
  

Chapter 7Chapter 7 Electrodynamics

Ohm’s LawOhm’s Law
 For most substances, the current density J is proportional to the

 force per unit charge, f:

 The reciprocal of σ is called the resistivity:

 Even insulators conduct slightly, though the conductivity of a metal is much 
greater; in fact, for most purposes metals can be regarded as perfect 
conductors, with σ = ∞, while for insulators we can pretend σ = 0.

Electromotive Force

ρ=
1
σ

  not charge density

J =σ f ⇐ σ :  conductivity  not surface charge , f =
F
q
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 It’s usually an EM force that drives the charges to produce the current, so

 E=0 in a conductor for stationary charges (J=0) but not true for current0.

 For perfect conductors,                   even if current exists. Metals are usually 

good conductors, the electric field required to drive current in them is negligible.

 We routinely treat the connecting wires in electric circuits as equipotentials.

 Resistors are made from poorly conducting materials.

E=
J
σ
∼0

J =σ f =σ
F L

q
=σ (E+ v×B) ⇒ J =σ E Ohm's law ⇐ v ≪1



  

Example 7.1

Example 7.2: 2 long coaxial metal cylinders 
(radii a and b) are separated by material of 
conductivity σ. If they are maintained at a 
potential difference V, what current flows 
from one to the other, in a length L?

E =
λ

2 π ϵ0 s
ŝ ⇐ λ :  charge/length on the inner cylinder

⇒ I =∫ J⋅d a=σ ∫ E⋅d a=σ∬ λ

2 π ϵ0 s
s d ϕ d z= σ

ϵ0
λ L ⇒ λ= ϵ0

I
σ L

⇒ V = ∫
a

b

E⋅d ℓ= λ

2 π ϵ0

∫
b

a d s
s
=

λ

2 π ϵ0

ln
b
a

⇒ I =
2 π σ L

ln b− ln a
V



  

 The total current flowing from one electrode to the other is proportional to the 
potential difference between them:

 The constant R is called the resistance; it’s a function of the geometry of the 
arrangement and the conductivity of the medium between the electrodes.

 In Ex. 7.1,               ; in Ex. 7.2,                              .

 Resistance is measured in ohms (Ω): an ohm is a volt per ampere.

 The proportionality between V & I is a direct consequence of J = σ E: if you 

want to double V, you double the charge on the electrodes—that doubles E, 

which doubles J, which doubles I.

 For steady currents and uniform conductivity,                               . Therefore the 

charge density inside is 0; any unbalanced charge resides on the surface.

 We proved this using the fact E=0 for the case of stationary charges; evidently, 
it is still true when the charges are allowed to move.

 It follows that Laplace’s equationLaplace’s equation holds within a homogeneous ohmic material 
carrying a steady current, so all the tools/tricks of Chapter 3 are available for 
calculating the potential.

V = I R

∇⋅E=
1
σ
∇⋅J =0

R=
L

σ A
R=

1
2 π σ L

ln
b
a



  

Example 7.3: Prove that the field in Ex. 7.1 is uniform.

 At the left end let the potential Φ=0 and at the right end the potential Φ=V0.

 On the cylindrical surface,

 With Φ or its normal derivative specified on all surfaces, the potential is 

uniquely determined (Prob. 3.5).

 One potential under Laplace’s eqn and the boundary conditions:

 The uniqueness theorem guarantees that it’s the solution

 Charge arranges itself over the surface of the wire in such a way as to produce 
a nice uniform field within.

 Contrast the enormously more difficult problem 
that arises if the conducting material is removed, 
leaving only metal plates.

 Ohm’s law implies that a constant field produces a
constant current, which suggests a constant velocity. 
Isn’t that a contradiction to Newton’s law?

⇒ E =−∇ Φ=−
V 0

L
ẑ

J⋅n̂=0  no leaking ⇒ E⋅n̂ =−
∂ Φ
∂ n

=0

Φ=0

Φ (z)=
V 0 z

L



  

 No, because of the frequent collisions of electrons as they pass down the wire.

 If the length of a block is λ and your acceleration is a, the time it takes to go a 
block is

 In practice, the charges are already moving very fast because of their thermal 
energy. But the thermal velocities have random directions, and average to 0. The 
drift velocity is a tiny extra bit:

 The eqn correctly predicts that conductivity is proportional to the density of the 
moving charges and decreases with increasing temperature.

