Chziptar ¢ Conservation Laws
Charge and Energy

The Continuity Equation
® Global conservation of charge: The total charge in the universe is constant.

@ Local conservation of charge: If the charge in some region changes, then
exactly that amount of charge must have passed in or out through the surface.

 The charge in a volume Vis Q ()= / p(r,t)d T and the current flowing out
V

through the boundary S is J -d a, so the local conservation of charge gives

— ]{Jda = /—dT— /V-JdT

= E =—V -J continuity equation

® It can be derived from Maxwell’s equations—conservation of charge is not an
independent assumption; it is built into the laws of electrodynamics.

® It serves as a constraint on the sources (p and J).



Poynting’s Theorem
® The work necessary to assemble a static charge distribution and currents going

€
We:EO/E2d7-, Wm:L B°dr
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® Having some charge and current configuration which, at ¢, produces E & B. In

Ho B>
® The total energy stored in EM fields, per unit volume, is u = % ( e} R )

dt, the charges move around a bit. How much work, dW, is done by the EM forces
acting on these charges, in d 1?

® According to the Lorentz force law, the work done on a charge ¢ is
Fdf=q(E+vxB)vdt=¢gE-vdr _ qg—pdr _ dW_ E Jdr
—pdTE-vdr—E-JdrdT pv—J dr Y

® E - J is the work done/unit time/unit volume, ie, the power delivered/unit volume

® We can express this quantity in terms of the fields alone, using the Ampere-
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Maxwell law to eliminate J: E-J =E -
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Poynting’s theorem: the work-energy theorem of electrodynamics

@ The 1% integral is the total energy stored in the fields, / ud 7. The 2" term

represents the rate at which energy is transported out of V, across its boundary
surface, by the EM fields.

® Poynting’s theorem says that the work done on the charges by the EM force is
equal to the decrease in energy remaining in the fields, less the energy that flowed
out through the surface.

® The energy per unit time, per unit area, transported by the fields is called the

EXB

Poynting vector: § =
Ho




® S - d a is the energy/unit time crossing the infinitesimal surface d a—the energy

d W d
flux (so S is the energy flux density) > ——=—— udTt— ]{ S-da

dr
/JEdT —/udT—/—dT %Sda_/VSdT

= / <—+V -S+J- E)dT = JE————VS
y, \ O ot

The differential form of the Poynting theorem

® If no work is done on the charges in V, or no charge in V/

—O = /—dr— %S-daz—/V-SdT = %I—V-S

® This is the “continuity equation” for energy—u (energy density) plays the role

of p (charge density), and S takes the part of J (current density). It expresses
local conservation of EM energy.

® In general, EM energy by itself is not conserved (nor is the energy of the
charges). The fields do work on the charges, and the charges create fields—
energy is tossed back and forth between them. In the overall energy economy,
you must include the contributions of both the matter and the fields.
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® More generally in nonlinear media, we simply assume
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Example 8.1: When current flows downa a S

wire, work is done as Joule heating of the B
wire. Calculate the energy/unit time
delivered to the wire using the Poynting
vector.

- L

v

® Assuming the electric field is uniform, £ = T

® The magnetic field is “circumferential” at the surface:

)= ol L g 1V pol __ V1 radially
2mTa Mo L 2ma 2mal inward

B(r=a

® The energy per unit time passing in through the surface of the wire is

/S-da:S-27raL:VI exactly what we expect

ou

® Since the fields are steady, then —— = (; hence the conservation of energy

4
expressed by the Poynting's theorem asserts that / J-EdT=- 7{ S-da
V S



Example: Consider that a coaxial cable, of radii a (inner) & b (outer), is inserted
between a source of constant emf and some load, a steady current / flows down
the cable. If the emf provides a constant potential difference V, it will supply

power to the cable of magnitude VI. Calculate the rate at which energy passes
down the cable.
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= S-da:/ d¢/ ds_y g
S 27T1n b/a) s

® In practice, the conductors of the cable will have a finite resistance, so that
energy will also be dissipated as heat in them.



® Assume the charge on the inner cable is 0 =\ £ . Using the Gauss theorem

A

€ 2w f A S
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* V(A-B)=AX(VxB)+Bx(VxA)+(A-V)B+(B-V)A
used in Page 13
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® The real behavior of E in a wire is the combined result of the 2 examples.

