇐ δ E=0

K ≈√μ ω σ=√μr μ0 ω σ=4 π /m

⇒ B (z , t)=B0 e− ξ z cos (k z−ω t +ϕ) ŷ= K
ω

E0 e−ξ z cos (k z−ω t +π /4) ŷ

=4×10−5 e−8.89 z cos( 8.89 z−107
π t+ π

4
) ŷ



  

Reflection at a Conducting SurfaceReflection at a Conducting Surface
 The boundary conditions used to analyze reflection/refraction at an interface 

between 2 dielectrics do not hold in the presence of free charges and currents.

 The more general relations

 For ohmic conductors (JE = σ E) there can be no free surface current, since this 

would require an infinite electric field at the boundary, K f=0.

 Let the xy plane forms the boundary between a nonconducting linear medium 1 

and a conductor 2. A monochromatic plane wave, traveling in the z direction and 

polarized in the x direction, approaches from the left

the reflected wave

the transmitted wave

which is attenuated as it penetrates into the conductor.

ϵ1 E1

−ϵ2 E 2


=σ f , B1


=B2

 , E1
∥
−E2

∥
=0 ,

B1
∥

μ1
−

B2
∥

μ2
=K f × n̂

σ f :  free surface charge
K f :  free surface current

n̂ : normal vector to the surface
from medium 2 to 1

~E I (z , t)=~E 0 I ei (k1 z−ω t ) x̂ , ~B I (z , t )=
~E0 I

v1

ei (k1 z−ω t ) ŷ

~E R (z , t)=~E0 R ei (−k1 z−ω t ) x̂ , ~BR (z , t )=−

~E 0 R

v1

ei (−k1 z−ω t ) ŷ

~ET (z , t )=~E 0 T ei (~k 2 z−ω t ) x̂ , ~BT (z , t)=
~k 2

ω
~E0 T ei (~k 2 z−ω t ) ŷ



  

 At z=0, the combined wave in medium 1 must join the wave in medium 2, 
pursuant to the boundary conditions.

 These results are formally identical to the ones that apply at the boundary 
between nonconductors, but notice      is now a complex number.

 For a perfect conductor

 In the case the wave is totally reflected, with a 180̊ phase shift, standing wave.

 That’s why excellent conductors make good mirrors. You can paint a thin 
coating of silver onto the back of a pane of glass—the glass has nothing to do 
with the reflection; it’s just there to support the silver.

 Since the skin depth in silver at optical frequencies is less than 100Å, you don’t 
need a very thick layer.

E1
⊥
=E2

⊥
=0 (transverse)⇒ σ f =0 | B1

⊥
=B2

⊥
=0 (transverse)⇒ 0=0

E1
∥
=E2

∥
⇒

~E0 I+
~E 0 R=

~E 0 T

K f =0 ⇒

~E 0 I −
~E0 R

μ1 v1

=

~k 2

μ2 ω
~E0 T ⇒

~E0 I−
~E0 R=

~
β
~E0 T ⇐

~
β≡

μ1 v1

μ2 ω
~k 2

⇒
~E 0 R=

1−~
β

1+~β
~E0 I , ~E0 T =

2
1+~β

~E0 I

~
β

σ ∞ ⇒ k 2 ∞ ⇒
~
β ∞ ⇒

~E0 R=−
~E0 I

~E0 T = 0



  

 For a perfect conductor

~E1≡
~E I +

~E R

=
~E 0 I ei (k1 z−ω t ) x̂ +~E0 R ei (− k1 z−ω t ) x̂

=
~E 0 I (e

i k1 z
−e− k1 z

) e− i ω t x̂
=2 i ~E0 I e−i ω t sin k1 z x̂

~B1≡
~B I +

~BR

=

~E 0 I

v1

ei (k1 z−ω t ) ŷ−
~E0 R

v1

ei (− k1 z−ω t ) ŷ

=

~E 0 I

v1

(ei k1 z
+ e−k1 z

) e−i ω t ŷ

=2
~E0 I

v1

e− i ω t cos k1 z ŷ

standing wave

σ ∞ ⇒ k 2 ∞ ⇒
~
β ∞ ⇒

~E0 R=−
~E0 I

~E0 T = 0



  

The Frequency Dependence of PermittivityThe Frequency Dependence of Permittivity
 The propagation of EM waves through matter is governed by 3 properties of 

the material: the permittivity ϵ, the permeability μ, and the conductivity σ.

