
  

Chapter 8Chapter 8 Conservation Laws

The Continuity EquationThe Continuity Equation
 Global conservation of charge: The total charge in the universe is constant.

 Local conservation of charge: If the charge in some region changes, then 
exactly that amount of charge must have passed in or out through the surface.

 The charge in a volume V is                                       and the current flowing out 

through the boundary S is                 , so the local conservation of charge gives

 It can be derived from Maxwell’s equations—conservation of charge is not an 
independent assumption; it is built into the laws of electrodynamics.

 It serves as a constraint on the sources (ρ and J).

Charge and Energy

∮
S

J⋅d a

d Q
d t

=−∮
S

J⋅d a ⇒ ∫
V

∂ ρ

∂ t
d τ =− ∫

V

∇⋅J d τ

⇒
∂ ρ

∂ t
=−∇⋅J continuity equation

Q (t )= ∫
V

ρ (r , t ) d τ



  

Poynting’s TheoremPoynting’s Theorem
 The work necessary to assemble a static charge distribution and currents going

 The total energy stored in EM fields, per unit volume, is

 Having some charge and current configuration which, at t, produces E & B. In  

dt, the charges move around a bit. How much work, dW, is done by the EM forces 

acting on these charges, in d t?

 According to the Lorentz force law, the work done on a charge q is

 E⋅J is the work done/unit time/unit volume, ie, the power delivered/unit volume

 We can express this quantity in terms of the fields alone, using the Ampère-

Maxwell law to eliminate J:

u=
1
2
( ϵ0 E 2

+
B2

μ0
)

∇⋅(E×B)=B⋅(∇×E )−E⋅(∇×B) ⇒ E⋅(∇×B)=B⋅(−
∂ B
∂ t
)−∇⋅(E×B)

W e=
ϵ0

2
∫ E2 d τ , W m=

1
2 μ0

∫ B2 d τ

F⋅d ℓ=q (E +v×B)⋅v d t=q E⋅v d t
 ρ d τ E⋅v d t  E⋅J d t d τ

⇐
q  ρ d τ

ρ v  J
⇒

d W
d t

= ∫
V

E⋅J d τ

E⋅J=E⋅
∇×B

μ0
−ϵ0 E⋅

∂ E
∂ t



  

 The 1st integral is the total energy stored in the fields,              . The 2nd term  

represents the rate at which energy is transported out of V, across its boundary 
surface, by the EM fields.

 Poynting’s theorem says that the work done on the charges by the EM force is 
equal to the decrease in energy remaining in the fields, less the energy that flowed 
out through the surface.

 The energy per unit time, per unit area, transported by the fields is called the 

Poynting vector:

B⋅
∂ B
∂ t

=
1
2
∂ B2

∂ t

E⋅
∂ E
∂ t

=
1
2
∂ E2

∂ t

⇒ E⋅J=−
1
2

∂

∂ t
( ϵ0 E 2

+
B2

μ0
)− 1

μ0
∇⋅(E×B)

⇒
d W
d t

=−
d

d t
∫
V

1
2
( ϵ0 E2

+
B2

μ0
) d τ −

1
μ0
∮
S
(E×B)⋅d a

Poynting’s theorem: the work-energy theorem of electrodynamics

∫ u d τ

S≡
E ×B

μ0



  

 S⋅d a is the energy/unit time crossing the infinitesimal surface d a—the energy

 flux (so S is the energy flux density)

 If no work is done on the charges in V, or no charge in V

 This is the “continuity equation” for energy—u (energy density) plays the role 

of ρ (charge density), and S takes the part of J (current density). It expresses 
local conservation of EM energy.

 In general, EM energy by itself is not conserved (nor is the energy of the 
charges). The fields do work on the charges, and the charges create fields—
energy is tossed back and forth between them. In the overall energy economy, 
you must include the contributions of both the matter and the fields.

d W
d t

=0 ⇒ ∫ ∂ u
∂ t

d τ =−∮ S⋅d a=−∫ ∇⋅S d τ ⇒
∂ u
∂ t

=−∇⋅S

d W
d t

= ∫
V

J⋅E d τ ,
d

d t
∫
V

u d τ = ∫
V

∂ u
∂ t

d τ , ∮
S

S⋅d a= ∫
V

∇⋅S d τ

⇒ ∫
V

( ∂ u
∂ t

+∇⋅S+ J⋅E ) d τ ⇒ J⋅E=−
∂ u
∂ t

−∇⋅S

The differential  form of the Poynting theorem

⇒
d W
d t

=−
d

d t
∫
V

u d τ − ∮
S

S⋅d a



  