® No way an electric field only exists inside a wire without surface charge, or it
violates the Maxwell equations VXE=0 (in a steady case).
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® The interpretation of the
Poynting vector as giving the Point

flow of energy density has change

peculiar effects, especially

in static problems, that r

cannot be resolved.

® The fact that Ponyting's theorem —-

is true does not guarantee that \

S really is an energy flow. Current
loop

@ In the example of a magnetic dipole and
a point charge superimposed statistically
in space, which is a static problem with

constant E and B fields, it seems as if S is Y
flowing around the symmetry axis of the dipole.

® It is hard to believe this is happening, and we cannot verify it experimentally.
What is clear is that through any sphere containing the dipole, the integrated
energy flow is 0.

® The Poynting's theorem is mainly for nonstatic problems, especially where one
wishes to calculate the EM radiation flowing from some energy source.



Momentum
Newton’s 3™ Law in Electrodynamics
® For a point charge ¢ traveling in along the x axis v

at a constant speed v, its electric field is not given
by Coulomb’s law due to its being moving.

® But E still points radially outward from the
instantaneous position of the charge.

® Since a moving point charge does not constitute a steady
current, its magnetic field is not given by the Biot-Savart v

law. However, B still circles around the axis in a manner
suggested by the right-hand rule. P yA
e

B,
® Suppose this charge encounters an identical
one, both mounted on tracks to maintain the F

same direction and speed, proceeding in at the 92
same speed along the y axis.

v, Y
® The electric force between them is repulsive, 2
the magnetic field of g, points into the page, so

the magnetic force on ¢, is toward the right,
whereas the magnetic field of ¢, is out of the

page, the magnetic force on ¢, is upward.

=Y



® The net electromagnetic force of q, on q, is equal but not opposite to the force of q,
on q,, in violation of Newton’s 3" law. In electrostatics and magnetostatics the 3™
law holds, but in electrodynamics it does not.

® People use the 3™ law all the time. The proof of momentum conservation rests
on the cancellation of internal forces, which follows from the 3™ law. When you
tamper with the 3™ law, you are placing conservation of momentum in jeopardy.

® Momentum conservation is rescued in electrodynamics by the realization that

the fields themselves carry momentum, since we have already attributed energy to
the fields.

® Whatever momentum is lost to the particles is gained by the fields. Only when
the field momentum is added to the mechanical momentum is momentum
conservation restored.

3
Identity tensor I = = Z 0, e®e,

i,j=1

O O =
O = O
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Maxwell’s Stress Tensor
® Calculate the total EM force on the charges in volume V:

FZ/ p(E+v><B)d7-:/ (pE+J><B)d7-:/ fdr < f;fOfcePef
V y Vv

unit volume

= f:pE+J><B:eO(V-E)E+(ﬂleB—eO@) X B
0

ot
0, (ExB)=0,EXB+EXx0 B + Faraday'slaw 0, B=—V XE
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VE*=VE’=2(E-V)E+2EX(VXE) = E><(V><E)=%VE2—(E-V)E

VB'=VB’=2(B-V)B+2Bx(VxB) = BX(VXB):%VBZ—(B-V)B
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@ Introduce the Maxwell stress tensor, T =¢, EQE + T ( € E*+ o
0 0

T-jZGO(E-Ej—l(S..EZ) 1 (BB __5 /B ) - 5.:[1, i = j Kronecker
l l 2 1] 2 ij

Ko 0, i#j delta
B2_ p%_ B2
T, =2 (B~ E*-EY)+ % _ . . .
B_B E2:Ei+E2+E§, BzzBi+Bz+B§
T =e. FE E + al y, Y Y
Xy 0 X y I'LO

® Because it carries 2 indices, where a vector has only one, T is sometimes

written with: T. One can form the dot product of T with a vector a, in 2 ways
3

—on the left, and on the right: (a-T)jZ Z a;,T,;, (T-a)J: Z T;; a,

i=1 -
The resulting object, which has one remaining index, is itself a vector.

@ The divergence of T has as its j ™ component
1
(V.T)j:eo ((V.E+E.V) Ej—z Vj E2)

0
= f:V'T_Co,UOa—f = total EM force F:]{ T-da—eouoa/ Sdr
S V

™ ((V -B+B-V)B, ——V B )



® In the static case the 2™ term drops out, and the EM force on the charge
configuration can be expressed entirely with the stress tensor at the boundary:

F:]{ T-da static (#)
s

e T is the force per unit area (or stress) acting on the surface. T, is the force

(per unit area) in the i ™ direction acting on an element of surface oriented in the

jth direction—“diagonal” elements (T , T , T ) represent pressures, and “off-

xx’ yy’

diagonal” elements (T, T , etc.) are shears.

xy’ xz’
® Let us extend the region to include all space. Since all the sources & are within

. : . 1
a finite region, at large distance r, we have, at worst, F ~ iz and B~ —5 thus
r r

1
T~ — at least, while the surface area — r° (in the static cases),

0S
/ (f+eo,u0—)d7'=7{ T-da o<l2—>0
all space at all space r

® We can define the momentum of the EM field from here in the next section.