 Each of these parameters depends on the frequency of the waves. It is well 
known from optics that              is a function of wavelength.

 A prism or a raindrop bends blue light more sharply than red, and spreads 
white light out into a rainbow of colors―dispersion.

 Whenever the speed of a wave depends on its frequency, the supporting 
medium is called dispersive.

1 Å  (Angstrom)
=10−10 m=0.1 nm

n≃√ϵr



  

 Because waves of different frequency travel at different speeds in a dispersive 
medium, a wave form that incorporates a range of frequencies will change shape 
as it propagates.

 A sharply peaked wave typically flattens out, and whereas each sinusoidal 

component travels at the ordinary wave (or phase) velocity,

 The packet as a whole (the “envelope”) moves at the so-called group velocity

 While the disturbance by dropping rock into water as a whole spreads out in a 
circle at vg, the ripples making it up travel twice as fast (vp=2vg in this case).

 They appear at the back end of the packet, growing as they move forward to 
the center, then shrinking again and fading away at the front.

 The energy carried by a wave packet in a dispersive medium does not travel at 
the phase velocity. Therefore, in some circumstances vp comes out greater than c.

vg=
d ω

d k

v p=
ω

k



  



  

 Try to account for the frequency dependence of in dielectrics by using a 
simplified model for the behavior of the electrons.

 The classical model of atomic-scale phenomena is an approximation to the 
truth; nevertheless, it does yield qualitatively satisfactory results, and it provides 
a plausible mechanism for dispersion in transparent media.

 The electrons in a nonconductor are 
bound molecules. Here we shall picture 
each electron as attached to the end of a 
spring, with force constant kspring:

 Any binding force can be approximated this way for sufficiently small  

displacements from equilibrium, since

 There will be some damping force on the electron:

 One possible damping is the EM radiation.

F damping=−m γ
d x
d t

F binding=−k spring x=−m ω0
2 x

ω0=√
k spring

m
 natural oscillation frequency

U (x )=U (0)+U
′
(0) x+

1
2

U
″
(0) x2

+⋯

Set U (0)=0 ,  and −F=U ′
(0)=0 , k spring=U″

(0)



  

 In the presence of an EM wave of frequency ω, polarized in the x direction, the 

electron is subject to a driving force

 Putting all this into Newton’s 2nd law gives 

 Our model describes the electron as a damped harmonic oscillator, driven at 
frequency ω. (The much more massive nucleus remains at rest.)

 Regard the equation as the real part of a complex equation:

 The imaginary term in the denominator means that p is out of phase with E—

lagging behind by an angle                        , very small when ω≪ω0 and rises to π 
when ω≫ω0.

 In general, differently situated electrons within a given molecule experience 
different natural frequencies and damping coefficients.

d2~x

d t2 + γ
d~x
d t

+ω0
2 ~x =

q
m

E0 e− i ω t
⇒ ~x =~x 0 e− i ω t

⇐ ~x 0=
q
m

E0

ω0
2
−ω

2
− i γ ω

⇒ ~p (t )=q~x (t)=
q2

m
E0 e− i ω t

ω0
2
−ω

2
− i γ ω

complex dipole moment
use the real part

tan−1 γ ω

ω0
2
−ω

2

m
d2 x

d t2 =F tot =F binding+F damping+Fdriving ⇒ m
d2 x

d t 2 +m γ
d x
d t

+m ω0
2 x=q E0 cos ω t

F driving=q E= q E0 cos ω t ⇐
B=

E
c

negligible



  

 If there are fj electrons with frequency ωj and damping γj in each molecule, and 

N molecules per unit volume, the polarization P is given by the real part of

 We used to use P=ϵ0 χe E. In the present case, P is not proportional to E (not a 
linear medium) because of the difference in phase.

 All of the manipulations carry over, on the understanding that the physical 
polarization is the real part of     , just as the physical field is the real part of     .

 Ordinarily, the imaginary term is negligible; however, when ω is very close to 
one of the resonant frequencies ωj it plays an important role.

 In a dispersive medium, the wave eqn for a given frequency                              .