 For linear materials,

 More generally in nonlinear media, we simply assume

J⋅E=( ∇×H−
∂ D
∂ t
)⋅E=E⋅∇×H−E⋅

∂ D
∂ t

=−∇⋅(E ×H )+H⋅∇×E−E⋅
∂ D
∂ t

=−∇⋅(E×H )−H⋅
∂ B
∂ t

−E⋅
∂ D
∂ t

⇒ S=E×H Poynting's vector ,
∂ u
∂ t

=−H⋅
∂ B
∂ t

−E⋅
∂ D
∂ t

∂ uE

∂ t
=E⋅

∂ D
∂ t

⇒ uE= ∫
0 , 0

E , t ∂ uE

∂ t
d t= ∫

0 , 0

E , t

E⋅
∂ D
∂ t

d t= ∫
0

E

E⋅d D

∂ uB

∂ t
=H⋅

∂ B
∂ t

⇒ uB= ∫
0 , 0

B , t ∂ uB

∂ t
d t= ∫

0 , 0

B , t

H⋅
∂ B
∂ t

d t= ∫
0

B

H⋅d B

where D=D (E , t ) , H=H (B , t)

B=μ H , D=ϵ E

H⋅
∂ B
∂ t

=
B
μ
⋅
∂ B
∂ t

=
1

2 μ

∂ B2

∂ t
=
∂ uB

∂ t
⇐ uB=

B2

2 μ

E⋅
∂ D
∂ t

= ϵ E⋅
∂ E
∂ t

=
ϵ

2
∂ E 2

∂ t
=

∂ uE

∂ t
⇐ uE=

ϵ

2
E2

⇒ u=uB+uE=
E⋅D+H⋅B

2



  

Example 8.1: When current flows down a 
wire, work is done as Joule heating of the 
wire. Calculate the energy/unit time 
delivered to the wire using the Poynting 
vector.

 Assuming the electric field is uniform,

 The magnetic field is “circumferential” at the surface: 

 The energy per unit time passing in through the surface of the wire is

 Since the fields are steady, then              ; hence the conservation of energy 

expressed by the Poynting's theorem asserts that                                              .

∂ u
∂ t

=0

B (r =a)=
μ0 I

2 π a
⇒ S= 1

μ0

V
L

μ0 I

2 π a
=

V I
2 π a L

radially
inward

E =
V
L

∫
V

J⋅E d τ =− ∮
S

S⋅d a

∫ S⋅d a=S⋅2 π a L=V I exactly what we expect



  

Example: Consider that a coaxial cable, of radii a (inner) & b (outer), is inserted 
between a source of constant emf and some load, a steady current I flows down 

the cable. If the emf provides a constant potential difference V, it will supply 
power to the cable of magnitude VI. Calculate the rate at which energy passes 
down the cable.

 In practice, the conductors of the cable will have a finite resistance, so that 
energy will also be dissipated as heat in them.

E =
V

ln (b /a)
ŝ
s

, B=
μ0 I

2 π s
ϕ̂ , a≤ s≤b ⇒ S=

E×B
μ0

=
V I

2 π ln (b /a)
ẑ
s2

⇒ ∫
S

S⋅d a= ∫
0

2 π

d ϕ ∫
a

b V I
2 π ln (b /a)

s d s
s2

=V I



  

ϵ0 ∫
0

ℓ

d z ∫
0

2 π

E s d ϕ=2 π ϵ0 ℓ s E = ∫
0

ℓ

λ d z=λ ℓ ⇒ E=
λ

2 π ϵ0

ŝ
s

⇒ V b−V a=0−V =− ∫
a

b

E⋅d s=−
λ

2 π ϵ0

∫
a

b d s
s

⇒
λ

2 π ϵ0

ln
b
a
=V ⇒ λ=

2 π ϵ0 V
ln b− ln a

⇒ E=
V

ln b− ln a
ŝ
s

 Assume the charge on the inner cable is              . Using the Gauss theorem

 

    used in Page 13 

∇ (A⋅B)=A×(∇×B)+B×(∇×A )+(A⋅∇) B+(B⋅∇) A

Q=λ ℓ



  

 The real behavior of E in a wire is the combined result of the 2 examples.

 No way an electric field only exists inside a wire without surface charge, or it 
violates the Maxwell equations ∇×E=0 (in a steady case).

 In general

 In a ideal conducting wire  

σ ∞ ⇒ E∥=0 ⇐ J∥=σ E∥

E=E ŝ+E∥ ẑ
⇒ E E n , E∥ E t



  

 The interpretation of the 
Poynting vector as giving the 
flow of energy density has 
peculiar effects, especially 
in static problems, that 
cannot be resolved.

 The fact that Ponyting's theorem 
is true does not guarantee that
S really is an energy flow.