Example 8.2: Determine the net force on the “northern” hemisphere of a
uniformly charged solid sphere of radius R and charge Q.

® The boundary surface consists of 2 parts—a hemispherical bowl at radius R,
ZA
and a circular disk at 0 = T Bowl

® For the bowl,d@ =R’sinfd ¢ dfr, E= O zf'
X X R X 4me, R
®r=sinfcospXxX+sinfsin¢py+cosbz

=Y

2
TZX:eOEZEx:eo( Q 2) sin 6 cos 6 cos ¢
4me, R

2
= sz:eoEZEy:eo(Aer RZ) sin 0 cos @ sin ¢
0

2
T :&(Ei—Ei—Ei):eo( O 2) (cos® 6 —sin” @)

2 2 \4me, R
€, 0, 2
= (T-da),=T,,da,+T, da,+T, da,= sinfcosfd¢pdb
2 \4me, R
€ 2 w2 2
= F, = O( 0 ) 277/ sinf cos0df= L Q2
2 \4me, R 0 4me, 8R



R R ® I 2
da=Rsin0d$d0f, E=—2 § T=c,EGE+ B__(€0E2+B_)
47T€OR ,LLO 2 :uo

€0 .2
= T-dazeo(E~da)E—EE I-da

- - 2
:eo(Qsmedeqb) or —60( QRZ) R*sinfd¢dor

4 €, 4me,R° 2 \47e,
¢ 2
:—0( O ) sinfd¢dor
2 \4me, R

r=sin 0 cos ¢ X+sin 6 sin @ y +cos 0 z

€ 2
= (T-da).= 2 ( Q ) sinfcosfd¢pdf < considering the symmetry

2 \4me, R
€ 2 /2 2
= F, 4 = O( O ) 27r/ sin@ cosf do= 1 Q2



® For the equatorial disk, inside the sphere,

r=rr
=2 = da=—rd¢drz > E= O - T or -
2 4me, R 4me, R

= TZZ:—GO( QRB) r2 = (T'dd)zzeo( QRB) I’Bdrd¢

(cosp X+sing y)

2 4 €, 2 4 7€,
2 R 2 2
= Fdiskzeo( O ) 271'/ rPdr= 1 O = = 1 30
2 47T€0R3 0 4me, 16 R 4me, 16 R

repulsive
® In applying (#), any volume that encloses all of the charge in question (and no

other charge) will do the job.

® In this case we could use the whole region z>0. Then the boundary surface
consists of the entire xy plane (+ a hemisphere at r=00 = E=0 = F,_,=0 there).

bowl

® We now have the outer portion of the plane (r>R), da=—rdo¢drz

2 2
TZZ:_E( O ) I (T.da)zzi( O ) Ldrdé
2 \4me, r 2 \ 4me, r

LR _eo( 0 )ZZW/”dr_ 1 0 _ ,._ 1 30" the
R 2 \4me, > 47me, 8R° 4me, 16 R° same




Alternative (Problem 2.47): Inside the sphere E = 0 -T, p= 0
4me, R

2
~ dF=Edg¢=Epdr=—2" BBQdZ:B( x 3) rdr
4me, R 4R 47 R

2
=3 ( O 3) r(sin @ cos ¢ X+sin @sin py+cos@Z)r’sinfdrdfdo
% \47R

2T
= F:/dF:3 ( ) / / cosHsdeH/ do
47 R’
3 .

o > R* sin” (7/
( - ) TZ= S Z repulsive
© \47R 4 2 64 me, R




Problem 8.3: Calculate the force of magnetic attraction between
the northern and southern hemispheres of a uniformly charged
spinning spherical shell, with radius R, angular velocity w,
and surface charge density o.