 Due to all the collisions, the work done by the electrical force is converted into 
heat in the resistor.

 Since the work done per unit charge is V and the charge flowing per unit time 

is I, the power delivered is

 With I in amperes and R in ohms, P comes out in watts (joules/second).

t = λ

vthermal

⇒ vave=
a λ

2 vthermal

⇒ J = n f q v ave=
n f q λ

2 v thermal

F
m
=

n f λ q2

2 m v thermal

E

t =√2 λ

a
⇒ vave=

1
2

a t =√λ a
2
∝ √λ E

2
⇐ NG

P=V I = I R2 Joule heating law



  

σ1

Example: A system is grounded by using 
a perfectly conducting sphere of radius 
a with half of the sphere in contact with 

the ground. The layer of earth of radius b 
that is in immediate contact with the sphere 
has a conductivity σ1, and the rest of the 
ground has a conductivity σ2.

Assuming that there is a current I flowing from the sphere to the ground

∫
S

J⋅d a= I ⇒ J =
I

2 π r2
r̂ ⇒ E1,2=

J
σ1,2

=
I

2 π σ1,2

r̂
r2

⇒ V =− ∫
∞

a

E⋅d ℓ= ∫
a

∞

E⋅d r = ∫
a

b I d r

2 π σ1 r2 + ∫
b

∞ I d r

2 π σ2 r2

=
I

2 π
( 1

σ1
∫

a

b d r

r2 +
1
σ2
∫

b

∞ d r

r2 )= I
2 π σ1

( 1
a
−

1
b
)+ I

2 π σ2

1
b

⇒ R=
V
I
=

1
2 π σ2 b

+
1

2 π σ1

( 1
a
−

1
b
)

σ2

S



  

Δ V =−∫
D+Δ r

D

E⋅d r =− ∫
D+Δ r

D I d r

2 π σ r2 =
I

2 π σ

Δ r
D (D+Δ r )

, Rman≃Rcow=R

⇒ iman/cow=
Δ V man/cow

Rman/cow

≈
I

2 π σ R

Δ rman/cow

D2  for D ≫Δ r ⇒
icow

iman

≈
Δ r cow

Δ r man

Δ r cow∼3 Δ rman

⇒ icow∼3 iman

So the ground current
in a lightning strike is
dangerous, especially
to cows.  



  

Example: Consider a sphere of radius R and conductivity σ1, placed in an initially 
uniform current with density                . The medium surrounding the sphere is of 
conductivity σ2.
This problem is analogous to the dielectric problem (Ex. 4.7) where a dielectric 
sphere is placed in an external electric field,                . The potentials in the 
dielectric case are as follows:

We follow the similar track: 

E0=E 0 ẑ

∇⋅J =σ ∇⋅E=0 ⇐ J =σ E
⇒ J =−σ ∇ Φ ⇒ ∇

2Φ=0

⇒

Φin= ∑ Aℓ r ℓ Pℓ (cos θ)

Φout=−
J 0

σ2
z+∑

Bℓ
r ℓ+1 Pℓ (cos θ )

(1) Φin (r =R)=Φout (r=R) boundary
(2) J in , r (R)=−σ1 ∂r Φin (R) conditions

=−σ2 ∂r Φout (R)= J out , r

Φout=−E 0 z+
ϵ1− ϵ2

ϵ1+2 ϵ2

E0

R3

r2 cos θ , r >R

Φin =−
3 ϵ2

ϵ1+2 ϵ2

E0 z , r < R

J 0= J 0 ẑ

σ2 ϵ2

σ1



  

⇒

(1) A1=
B1

R3 −
J 0

σ2
, Aℓ=

Bℓ
R2 ℓ+1  for ℓ≠1

(2)
σ1

σ2
A1=−2

B1

R3
−

J 0

σ2
,

σ1

σ2
ℓ Aℓ=−(ℓ+1)

Bℓ
R2 ℓ+1

 for ℓ≠1

⇒ A1=−
3 J 0

σ1+2 σ2

, B1=
σ1−σ2

σ1+2 σ2

J 0

σ2
R3 , Aℓ=Bℓ=0  for ℓ≠1

⇒ Φin=−
3 J 0

σ1+2 σ2

z , Φout=−
J 0

σ2
z+

σ1−σ2

σ1+2 σ2

J 0

σ2

R3

r2 cos θ

⇒

J in=
3 σ1

σ1+2 σ2

J 0 , inside   the sphere r < R

J out= J 0+
σ1−σ2

σ1+2 σ2

R3

r3 [3 ( r̂⋅J 0) r̂− J 0] , outside the sphere r > R



  

Electromotive ForceElectromotive Force
 The current is the same all the way around the loop;

otherwise charge would be piling up somewhere, and
the electric field of this accumulating charge is in 
such a direction as to even out the flow.