 In the example of a magnetic dipole and 
a point charge superimposed statistically 
in space, which is a static problem with 
constant E and B fields, it seems as if S is 
flowing around the symmetry axis of the dipole. 

 It is hard to believe this is happening, and we cannot verify it experimentally. 
What is clear is that through any sphere containing the dipole, the integrated 
energy flow is 0.

 The Poynting's theorem is mainly for nonstatic problems, especially where one 
wishes to calculate the EM radiation flowing from some energy source.



  

Momentum
Newton’s 3Newton’s 3rdrd Law in Electrodynamics Law in Electrodynamics
 For a point charge q traveling in along the x axis 

at a constant speed v, its electric field is not given 
by Coulomb’s law due to its being moving.

 But E still points radially outward from the 
instantaneous position of the charge.

 Since a moving point charge does not constitute a steady 
current, its magnetic field is not given by the Biot-Savart 
law. However, B still circles around the axis in a manner 
suggested by the right-hand rule.

 Suppose this charge encounters an identical 
one, both mounted on tracks to maintain the 
same direction and speed, proceeding in at the 
same speed along the y axis.

 The electric force between them is repulsive, 
the magnetic field of q1 points into the page, so 

the magnetic force on q2 is toward the right, 
whereas the magnetic field of q2 is out of the 

page, the magnetic force on q1 is upward.



  

 The net electromagnetic force of q1 on q2 is equal but not opposite to the force of q2 
on q1, in violation of Newton’s 3rd law. In electrostatics and magnetostatics the 3rd 

law holds, but in electrodynamics it does not.

 People use the 3rd law all the time. The proof of momentum conservation rests 
on the cancellation of internal forces, which follows from the 3rd law. When you 
tamper with the 3rd law, you are placing conservation of momentum in jeopardy.

 Momentum conservation is rescued in electrodynamics by the realization that 
the fields themselves carry momentum, since we have already attributed energy to 
the fields.

 Whatever momentum is lost to the particles is gained by the fields. Only when 
the field momentum is added to the mechanical momentum is momentum 
conservation restored.  

Identity tensor I= [
1 0 0
0 1 0
0 0 1]=∑i , j=1

3

δ i j ê i⊗ ê j



  

Maxwell’s Stress TensorMaxwell’s Stress Tensor
 Calculate the total EM force on the charges in volume V: 

F= ∫
V

ρ (E +v×B ) d τ = ∫
V

(ρ E + J×B) d τ = ∫
V

f d τ ⇐ f : force per
unit volume

⇒ f =ρ E + J×B=ϵ0 (∇⋅E )E +( 1
μ0

∇×B−ϵ0

∂ E
∂ t
)×B

∂t (E×B)=∂t E ×B+E×∂t B + Faraday's law ∂t B=−∇×E

⇒
∂ E
∂ t

×B=
∂

∂ t
(E×B)+E×(∇×E )

⇒ f =ϵ0 [(∇⋅E )E −E×(∇×E )]−
1
μ0

B×(∇×B)−ϵ0
∂

∂ t
(E×B)

= ϵ0 [(∇⋅E )E−E×(∇×E )]+
1
μ0

[(∇⋅B) B−B×(∇×B)]− ϵ0
∂

∂ t
(E ×B)

∇ E2
=∇ E2

=2 (E⋅∇) E +2 E ×(∇×E) ⇒ E×(∇×E )=
1
2
∇ E2

−(E⋅∇) E

∇ B2
=∇ B2

=2 (B⋅∇) B+2 B×(∇×B) ⇒ B×(∇×B)=
1
2
∇ B2

−(B⋅∇) B

⇒ f =ϵ0 (∇⋅E +E⋅∇) E +
(∇⋅B+B⋅∇) B

μ0
−∇ ( ϵ0 E2

2
+

B2

2 μ0

)− ϵ0
∂

∂ t
(E ×B)



  

 Introduce the Maxwell stress tensor,

 Because it carries 2 indices, where a vector has only one, Ti j is sometimes 

written with: T. One can form the dot product of T with a vector a, in 2 ways

—on the left, and on the right:

The resulting object, which has one remaining index, is itself a vector.