2

------------
2
e
’

—pu, 0 Rwz uniform inside |
B = 4 (from Ex 5.11)
poowR A oA : :
3 (3cos@r—12z) dipole outside
3r
2 2
dFZTma-da:i B(B-da)—E]I-da -1 (B-da)B—B—da
¢ Fo 2 Ho 2

® Consider a surface enclosing the entire upper hemisphere
— a hemispherical bowl just outside r=R + the equatorial disk

e For the bowl, da=R’sinfd¢dbr, B-da:%,uoawRBcosesianqub

® The force is in the z direction due to symmetry

B’ Z
Fb0w1:/ dF:l/ [B(Bda)——da :—/
bowl /“L 0 bowl 2 Iu’ 0 bowl

2\ 2 72 g 2\ 2
:7T,LLO<UWR ) 2/ (9cos’@—5)cosfsinfdfh=— Ho (UwR )
3 . 4 3

B2

BZ(B-da)—EdaZ

Z



® For the equatorial disk, inside the sphere,

da=—rd¢drz = B-daz—g,uoaerdqbdr, Bzzg(,uoawR)z

y /
Fdisk:/ dF:i/ :_/
disk Mo J disk Ho J disk

4 3 ocwR*\*
=——7T,u002w2R42/ rdr=—27r,u0( ) Z
9 0 3

B2

2
b B.(B-da)-~-da,

B(B-da)—?da

owR’
2

2
= F=F  tFi=—7TLU, ( ) Z  attractive

Alternative (Problem 5.44):
+B
2

F:/ dF:/ avXBaveda:/ cwRsin0dxB, _R*sinfdfdg¢
bowl bowl bowl

/2
=— Uy T o’ w R*Z / cosfsin®0dO < dueto axial-symmetry
0

_ cwR*\°.
— T T Hy 9 Z

outside

Moo wR

- o
r=R => B =—— (3cosfr+1z)




Conservation of Momentum
® According to Newton’s 2" law, the force on an object is equal to the rate of

. d pmech d
change of its momentum: F = =— €y My — Sdr+ T-da ($>

® This expression is similar in structure to Poynting’s theorem, and it invites an
analogous interpretation: The 1% integral represents momentum stored in the

fields: Pey =€, 1y / S d 7, while the 2™ integral is the momentum per unit time
V

d
flowing in through the surface = P (P ¥ Pry) = 7{ T-da
S
® ($) is the statement of conservation of momentum in electrodynamics: If the

mechanical momentum increases, either the field momentum decreases, or else
the fields are carrying momentum into the volume through the surface, or both.

S

® The momentum density in the fields: g =€, u,S=¢, EXB=— < €, p,=

1
2
C C

® The momentum flux transported by the fields is —T, and —T -d @ is the EM

momentum per unit time passing through the area d a.

@ If the mechanical momentum in V is not changing, then

/aa—de:]{T-daZ/V-TdT = Z—g:V-T

[



® This is the “continuity eqn” for electromagnetic momentum, with g (momentum

density) in the role of p (charge density) & —T playing the part of J; it expresses
the local conservation of field momentum.

® In general the field momentum by itself, and the mechanical momentum by
itself, are not conserved—charges and fields exchange momentum, and only the
total is conserved.

® The Poynting vector has appeared in 2 quite different roles: S is the energy per

unit area, per unit time, transported by the EM fields, while u,€,S is the
momentum per unit volume stored in those fields.

@ T also plays a dual role: T itself is the EM stress (force per unit area) acting on

a surface, —T describes the flow of momentum (the momentum current density)

carried by the fields. _ _ _' _I _ _ _
Example 8.3: Whatis b \
the EM momentum af - L - - - .
stored in the fields? + + +
J_ @ @
® The fields are v '|' o ~ ~ _ _ _ _ % R

b
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® The Poynting vectoris § = A Z

41%e, s
® Energy is flowing down the line, from the battery to the resistor. The power

I [ A b

transported is P=/S-da= >\2 / %27rsds= In—=1V

4ne,J .8 2me, a

® The momentum in the fields is

A, [Py AL b, IVE,
pEMZ,quO/SdTZ'uO > z/—227rsds='u0 In—z=—7>—1z

4 .S 2 a C
® The cable is not moving, E & B are static, yet there is momentum in the fields.