It admits plane wave solutions,                                    , with the complex wave 

number 

~D=~ϵ
~E ⇐ ~ϵ =ϵ0 (1+~χe) complex permittivity

⇒ ~ϵ r=
~ϵ
ϵ0
=1+

N q2

m ϵ0
∑

j

f j

ω j
2
−ω

2
− i γ j ω

 complex dielectric constant ($)

~P

~k ≡√~ϵ μ0 ω= k+ i ξ ⇒
~E (z , t )=~E0 e−ξ z ei (k z−ω t )

~P (t)= N
q2

m ∑
j

f j

ω j
2
−ω

2
− i γ j ω

~E= ϵ0
~χe

~E ⇐ ~χe : complex
susceptibility

~E

∇
2 ~E=~ϵ μ0

∂
2 ~E
∂ t2

~E (z , t )=~E0 ei (~k z−ω t )



  

 The wave is attenuated because the intensity ∝ E 2 ∝ e− α z=e− 2 ξ z, where α ≡ 2 ξ 
is called the absorption coefficient.

 The wave velocity            , and the index of refraction

 Here k and ξ have nothing to do with conductivity; they are determined by the 
parameters of our damped harmonic oscillator.

 For gases, the 2nd term in ($) is small, by using

 Most of the time the index of refraction
rises gradually with increasing 
frequency, consistent with our experience from optics.

 However, in the immediate neighborhood of a resonance 
the index of refraction drops sharply―anomalous dispersion. 

⇒
~k = ω

c √~ϵ r≃
ω

c
( 1+

N q2

2 m ϵ0

∑
j

f j

ω j
2
−ω

2
− i γ j ω

)

⇒

n=
c k
ω

≃1+
N q2

2 m ϵ0
∑

j

f j (ω j
2
−ω

2
)

(ω j
2
−ω

2
)
2
+ γ j

2
ω

2

α=2 ξ≃
N q2

ω
2

m ϵ0 c ∑
j

f j γ j

(ω j
2
−ω

2
)
2
+γ j

2
ω

2

v p=
ω

k
n=

c k
ω

√1+ x≃1+
x
2

 for x ≪1



  

 The region of anomalous dispersion (ω1<ω<ω2) coincides with the region of 
maximum absorption; the material may be opaque in this frequency range.

 The is because the electrons are driven at their “favorite” frequency; the 
amplitude of their oscillation is relatively large, and thus a large amount of 
energy is dissipated by the damping mechanism.

 It shows n<1 above the resonance, suggesting that the wave speed exceeds c. 
But it is ok since energy does not travel at the wave velocity.

 We also need to consider the contributions of other terms in the sum, which 
add a relatively constant “background” that, in some cases, keeps n>1 on both 
sides of the resonance.

 The group velocity can also exceed c in the vicinity of a resonance in this 
model. But no causality is violated.

 Staying away from the resonances, the damping can be ignored, and the 

formula for the index of refraction simplifies:

 For transparent materials, the nearest significant resonances typically lie in the 

ultraviolet, so ω<ω j ⇒
1

ω j
2
−ω

2 =
1
ω j

2 ( 1− ω
2

ω j
2 )

−1

≃
1
ω j

2 ( 1+ ω
2

ω j
2 )

n=1+
N q2

2 m ϵ0
∑

j

f j

ω j
2
−ω

2



  

 Cauchy’s equation applies reasonably well to most gases, in the optical region.

Selected Problems: 9, 13, 18, 21, 26, 29, 35, 39 

⇒ n≃1+
N q2

2 m ϵ0

∑
j

f j

ω j
2 +ω

2 N q2

2 m ϵ0

∑
j

f j

ω j
4

⇒ n=1+ A( 1+
B
λ

2
)  Cauchy’s formula ⇐ λ=2 π

c
ω

A  the coefficient of refraction , B :  the coefficient of dispersion



  

Guided Waves

Wave GuidesWave Guides
 Consider EM 

waves confined to 
the interior of a 
hollow pipe―wave guide.

 Assume the wave guide is a perfect conductor, so E=B=0 inside the material, 
and hence the boundary conditions at the inner wall are

 Charges and currents will be induced on the surface in such a way as to 
enforce these constraints.

 For monochromatic waves propagating down the tube, E & B have the form

 The electric & magnetic fields must satisfy Maxwell’s equations, in the interior 

of the wave guide:

 The problem is to find functions      and       such that the fields obey the 
Maxwell’s equations, and subject to the boundary conditions.