 The divergence of T has as its j th component  

T i j=ϵ0( E i E j−
1
2

δi j E2)+ 1
μ0
( Bi B j−

1
2

δ i j B2) ⇐ δi j= [1 , i= j
0 , i≠ j

Kronecker
delta

⇒
T x x=

ϵ0

2
(E x

2
−E y

2
−E z

2
)+

Bx
2
−By

2
−Bz

2

2 μ0

T x y=ϵ0 E x E y+
Bx By

μ0
, ⋯

⇐ Ti j=T j i symmetric

E2
=E x

2
+E y

2
+E z

2 , B2
=Bx

2
+By

2
+B z

2

(∇⋅T ) j=ϵ0( (∇⋅E +E⋅∇) E j−
1
2
∇ j E2)+ 1

μ0
( (∇⋅B+B⋅∇) B j−

1
2
∇ j B2)

⇒ f =∇⋅T−ϵ0 μ0

∂ S
∂ t

⇒ total EM force F= ∮
S

T⋅d a− ϵ0 μ0
d

d t
∫
V

S d τ

T=ϵ0 E⊗E +
B⊗B

μ0
−
I
2
( ϵ0 E2

+
B2

μ0
)

(a⋅T ) j=∑
i=1

3

ai Ti j , (T⋅a ) j=∑
i=1

3

T j i ai



  

 In the static case the 2nd term drops out, and the EM force on the charge 
configuration can be expressed entirely with the stress tensor at the boundary:

 T is the force per unit area (or stress) acting on the surface. Ti j is the force 

(per unit area) in the i th direction acting on an element of surface oriented in the 

j th direction—“diagonal” elements (Tx x, Ty y, Tz z) represent pressures, and “off-

diagonal” elements (Tx y, Tx z, etc.) are shears.

 Let us extend the region to include all space. Since all the sources & are within 

a finite region, at large distance r, we have, at worst,              and            , thus

            at least, while the surface area  r 2 (in the static cases), 

 We can define the momentum of the EM field from here in the next section.

F= ∮
S

T⋅d a static (# )

B∼
1
r3

T∼ 1
r4

E ∼
1
r2

∫
all space

( f + ϵ0 μ0

∂ S
∂ t
) d τ = ∮

all space

T⋅d a ∝ 1
r2

 0



  

Example 8.2: Determine the net force on the “northern” hemisphere of a 
uniformly charged solid sphere of radius R and charge Q.

 The boundary surface consists of 2 parts—a hemispherical bowl at radius R, 

and a circular disk at           .

 For the bowl, 

θ=
π

2
d a=R2 sin θ d ϕ d θ r̂ , E=

Q
4 π ϵ0 R2

r̂

r̂=sin θ cos ϕ x̂ + sin θ sin ϕ ŷ + cos θ ẑ

⇒

Tz x=ϵ0 E z E x=ϵ0( Q
4 π ϵ0 R2 )

2

sin θ cos θ cos ϕ

Tz y= ϵ0 E z E y= ϵ0( Q
4 π ϵ0 R2 )

2

sin θ cos θ sin ϕ

Tz z=
ϵ0

2
(E z

2
−E x

2
−E y

2
)=

ϵ0

2
( Q

4 π ϵ0 R2 )
2

(cos2
θ−sin2

θ)

⇒ (T⋅d a )z=Tz x d a x+T z y d a y+Tz z d a z=
ϵ0

2
( Q

4 π ϵ0 R
)2

sin θ cos θ d ϕ d θ

⇒ F bowl=
ϵ0

2
( Q

4 π ϵ0 R
)2

2 π ∫
0

π /2

sin θ cos θ d θ=
1

4 π ϵ0

Q2

8 R2



  

d a=R2 sin θ d ϕ d θ r̂ , E=
Q

4 π ϵ0 R2
r̂ , T=ϵ0 E⊗E +

B⊗B
μ0

−
I
2
( ϵ0 E2

+
B2

μ0
)

⇒ T⋅d a= ϵ0 (E⋅d a ) E−
ϵ0

2
E2 I⋅d a

= ϵ0( Q sin θ

4 π ϵ0

d θ d ϕ ) Q r̂
4 π ϵ0 R2 −

ϵ0

2
( Q

4 π ϵ0 R2 )
2

R2 sin θ d ϕ d θ r̂

=
ϵ0

2
( Q

4 π ϵ0 R
)2

sin θ d ϕ d θ r̂

r̂=sin θ cos ϕ x̂ + sin θ sin ϕ ŷ + cos θ ẑ

⇒ (T⋅d a )z=
ϵ0

2
( Q

4 π ϵ0 R
)2

sin θ cos θ d ϕ d θ ⇐  considering the symmetry

⇒ F bowl=
ϵ0

2
( Q

4 π ϵ0 R
)2

2 π ∫
0

π /2

sin θ cos θ d θ=
1

4 π ϵ0

Q2

8 R2



  

 For the equatorial disk, inside the sphere,

 In applying (#), any volume that encloses all of the charge in question (and no 

other charge) will do the job.

 In this case we could use the whole region z>0. Then the boundary surface 
consists of the entire xy plane (+ a hemisphere at r=∞ ⇒ E=0 ⇒ Fbowl=0 there).