® If now we turn up the resistance, so the current decreases. The changing

dl R
magnetic field will induce an electric field (Ex. 7.9) E = ( ;—0 d_ Ins+K ) Z
I 4

® This field exerts a force on *+\:

W
F=\/ ﬁﬂlna+K Z—\/{ ﬁﬂlnb+K 2:—'% dIlnéi
27 dt 27 dt 27 dtr a

® The total momentum imparted to the cable, as the current drops from / to 0

po AL L b, . . .
Poch— Fdr= 5 In —z the momentum originally stored in the fields.
73 a



Angular Momentum 1
® The EM fields carry energy = — (
2

0
® The angular momentum density: 9=r X g =¢,r X (EXB)

—¢,[(r-B)E—(r-E)B]

® Even perfectly static fields can harbor momentum and angular momentum, as
long as EXB # 0, and it is only when these field contributions are Z

included that the conservation laws are sustained.

Example 8.4: When the current in the solenoid is gradually
reduced, the cylinders begin to rotate, as in Ex. 7.8.

Question: Where does the angular momentum come from?

® The angular momentum was initially stored in the fields.
Before the current was switched off,

O S ponl Q
=————, a<s<b = — , <s<R
2meyl s - & 27/l s ¢ “=2

B=yu,nlz, S<R momentum density

® The angular momentum density with r=sS§+7Z

ponl Q ( 24 4 ) ~ Z-component constant
2/l independent of s

v=rXxXg=
\)

€ E2+l Bz) and momentum g:eOExB
I}




® Get the total angular momentum in the fields by integrating with the volume,

n[ RZ_ 2A
L=/t9d7'='u0 B (E )dT— ponlQ "

27/ S 2
® When the current is turned off, the changing magnetic field induces a circum-
. . o ) Hoht d [ si ~ .
ferential electric field, by Faraday’s law: E =— 5 d ¢, s.=min (s , R)
I s
n Q R’ d I.
= N, = / rx(—dqgE)= Fo z torque on the outer cylinder
n Q
= L, /N dt—uo /—dt———,uonIQR
2
ponQa dI .,

@ Similarly, the torque on the inner cylinderis N = — 1 7
a 2 t.
1 N
= LGZ/NadIZE,uOnIQazz = L., =L +L,

® The angular momentum /ost by the fields is precisely equal to the angular

momentum gained by the cylinders, the fotal angular momentum (fields + matter)
is conserved.

Selected problems: 2, 6, 7, 14, 22



Problem 8.8: As in Ex 8.4, now we turn off the electric
field instead, by connecting a weakly conducting radial
spoke between the cylinders. So they are now rigidly
connected to rotate together. From the magnetic force
on the current in the spoke, determine the total angular
momentum delivered to the cylinders, as they discharge.

i

h-------

® The Lorentz force on a segment ds of spoke is

dQ dQ . 4 B=pu,nlz T AR
dF=—=deéXB=—pu,nl—ds¢p < 0 .. .
d v dt de=dss8 N 1
do [* .~ A
= N= erF__'uOnldt ds(sS+zZ)X ¢
2 2
= sz—uonlc(lj—?/asdsz—,uoanza Ccil? < only rotate along z -axis
2 2

—d

N R n
= LZZ/NZdtZ—,uOnIQ Z as expected
® The mechanism by which angular momentum is transferred from the EM fields
to the cylinders is entirely different in the 2 cases: in Ex. 8.4 it was Faraday’s law,
but here it is the Lorentz force law.



Magnetic Forces Do No Work M
® If magnetic forces do no work, what about the magnetic crane ALK

lifting the carcass of a junked car?

. . B
® Let’s model the car as a circular current loop—in fact, let’s make } + k
it an insulating ring of line charge A\ rotating at angular velocity w.

® The upward magnetic force on the loop is )\

W

F=2r1laB, « I=Awa > dW=27n1ad’XAwB,dz = Ring'spotential
energy increases

® As the ring rises, the magnetic force is L the net velocity of the charges in the
ring, so it does no work on them.

® At the same time a motional emf is induced in the ring, which opposes the flow

of charge, and hence reduces its angular velocity:
d o | >
g:—ﬁ = d(I):BSZ’]TCle in dt dZ

Oé”:j{f'dlizflwa < f:

fi
orce R fz—BE

charge “dt

d
= forceon d/=fAd{ = torque.on Nza(—BZ—Z))\-Zwa
the ring dz

= dW=Nd¢=Nwdt=—271a’AwB dz



@ The ring slows down, and the rotational energy it loses is precisely equal to the
potential energy it gains.

@ All the magnetic field did was convert energy from one form to another. Or the

work done by the vertical component of the magnetic force is equal and opposite
to the work done by its horizontal component.

® Model the magnet as a big circular b
loop (radius b), resting on a table < >

and carrying a current /,; the 1y

“junk car” is a relatively small current loop (radius a),
on the floor directly below, carrying a current /.