E∥
=0 , B⊥

=0

~E (x , y , z , t )=~E0 (x , y ) ei (k z−ω t ) , ~B ( x , y , z , t )=~B0 (x , y) ei (k z−ω t )

∇⋅E=0 , ∇⋅B=0 , ∇×E =−
∂ B
∂ t

, ∇×B=
1
c2

∂ E
∂ t

~B0
~E0



  

 Confined waves are not (in general) transverse; in order to fit the boundary 
conditions we have to include longitudinal components (Ez and Bz):

 Putting this into Maxwell’s equations,

Use ∇×E=−
∂ B
∂ t

, ∇×B=
1
c2

∂ E
∂ t

⇐ E i=E i ei (k z−ω t ) Bi=B i ei (k z−ω t )

⇒

∂ E y

∂ x
−

∂ E x

∂ y
= i ω B z ,

∂ E z

∂ y
− i k E y= i ω B x , i k E x −

∂ E z

∂ x
= i ω B y

∂ B y

∂ x
−
∂ B x

∂ y
=− i ω

c2 E z ,
∂ B z

∂ y
− i k B y=− i ω

c2 E x , i k B x−
∂ B z

∂ x
=− i ω

c2 E y

⇒

E x=
i c2

ω
2
−c2 k 2 ( k

∂ E z

∂ x
+ ω

∂ B z

∂ y
) , E y=

i c2

ω
2
−c2 k 2 ( k

∂ E z

∂ y
−ω

∂ Bz

∂ x
)

B x=
i c2

ω
2
−c2 k2 ( k

∂ B z

∂ x
−

ω

c2

∂ E z

∂ y
) , B y=

i c2

ω
2
−c2 k2 ( k

∂ B z

∂ y
+

ω

c2

∂ E z

∂ x
)

Use ∇⋅E =0 , ∇⋅B=0

⇒ ( ∂
2

∂ x2
+

∂
2

∂ y2
+

ω
2

c2
− k2) E z=0 , ( ∂

2

∂ x2
+

∂
2

∂ y2
+

ω
2

c2
− k2) B z=0 decoupled

~E0 (x , y )=E x x̂ +E y ŷ +E z ẑ , ~B0 ( x , y)=B x x̂ +B y ŷ +B z ẑ , c ~B≠ k̂×~E in general

c k≠ω  here



  

i k E x− i ω B y=
∂ E z

∂ x

− i ω

c2
E x+ i k B y=

∂ B z

∂ y

⇒

i k2
E x− i k ω B y= k

∂ E z

∂ x

− i ω
2

c2 E x+ i k ω B y=ω
∂ B z

∂ y

⇒ i ( k 2
−

ω
2

c2 ) E x= k
∂ E z

∂ x
+ω

∂ B z

∂ y
⇒ E x=

i c2

ω
2
−c2 k2 ( k

∂ E z

∂ x
+ω

∂ B z

∂ y
)

Similarly, E y=
i c2

ω
2
−c2 k2

( k
∂ E z

∂ y
−ω

∂ B z

∂ x
)

E (x , y , z)=E ( x , y) ei (k z−ω t )

0=∇⋅E =
∂ E x

∂ x
+
∂ E y

∂ y
+
∂ E z

∂ z
=ei (k z−ω t )( ∂ E x

∂ x
+
∂ E y

∂ y
+ i k E z )

⇒ 0=
∂ E x

∂ x
+
∂ E y

∂ y
+ i k E z

=
i c2

ω
2
−c2 k2 ( k

∂
2
E z

∂ x2 +ω
∂

2
B z

∂ x ∂ y
)+ i c2

ω
2
−c2 k2 ( k

∂
2
E z

∂ y2 −ω
∂

2
B z

∂ y ∂ x
)+ i k E z

⇒ ( ∂
2

∂ x2 +
∂

2

∂ y2 +
ω

2

c2 −k2 ) E z=0



  

 It is convenient to classify the propagating waves in a uniform waveguide into 3 
types according to whether Ez or Bz exists:

   1. Transverse electromagnetic (TEMTEM) waves. These are waves with Ez=Bz=0.

   2. Transverse magnetic (TMTM) waves:     These are waves with Bz=0 but Ez≠0.

   3. Transverse electric (TETE) waves:         These are waves with Ez=0 but Bz≠0.
 
 It turns out that TEM waves cannot occur in a hollow wave guide.