 We now have the outer portion of the plane (r>R),

θ=
π

2
⇒ d a=− r d ϕ d r ẑ ⇒ E=

Q
4 π ϵ0 R3

r = Q r
4 π ϵ0 R3

(cos ϕ x̂ +sin ϕ ŷ )

⇒ Tz z=−
ϵ0

2
( Q

4 π ϵ0 R3
)2

r2
⇒ (T⋅d a )z=

ϵ0

2
( Q

4 π ϵ0 R3
)2

r3 d r d ϕ

⇒ F disk=
ϵ0

2
( Q

4 π ϵ0 R3
)2

2 π ∫
0

R

r3 d r = 1
4 π ϵ0

Q2

16 R2
⇒ F =

1
4 π ϵ0

3 Q2

16 R2

repulsive

r =r r̂

T z z=−
ϵ0

2
( Q

4 π ϵ0

)2 1
r4 ⇒ (T⋅d a )z=

ϵ0

2
( Q

4 π ϵ0

)2 1
r3 d r d ϕ

⇒ F r >R=
ϵ0

2
( Q

4 π ϵ0

)2

2 π ∫
R

∞ d r

r3 =
1

4 π ϵ0

Q2

8 R2 ⇒ F=
1

4 π ϵ0

3 Q2

16 R2
the
same

d a=− r d ϕ d r ẑ



  

Alternative (Problem 2.47): Inside the sphere E=
Q

4 π ϵ0 R3
r , ρ=

Q
4 π R3

/3

⇒ d F=E d q=E ρ d τ =
Q r

4 π ϵ0 R3

3 Q d τ

4 π R3
=

3
ϵ0
( Q

4 π R3
)2

r d τ

=
3
ϵ0
( Q

4 π R3
)2

r (sin θ cos ϕ x̂ +sin θ sin ϕ ŷ + cos θ ẑ ) r2 sin θ d r d θ d ϕ

⇒ F=∫ d F=
3
ϵ0
( Q

4 π R3
)2

ẑ ∫
0

R

r3 d r ∫
0

π /2

cos θ sin θ d θ ∫
0

2 π

d ϕ

=
3
ϵ0
( Q

4 π R3 )
2 R4

4
sin2

(π /2)
2

2 π ẑ= 3 Q2

64 π ϵ0 R2 ẑ repulsive



  

Problem 8.3: Calculate the force of magnetic attraction between 
the northern and southern hemispheres of a uniformly charged 
spinning spherical shell, with radius R, angular velocity ω, 
and surface charge density σ.

 
                                                                        (from Ex 5.11)

 Consider a surface enclosing the entire upper hemisphere
— a hemispherical bowl just outside r=R + the equatorial disk

 For the bowl, 

 The force is in the z direction due to symmetry

θ

Fbowl= ∫
bowl

d F=
1
μ0
∫

bowl [B (B⋅d a)−
B2

2
d a ]= ẑ

μ0
∫

bowl [B z (B⋅d a)−
B2

2
d az ]

=π μ0( σ ω R2

3
)2

ẑ ∫
0

π /2

(9 cos2
θ−5) cos θ sin θ d θ=−

π μ0

4
( σ ω R2

3
)

2

ẑ

B=

2
3

μ0 σ R ω ẑ uniform  inside

μ0 σ ω R4

3 r3 (3 cos θ r̂− ẑ ) dipole  outside

d F=Tmag⋅d a= 1
μ0
( B (B⋅d a )− B2

2
I⋅d a )= 1

μ0
( (B⋅d a) B−

B2

2
d a )

d a=R2 sin θ d ϕ d θ r̂ , B⋅d a= 2
3

μ0 σ ω R3 cos θ sin θ d θ d ϕ



  

 For the equatorial disk, inside the sphere,

Alternative (Problem 5.44):

d a=− r d ϕ d r ẑ ⇒ B⋅d a=−
2
3

μ0 σ ω R r d ϕ d r , B2
=

4
9
(μ0 σ ω R)2

Fdisk= ∫
disk

d F=
1
μ0
∫

disk [B (B⋅d a )− B2

2
d a ]= ẑ

μ0
∫

disk [B z (B⋅d a)− B2

2
d az ]

=−
4
9

π μ0 σ
2

ω
2 R4 ẑ ∫

0

R

r d r =−2 π μ0( σ ω R2

3
)2

ẑ

⇒ F=Fbowl+F disk=−π μ0( σ ω R2

2
)2

ẑ attractive

r =R ⇒ Bave=
B inside+Boutside

2
=

μ0 σ ω R

6
(3 cos θ r̂+ ẑ )

F= ∫
bowl

d F= ∫
bowl

σ v ×Bave d a= ∫
bowl

σ ω R sin θ ϕ̂×Bave R2 sin θ d θ d ϕ

=−μ0 π σ
2

ω
2 R4 ẑ ∫

0

π /2

cos θ sin3
θ d θ ⇐ due to axial-symmetry

=−π μ0( σ ω R2

2
)2

ẑ



  