 In practice, we can safely assume the current is the same all around 
the circuit, even in systems that oscillate at radio frequencies.

 2 forces are involved in driving current around a circuit: the
source, fs, confined to one portion of the loop (battery), and an 

electrostatic force, which smooths out the flow and communicate 

the influence of the source to distant parts of the circuit:  f=fs+E.       

 The physical agency responsible for fs can be many different things. Whatever 

the mechanism, its net effect is determined by the line integral of f  around the 
circuit:

 ℰ is called the electromotive force (or electromotance), or emf, of the 
circuit. It’s the integral of a force per unit charge.

 If work is done, fs must be nonconservative in the region containing the loop.

ℰ=∮ f⋅d ℓ=∮ f s⋅d ℓ ⇐ ∮ E⋅d ℓ=0  for electrostatic fields



  

 Since, usually, fs≠0 only "inside" the source of emf, ie, localized, one writes

  The function of a battery is to establish and maintain a voltage difference 
equal to the electromotive force. The resulting electrostatic field drives current 
around the rest of the circuit.

 Because it’s the line integral of fs, ℰ can be interpreted 

as the work done per unit charge, by the source.

 If there is resistance to the current flow inside 
the source, then current can flow only if

∫
a

b

( f s+E )⋅d ℓ= ∫
a

b

f⋅d ℓ>0

⇒ V a b= ∫
a

b

f⋅d ℓ= r I ⇐ r : internal
resistance

⇒ ℰ−r I =V

ℰ=∮ f s⋅d ℓ= ∫
a

b

f s⋅d ℓ ⇐ where a  and b  are points
at the terminals of the source|

f = f s+E , σ ∞

J =σ f ⇒ f =0

⇒ ∫
a

b

f s⋅d ℓ+ ∫
a

b

E⋅d ℓ=0 ⇒
the work done by both f s  and E  in
transporting charge from a  to b  is 0

⇒ V =−∫
a

b

E⋅d ℓ= ∫
a

b

f s⋅d ℓ=∮ f s⋅d ℓ=ℰ ⇐ E=− f s



  

BatteriesBatteries
 A common emf source is the ordinary voltaic battery, 

in which the mechanism whereby energy is made 
available to produce currents has a chemical origin.

 Chemical reactions occur in which chemical 
energy is released to do the work required to 
produce a charge separation. The 
charge separation in turn produces an electric 
potential difference to move charges in wires.

 For solar batteries, rays of sunlight fall on a 
sensitive metal surface, which consequently emits 
electrons via the photoelectric effect. 

 The light meters on cameras operate on this principle.

 For a nuclear battery, a radioactive source is 
placed at one terminal, and the charged radiation 
emitted is collected at another terminal. The 
action is similar to the solar battery except that 
the source of energy here is nuclear 
rather than electromagnetic (sunlight).

 The common characteristic of all 
sources of emf is their ability to effect 
a charge separation.



  

Motional emfMotional emf
 Generators exploit motional emfs, 

which arise when you move a wire through 
a magnetic field.

 The integrals performed to calculate ℰ is carried out at one instant of time.

 Although the magnetic force is responsible for establishing the 
emf, it is not doing any work—magnetic forces never do work.

 The person pulling on the loop is supplying the 
energy that heats the resistor.

 With the current flowing, the free charges in 
segment ab have a vertical velocity (call it u) in 

addition to the horizontal velocity v from the motion of the loop. So the magnetic 

force has a component q u B to the left.

 To counteract this, the person pulling on the wire must exert a force per unit 
charge fpull = u B to the right. This force is transmitted to the charge by the 
structure of the wire.

B

ℰ=∮ f mag⋅d ℓ= v B h =|d ΦB

d t |



  

 Meanwhile, the particle is actually moving in the direction of the resultant 

velocity w, and the distance it goes is h sec θ. The work done per unit charge is

 So the work done per unit charge is exactly equal to the emf, though the integrals 
are taken along different paths, and completely different forces are involved.