® Assume both currents are constant. Parallel currents

attract, and lift the small loop off the floor. [—>a

a

® Start by adjusting the currents to let the small ring just “float,” a distance A
below the table, with the magnetic force exactly balancing the weight (m_g),

3 a’b” h
= Fmag=7,uolalb(b2+h2>5/2=mag < Problem 8.11
37 a’ b’ h
= deZmagdZZT,uolalb (b2+h2)5/2dz



Problem 8.11: )
@ For current /, in the big loop, by Ex. 5.6, B— pob 1,

its B along the z axis is 2(2+b°)*?

Z

® The little loop is small to be treated as a magnetic dipole m=r« a’l . Z

uowazbzlalb__37ru0a2b21albz .

® The magnetic
Z

F.=V(mB)=V

force on m is 2(Z2+b2)3/2 - 2(b2+z2)5/2
Problem 8.12:

d/ d/ dl d/
dW_ 1 -1, vw& =—L —-M—, & =—L,—2—M—°
dt “ dt dt dt dt

dl, dl, dl, dl,
=\ L +M— | I +| L, +M I,
“dt dt . dt dt

:% (%Lali+%LbI§+Mlalb) = W:%Lalfﬁ%LbI?ﬁMlafb




® The work was done by the power supply that sustains the current in loop a, but
not by the magnetic field.

® As the loop rises, a motional emf is induced in it. The flux through the loop

T 212
e =MI, « M= at 2a b2 372 ¥nutual < Problem 7.22
2 (b™+h?) inductance
d®, d M dM dh 7 * p? d
= ga:_ =—1,—=—1, :_Ib(_3> Ho Czl b2hS/2 - ==
d¢ d¢ dh dt 2 (b°+h") d¢
272
ork by the _ _3m a b h same as the work
= W y dWa__galadt_7lu’Ola[b 2 25/2dZ 4l
power supply (b*+h?) for lifting loop a
® A Faraday emf is also induced in the upper loop, due to the changing flux from
the lower loop: d=MI, = & =—] d—M
a a a dt_
37 a’ b’ h
= de:_gbIbdtZT:uolalb (b2+h2)5/2dZ:dWa

® So the power supplies have done twice as much work as was necessary to lift
the junk car! It increased the energy stored in the fields.



® The energy in a system of 2 current-carrying loops is (see Problem 8.12)

d M
U:%Lali+%LbI§+Mlalb = dU=1,1,——dt=dW,

® All 4 energy increments are the same. The power supply in loop a contributes

the energy necessary to lift the lower ring, while the power supply in loop b
provides the extra energy for the fields.

® If all we're interested in is the work done to raise the ring, we can ignore the
upper loop (and the energy in the fields) altogether.

@ In both these models, the magnet itself was stationary. As a model, we stick the
upper loop in a big box, the lower loop in a little box, and crank up the currents

so the force of attraction is much greater than m_g; the 2 boxes snap together,
and we attach a string to the upper box and pull up on it.

A
® As the lower loop rises, the magnetic force tilts backwards;
its vertical component lifts the loop, but its horizontal
component opposes the current, and no net work is done.

A

® The motional emf is perfectly balanced by < < >

the Faraday emf fighting to keep the
current going—the flux through the lower
loop is not changing.




® Another way of thinking: the flux is increasing because the loop is moving

upward, into a region of higher magnetic field, but it is decreasing because the

magnetic field of the upper loop—at any give point in space—is decreasing as
that loop moves up.

® No power supply is needed to sustain the current, since the energy in the fields
is not changing. So the person pulling up on the rope did the work to lift the car.

® The role of the magnetic field was to transmit this energy to the car, via the
vertical component of the magnetic force. But the magnetic field did no work.

® The fact that magnetic fields do no work follows directly from the Lorentz force
law. If magnetic monopoles exist, the force on a particle with electric charge ¢,

and magnetic charge ¢, becomes F=¢,(E+vXB)+¢q, (B—¢,u,vXE).In
that case, magnetic fields can do work only on magnetic charges.

® Another possibility is that in addition to electric charges there exist permanent
point magnetic dipoles, whose dipole moment m is not associated with any

electric current, but intrinsic.

® The Lorentz force law acquires an extraterm F=¢(E+vxB)+V (m-B)

® The magnetic field can do work on these “intrinsic” dipoles, but it is beyond
classical electrodynamics.
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