Conservation of MomentumConservation of Momentum
 According to Newton’s 2nd law, the force on an object is equal to the rate of 

change of its momentum:

 This expression is similar in structure to Poynting’s theorem, and it invites an 
analogous interpretation: The 1st integral represents momentum stored in the 

fields:                                   , while the 2nd integral is the momentum per unit time 

flowing in through the surface   

 ($) is the statement of conservation of momentum in electrodynamics: If the 
mechanical momentum increases, either the field momentum decreases, or else 
the fields are carrying momentum into the volume through the surface, or both.

 The momentum density in the fields:

 The momentum flux transported by the fields is −T, and −T⋅d a  is the EM 

momentum per unit time passing through the area d a.

 If the mechanical momentum in V is not changing, then 

g=ϵ0 μ0 S= ϵ0 E×B=
S
c2

⇐ ϵ0 μ0=
1
c2

pEM= ϵ0 μ0 ∫
V

S d τ

∫ ∂ g
∂ t

d τ =∮ T⋅d a=∫ ∇⋅T d τ ⇒
∂ g
∂ t

=∇⋅T

⇒
d

d t
(pmech+ pEM)= ∮

S

T⋅d a

F=
d pmech

d t
=− ϵ0 μ0

d
d t
∫
V

S d τ + ∮
S

T⋅d a ($)



  

 This is the “continuity eqn” for electromagnetic momentum, with g (momentum 

density) in the role of ρ (charge density) & −T playing the part of J; it expresses 

the local conservation of field momentum.

 In general the field momentum by itself, and the mechanical momentum by 
itself, are not conserved—charges and fields exchange momentum, and only the 

total is conserved.

 The Poynting vector has appeared in 2 quite different roles: S is the energy per 

unit area, per unit time, transported by the EM fields, while μ0 ϵ0 S is the 
momentum per unit volume stored in those fields.

 T also plays a dual role: T itself is the EM stress (force per unit area) acting on 

a surface, −T describes the flow of momentum (the momentum current density) 

carried by the fields.

Example 8.3: What is 
the EM momentum 
stored in the fields?

 The fields are

E=
λ

2 π ϵ0

ŝ
s

, B=
μ0 I

2 π

ϕ̂

s



  

 The Poynting vector is

 Energy is flowing down the line, from the battery to the resistor. The power 

transported is

 The momentum in the fields is

 The cable is not moving, E & B are static, yet there is momentum in the fields.

 If now we turn up the resistance, so the current decreases. The changing 

magnetic field will induce an electric field (Ex. 7.9)

 This field exerts a force on ±λ:

 The total momentum imparted to the cable, as the current drops from I to 0

                                                        the momentum originally stored in the fields.

S=
λ I

4 π
2

ϵ0 s2
ẑ

pmech=∫ F d t=
μ0 λ I ℓ

2 π
ln

b
a

ẑ

F=λ ℓ ( μ0

2 π

d I
d t

ln a+K ) ẑ−λ ℓ ( μ0

2 π

d I
d t

ln b+K ) ẑ=−
μ0 λ ℓ

2 π

d I
d t

ln
b
a

ẑ

P=∫ S⋅d a= λ I
4 π

2
ϵ0

∫
a

b 1
s2 2 π s d s=

λ I
2 π ϵ0

ln
b
a
= I V

pEM=μ0 ϵ0 ∫ S d τ =
μ0 λ I

4 π
2

ẑ ∫
a

b ℓ

s2
2 π s d s=

μ0 λ I ℓ

2 π
ln

b
a

ẑ = I V ℓ
c2

ẑ

E=( μ0

2 π

d I
d t

ln s+K ) ẑ



  

Angular MomentumAngular Momentum
 The EM fields carry energy                                        and momentum

 The angular momentum density:

 Even perfectly static fields can harbor momentum and angular momentum, as 

long as E×B ≠ 0, and it is only when these field contributions are 
included that the conservation laws are sustained.

Example 8.4: When the current in the solenoid is gradually 
reduced, the cylinders begin to rotate, as in Ex. 7.8. 
Question: Where does the angular momentum come from?