Proof:

 This argument applies only to a completely empty pipe—if you run a separate 
conductor down the middle, the potential at its surface need not be the same as 
on the outer wall, eg, the coaxial cable and the parallel-wire transmission line, 
and hence a nontrivial potential is possible.   

[
E z=0 ⇒

∂ E x

∂ x
+
∂ E y

∂ y
=0 ⇐ ∇⋅

~E=0

B z=0 ⇒
∂ E y

∂ x
−

∂ E x

∂ y
=0 ⇐ ∇×

~E=−
∂
~B

∂ t

⇒
∇ t≡ x̂

∂

∂ x
+ ŷ

∂

∂ y
∇ t⋅

~E0=∇ t×
~E0=0

⇒
~E0=−∇ t Φ
~E0 , boundary=0

⇒
∇ t

2Φ=0
∂ Φ
∂ n |boundary

=0
⇒ Φ=constant ⇒

~E0=0



  

The Coaxial Transmission LineThe Coaxial Transmission Line
 A coaxial transmission line does 

admit modes with Ez=0 and Bz=0,
ie, the TEM waves. 

 In this case Maxwell’s equations yield                             , and are nondispersive

 These are precisely the eqns of electrostatics and magnetostatics, for empty 
space, in 2D; the solution with cylindrical symmetry can be borrowed from the 
case of an infinite line charge and an infinite straight current

⇒ c By=E x , c Bx=−E y , E ⊥ B , ∇⋅E=0 , ∇⋅B=0

⇒

∂ E x

∂ x
+
∂ E y

∂ y
=0 ,

∂ E y

∂ x
−

∂ E x

∂ y
=0

∂ B x

∂ x
+
∂ By

∂ y
=0 ,

∂ By

∂ x
−

∂ B x

∂ y
=0

E0 (s , ϕ)=
A
s

ŝ , B0 (s , ϕ)=
A

c s
ϕ̂ ⇐ A :  some constant

⇒  the real part 
E (s , ϕ , z , t)=

A
s

cos (k z−ω t ) ŝ

B (s , ϕ , z , t )=
A

c s
cos (k z−ω t ) ϕ̂

k= ω

c
⇒ v=c



  

Transverse Magnetic (TM) WavesTransverse Magnetic (TM) Waves
 TM waves do not have a component of the magnetic field in the direction of 

propagation, Bz=0. The behavior of TM waves can be analyzed, subject to the 

boundary conditions of the guide, by solving

 It is easy to see that the constant ω2 − c2 k2 must be nonnegative because Ez 
must be oscillatory to satisfy boundary conditions on the sides of the cylinder.

 There will be a spectrum of eigenvalues ω2 − c2 kλ
2 and corresponding solutions 

Ez λ, λ= 1, 2, 3, ... , which form an orthogonal set. These different solutions are 

called the modes of the guide.

⇒ [
E x

E y
]= i c2 k

ω
2
−c2 k2 [

∂

∂ x
∂

∂ y ] E z , [
B x

B y
]= i ω

ω
2
−c2 k2 [

−
∂

∂ y
∂

∂ x ] E z

⇒ E t ≡E x x̂ +E y ŷ= i c2 k
ω

2
−c2 k2

∇ t E z , B=
ω

c2 k
ẑ×E ⇐ ∇ t ≡ x̂

∂

∂ x
+ ŷ

∂

∂ y

( ∂
2

∂ x2
+

∂
2

∂ y2
+

ω
2

c2
− k2) E z=0



  

 For a given frequency ω, the 
wave number kλ is determined 
for each value of λ:

 For ω > ωλ, the wave number kλ is real; 
waves of the λ mode can propagate in the 
guide. For ω < ωλ, kλ is imaginary; such modes cannot propagate and are called 

cutoff modes or evanescent modes.

 It is often convenient to choose the dimensions of the guide so that at the 
operating frequency only the lowest mode can occur.