 The angular momentum was initially stored in the fields. 
Before the current was switched off,

  The angular momentum density with  

ϑ≡r × g=ϵ0 r×(E ×B)

= ϵ0 [(r⋅B) E −(r⋅E ) B ]

ϑ=r × g=
μ0 n I Q

2 π ℓ
( z

s
ŝ − ẑ ) ⇐ z -component constant

independent of s

r = s ŝ + z ẑ

u=
1
2
( ϵ0 E 2

+
1
μ0

B2)

E=
Q

2 π ϵ0 ℓ
ŝ
s

, a< s<b

B=μ0 n I ẑ , s< R

⇒ g=−
μ0 n I Q

2 π ℓ s
ϕ̂ , a< s<R

momentum density

g=ϵ0 E×B



  

 Get the total angular momentum in the fields by integrating with the volume,

 When the current is turned off, the changing magnetic field induces a circum-

ferential electric field, by Faraday’s law:

 

 Similarly, the torque on the inner cylinder is

 The angular momentum lost by the fields is precisely equal to the angular 

momentum gained by the cylinders, the total angular momentum (fields + matter) 
is conserved.

Selected problems: 2, 6, 7, 14, 22

⇒ La=∫ N a d t=
1
2

μ0 n I Q a2 ẑ ⇒ Lem=La+Lb

L=∫ ϑ d τ =
μ0 n I Q

2 π ℓ
∫ ( z

s
ŝ − ẑ ) d τ =−μ0 n I Q

R2
−a2

2
ẑ

E=−
μ0 n

2
d I
d t

s<
2

s
ϕ̂ , s<=min (s , R)

⇒ Nb= ∫
S

r ×(−d q E )=
μ0 n Q R2

2
d I
d t

ẑ torque on the outer cylinder

⇒ Lb=∫ N b d t=
μ0 n Q R2

2
ẑ ∫

I

0 d I
d t

d t=−
1
2

μ0 n I Q R2 ẑ

N a=−
μ0 n Q a2

2
d I
d t

ẑ



  

Problem 8.8: As in Ex 8.4, now we turn off the electric 
field instead, by connecting a weakly conducting radial 
spoke between the cylinders. So they are now rigidly 
connected to rotate together. From the magnetic force 
on the current in the spoke, determine the total angular 
momentum delivered to the cylinders, as they discharge.

 The Lorentz force on a segment ds of spoke is

 The mechanism by which angular momentum is transferred from the EM fields 
to the cylinders is entirely different in the 2 cases: in Ex. 8.4 it was Faraday’s law, 
but here it is the Lorentz force law.

d F=
d Q
d t

d ℓ×B=−μ0 n I
d Q
d t

d s ϕ̂ ⇐
B=μ0 n I ẑ
d ℓ=d s ŝ

⇒ N=∫ r×d F=−μ0 n I
d Q
d t
∫

a

R

d s (s ŝ + z ẑ )×ϕ̂

⇒ N z=−μ0 n I
d Q
d t
∫

a

R

s d s=−μ0 n I
R2

−a2

2
d Q
d t

⇐ only rotate along z -axis

⇒ L= ẑ ∫ N z d t =−μ0 n I Q
R2

−a2

2
ẑ as expected



  

Magnetic Forces Do No Work
 If magnetic forces do no work, what about the magnetic crane 

lifting the carcass of a junked car?

 Let’s model the car as a circular current loop—in fact, let’s make 
it an insulating ring of line charge λ rotating at angular velocity ω.

 The upward magnetic force on the loop is

 As the ring rises, the magnetic force is ⊥ the net velocity of the charges in the 
ring, so it does no work on them.

 At the same time a motional emf is induced in the ring, which opposes the flow 
of charge, and hence reduces its angular velocity:

 

ℰ=−
d Φ
d t

⇐ d Φ=B s 2 π a d z   in  d t

F =2 π I a Bs ⇐ I =λ ω a ⇒ d W =2 π a2
λ ω Bs d z ⇒ Ring's potential

energy increases

ℰ=∮ f⋅d ℓ= f⋅2 π a ⇐ f :
force

charge
⇒ f =−Bs

d z
d t

⇒ force on d ℓ= f λ d ℓ ⇒ torque on
the ring

N =a(−Bz
d z
d t
) λ⋅2 π a

⇒ d W =N d ϕ=N ω d t =−2 π a2
λ ω Bs d z



  

 The ring slows down, and the rotational energy it loses is precisely equal to the 
potential energy it gains.

 All the magnetic field did was convert energy from one form to another. Or the 
work done by the vertical component of the magnetic force is equal and opposite 
to the work done by its horizontal component.

 Model the magnet as a big circular 
loop (radius b), resting on a table 

and carrying a current Ib; the 

“junk car” is a relatively small current loop (radius a), 

on the floor directly below, carrying a current Ia.

 Assume both currents are constant. Parallel currents 
attract, and lift the small loop off the floor.

 Start by adjusting the currents to let the small ring just “float,” a distance h 

below the table, with the magnetic force exactly balancing the weight (ma
 g),

⇒ F mag=
3 π

2
μ0 I a I b

a2 b2 h

(b2
+ h2

)
5 /2 =ma g ⇐ Problem 8.11

⇒ d W g=ma g d z= 3 π

2
μ0 I a I b

a2 b2 h
(b2

+ h2
)
5 /2 d z



  

Problem 8.11: 
 For current Ib in the big loop, by Ex. 5.6, 

                             its B along the z axis is

 The little loop is small to be treated as a magnetic dipole 

 The magnetic 
    force on m is

Problem 8.12: 

m=π a2 I a ẑ

d W
d t

=−ℰa I a−ℰb I b ℰa=−La

d I a

d t
−M

d I b

d t
, ℰb=−L b

d I b

d t
−M

d I a

d t

=( L a

d I a

d t
+M

d I b

d t
) I a+( L b

d I b

d t
+ M

d I a

d t
) I b

=
d

d t
( 1

2
La I a

2
+

1
2

Lb I b
2
+M I a I b) ⇒ W =

1
2

L a I a
2
+

1
2

Lb I b
2
+ M I a I b

Fmag=∇ (m⋅B)=∇
μ0 π a2 b2 I a I b

2 (z2
+b2

)
3/2 =−

3 π μ0 a2 b2 I a I b z

2 (b2
+ z2

)
5/2 ẑ

B=
μ0 b2 I b

2 (z2
+b2

)
3/2 ẑ



  

 The work was done by the power supply that sustains the current in loop a, but 
not by the magnetic field.

 As the loop rises, a motional emf is induced in it. The flux through the loop

 A Faraday emf is also induced in the upper loop, due to the changing flux from 

the lower loop:

 So the power supplies have done twice as much work as was necessary to lift 
the junk car! It increased the energy stored in the fields.

Φb=M I a ⇒ ℰa=− I a
d M
d t

⇒ d W b=−ℰb I b d t=
3 π

2
μ0 I a I b

a2 b2 h

(b2
+h2

)
5 /2 d z=d W a

Φa=M I b ⇐ M =
π μ0

2
a2 b2

(b2
+h2

)
3/2

mutual
inductance

⇐ Problem 7.22

⇒ ℰa=−
d Φa

d t
=− I b

d M
d t

=− I b
d M
d h

d h
d t

=− I b (−3)
π μ0

2
a2 b2 h

(b2
+h2

)
5 /2 (− d z

d t
)

⇒ work by the
power supply

d W a=−ℰa I a d t = 3 π

2
μ0 I a I b

a2 b2 h
(b2

+h2
)
5/2

d z same as the work
for lifting loop a



  

 The energy in a system of 2 current-carrying loops is (see Problem 8.12)

 All 4 energy increments are the same. The power supply in loop a contributes 

the energy necessary to lift the lower ring, while the power supply in loop b 
provides the extra energy for the fields.

 If all we’re interested in is the work done to raise the ring, we can ignore the 
upper loop (and the energy in the fields) altogether.

 In both these models, the magnet itself was stationary. As a model, we stick the 
upper loop in a big box, the lower loop in a little box, and crank up the currents 
so the force of attraction is much greater than ma

 g; the 2 boxes snap together, 
and we attach a string to the upper box and pull up on it.

 As the lower loop rises, the magnetic force tilts backwards; 
its vertical component lifts the loop, but its horizontal 
component opposes the current, and no net work is done.

 The motional emf is perfectly balanced by 
the Faraday emf fighting to keep the 
current going—the flux through the lower 
loop is not changing.

U =
1
2

La I a
2
+

1
2

Lb I b
2
+M I a I b ⇒ d U = I a I b

d M
d t

d t=d W b



  

 Another way of thinking: the flux is increasing because the loop is moving 

upward, into a region of higher magnetic field, but it is decreasing because the 
magnetic field of the upper loop—at any give point in space—is decreasing as 
that loop moves up.

 No power supply is needed to sustain the current, since the energy in the fields 
is not changing. So the person pulling up on the rope did the work to lift the car.

 The role of the magnetic field was to transmit this energy to the car, via the 
vertical component of the magnetic force. But the magnetic field did no work.

 The fact that magnetic fields do no work follows directly from the Lorentz force 
law. If magnetic monopoles exist, the force on a particle with electric charge qe 

and magnetic charge qm becomes                                                                 . In 

that case, magnetic fields can do work only on magnetic charges.

 Another possibility is that in addition to electric charges there exist permanent 
point magnetic dipoles, whose dipole moment m is not associated with any 

electric current, but intrinsic.

 The Lorentz force law acquires an extra term

 The magnetic field can do work on these “intrinsic” dipoles, but it is beyond 
classical electrodynamics.

F=q (E +v×B)+∇ (m⋅B)

F=qe (E +v×B)+qm (B− ϵ0 μ0 v×E )
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