 Since the wave number            , the wavelength in the guide is always greater 

than the free-space wavelength. Thus the phase velocity

 The phase velocity becomes infinite exactly at the cutoff frequency.

kλ<
ω

c

ωλ=√ω
2
−c2 kλ

2
⇒ kλ=

√ω
2
−ωλ

2

c
cutoff frequency

v p=
ω

k λ

=
ω c

√ω
2
−ωλ

2
>c



  

TM Waves in a Rectangular Wave GuideTM Waves in a Rectangular Wave Guide
 The TM wave (Bz=0) problem is to solve

 Do it by separation of variables

E z= X ( x ) Y ( y)

⇒ Y
d2 X
d x2

+ X
d2 Y
d y2

+( ω
2

c2
−k2) X Y =0

⇒
1
X

d2 X

d x2 =−k x
2 ,

1
Y

d2 Y

d y2 =−k y
2

⇐ k x
2
+ k y

2
=

ω
2

c2 − k2
=

ω
2

c2 −k z
2

⇒ X (x )= A sin k x x+B cos k x x

E z , boundary=0 ⇒ X (0)= X (a)=0 ⇒ B=0 , k x=
m π

a
, m=0 , 1 , 2 ,⋯

Similarly k y=
n π

b
, n=0 , 1 , 2 , ⋯ ⇒ k z

2
=

ω
2

c2 −π
2( m2

a2 +
n2

b2 )
⇒ E z m n=E0 m n sin

m π x
a

sin
n π y

b
⇒ E z=∑

m , n
E0 m n sin

m π x
a

sin
n π y

b

( ∂
2

∂ x2 +
∂

2

∂ y2 +
ω

2

c2 −k2) E z=0 using
E∥

=0



  

 The other field components are

 The solution is called the TMm n mode, assuming a≥b. Neither one of the indices 
can be 0.

 If                                       , the wave number kz is imaginary, and instead of a 

traveling wave we have exponentially attenuated fields. For this reason, ωm n is 
called the cutoff frequency for the mode in question.

 The cutoff wavelength:

 The lowest cutoff frequency for a given wave guide occurs for the mode TM11:

                             . Frequencies less than this will not propagate at all.

 The wave number can be written in terms of the cutoff frequency:

[
E x

E y
]=∑m , n

i c2 k z

ω
2
−c2 k z

2 E0 m n [
m π

a
cos

m π x
a

sin
n π y

b
n π

b
sin

m π x
a

cos
n π y

b
] , B=

ω

c2 k z

ẑ ×E

λm n=
2 π c
ωm n

=
2 a b

√b2 m2
+a2 n2

ω11=c π √
1
a2 +

1
b2

ω< c π √ m2

a2
+

n2

b2
≡ωm n

k z=
√ω

2
−ωm n

2

c
⇒  phase velocity v p=

ω

k z

=
ω c

√ω
2
−ωm n

2
> c



  

 However, the energy carried by the wave travels at the group velocity: 

 Another way to visualize the propagation of an EM wave in a rectangular pipe.

 Consider an ordinary 
plane wave, traveling at 
an angle θ to the z axis, 
and reflecting perfectly off 
each conducting surface.

 In the x & y directions, 
the (multiply reflected) 
waves interfere to form standing 
wave patterns, of wavelength

               and               (                          ,                          ).

vg=
d ω

d k z

=
1

d k z /d ω
=

c
ω √ω

2
−ωm n

2
< c

The TM11 mode                   Electric field: solid lines, magnetic field: dashed lines

k y=
2 π

λy

=
n π

b
λx=

2 a
m

λy=
2 b
n

k x=
2 π

λx

=
m π

a



  

 In the z direction there remains a traveling wave, with wave number kz=k,

 Only certain angles will lead to one of the allowed standing wave patterns:

 The plane wave travels at speed c, but because it is going at an angle θ to the z 

axis, its net velocity down the wave guide is 

 The wave (phase) velocity is the speed of the wave fronts down the pipe. Like 
the intersection of a line of breakers with the beach, they can move much faster 

than the waves themselves—in fact

cos θ=
k z

|k
|
=
√ω

2
−ωm n

2

ω

k 
=

m π

a
x̂ + n π

b
ŷ + k z ẑ ⇒ ω=c|k 

|=c √k z
2
+π

2( m2

a2
+

n2

b2
)=√c2 k z

2
+ωm n

2

vg=c cos θ=
c
ω √ω

2
−ωm n

2

v p=
c

cos θ
=

ω c

√ω
2
−ωm n

2



  



  

Transverse Electric (TE) WavesTransverse Electric (TE) Waves
 TE waves do not have a component of the electric field in the direction of 

propagation, Ez=0. The behavior of TE waves can be analyzed, subject to the 

boundary conditions of the guide, by solving

 TE waves follow the same rules for the propagation modes as TM waves do.

( ∂
2

∂ x2 +
∂

2

∂ y2 +
ω

2

c2 −k2) B z=0

⇒ [
E x

E y
]= i c2

ω

ω
2
−c2 k2 [

∂

∂ y

−
∂

∂ x ] Bz , [
Bx

By
]= i c2 k

ω
2
−c2 k 2 [

∂

∂ x
∂

∂ y ] Bz

⇒ B t≡Bx x̂ +By ŷ= i c2 k
ω

2
−c2 k2

∇ t B z , E=−
ω

k
ẑ×B



  

TE Waves in a Rectangular Wave GuideTE Waves in a Rectangular Wave Guide
 The TE wave (Ez=0) problem is to solve

 Do it by separation of variables

B z= X ( x )Y ( y)

⇒ Y
d2 X
d x2

+ X
d2 Y
d y2

+( ω
2

c2
−k2) X Y =0

⇒
1
X

d2 X

d x2 =−k x
2 ,

1
Y

d2 Y

d y2 =−k y
2

⇐ k x
2
+ k y

2
=

ω
2

c2 − k2
=

ω
2

c2 −k z
2

⇒ X (x )= A sin k x x+B cos k x x

B x , boundary=0 ⇒
d X
d x

(0)=
d X
d x

(a)=0 ⇒ A=0 , k x=
m π

a
, m=0 , 1 , 2 ,⋯

similarly k y=
n π

b
, n=0 , 1 , 2 ,⋯ ⇒ k z

2
=

ω
2

c2
−π

2( m2

a2
+

n2

b2
)

⇒ B z m n=B0 m n cos
m π x

a
cos

n π y
b

⇒ B z=∑
m , n

B0 m n cos
m π x

a
cos

n π y
b

z

( ∂
2

∂ x2 +
∂

2

∂ y2 +
ω

2

c2 −k2) B z=0 using
B⊥

=0



  

 The other field components are

 The solution is called the TEm n mode, assuming a≥b. At least one of the indices 
must be nonzero.

 If                                       , the wave number kz is imaginary, and instead of a 

traveling wave we have exponentially attenuated fields. For this reason, ωm n is 
called the cutoff frequency for the mode in question.

 The cutoff wavelength:

 The lowest cutoff frequency for a given wave guide occurs for the mode TE10:

                . Frequencies less than this will not propagate at all.

 The velocity analysis is the same as in the TM modes.

[
B x

B y
]=−∑

m , n

i c2 k z

ω
2
−c2 k z

2 B0 m n [
m π

a
sin

m π x
a

cos
n π y

b
n π

b
cos

m π x
a

sin
n π y

b
] , E=−

ω

k z

ẑ×B

ω< c π √ m2

a2
+

n2

b2
≡ωm n

λm n=
2 π c
ωm n

=
2 a b

√b2 m2
+a2 n2

ω10=
c π

a



  



  

TE10 mode

Electric field

Magnetic field



  

Example: Standard air-filled waveguides have been designed for the radar bands 
(300MHz–300 GHz). One type, designated WG-16, is suitable for X-band (8GHz-
12.4GHz) applications. Its dimensions are: a=2.29cm and b=1.02cm. If it is 
desired that a WG-16 waveguide operate only in the dominant TE10 mode and that 
the operating frequency be at least 25% above the cutoff frequency of the TE10 
mode but no higher than 95% of the next higher cutoff frequency, what is the 
allow able operating-frequency range?

 Thus the allowable operating-frequency range under the specified conditions is

1.25 f 10< f <0.95 f 20 ⇒ 8.19 GHz< f <12.45 GHz

f m n=
ωm n

2 π
=

c
2 √ m2

a2 +
n2

b2 ⇒

f 10=
c

2 a
=6.55×109 Hz , f 20=

c
a
=13.1×109 Hz

f 11=
c
2 √

1
a2

+
1
b2

=16.1×109 Hz
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