 To calculate the emf, you integrate around the loop at one instant, but to 
calculate the work done you follow a charge in its journey around the loop.

�=∫ f pull⋅d ℓ=u B h sec θ sin θ=v B h=ℰ



  

 fpull contributes nothing to the emf ℰ, because it ⊥ the wire, whereas fmag 

contributes nothing to work � because it ⊥ the motion of the charge.

 Let ΦB be the flux of B through the loop:

 The flux rule for motional emf: the emf generated in the loop is minus the rate 
of change of flux through the loop.

 The flux rule has the virtue of applying to nonrectangular loops moving in 
arbitrary directions through nonuniform magnetic fields; the loop need not even 
maintain a fixed shape.

Proof: the figure shows a loop of wire at time t, and also a short time d t later.

 The change in flux: 

 Point P moves to P in time d t. v is the velocity of the wire, and u is the velocity 

of a charge down the wire; w=v+u is the resultant velocity of a charge at P.

 The infinitesimal element of area on the ribbon:

d ΦB=ΦB (t+d t)−ΦB (t )=Φribbon= ∫
ribbon

B⋅d a

d a=(v×d ℓ) d t  and u∥d ℓ

⇒
d ΦB

d t
=∮ B⋅v×d ℓ=∮ B⋅w ×d ℓ=−∮ w ×B⋅d ℓ=−∮ f mag⋅d ℓ=−ℰ

ΦB≡∫ B⋅d a ⇒ ΦB=B h x

⇒
d ΦB

d t
=B h

d x
d t

=−B h v ⇒ ℰ=−
d ΦB

d t



  

 In applying the flux rule, sign consistency is governed 
(as always) by your right hand: If your fingers define the 
positive direction around the loop, then your thumb 
indicates the direction of d a.

 If the emf comes out negative, the current will 
flow in the negative direction around the circuit.

 A “flux rule paradox” involves the circuit.

B



  

 When the switch is thrown (from a to b) the flux through the circuit doubles, 
but there’s no motional emf (no conductor moving through a magnetic field), and 
the ammeter (A) records no current.

                      may represent

1. The change in magnetic flux through a loop fixed in space (in our reference 
system) due to variation of B(t) in time.

2. The change in magnetic flux through a well-defined conducting loop which
moves (relative to our reference system) through B constant in time.

3. The flux "swept out" by a conducting loop as it changes its dimensions in the
presence of B constant in time.

4. A linear combination of items 1 & 2 or 1 & 3 above.

ℰ=−
d ΦB

d t
=−

d
d t
∫ B⋅d a=−∫ ∂ B

∂ t
⋅d a−∫ B⋅

∂

∂ t
d a

=∫ ∇×E F⋅d a−∮ B⋅v ×d ℓ ⇐ Faraday's Law
∂ B
∂ t

+∇×E =0 mention
later

=∮ (E F+ v×B)⋅d ℓ=∮ (EF +E L)⋅d ℓ=∮ E i⋅d ℓ

ℰ=−
d ΦB

d t



  

Example: Conducting Bar Moving Through a Constant Magnetic Field

 From the rest frame, charges under the influence of the Lorentz force and the 
forces constraining the charges to remain in the bar will move until equilibrium 
is established,

 From the observer moving with the bar, an electric field E i is observed 
everywhere in space having the constant value

 This argument stands in the nonrelativistic cases, ie, v ≪ c.

F=q E i+q E =0 ⇒ E=−E i ⇒ E i=v×B

F=q v×B+q E=0 ⇒ E=−v×B



  

Example: Conducting Bar Moving on Stationary 
                Tracks Through B Field

 If we calculate the emf around the loop 
at any instant, u: drift velocity,

 From the co-moving frame with the bar, the observer sees the electric field as

 However, the moving observer sees the U-shaped section of the loop moving 
with velocity v=−v. So the moving observer will find an emf | v B ℓ | due to the 
moving loop.

 The sense of current flow will be the same as found above. Again, consistent 
results are obtained for the 2 observers.

ℰ= ∫
bar

(v ×B)⋅d r− ∫
bar

E⋅d r

− ∫
track

E⋅d r + ∫
bar + track

(u ×B)⋅d r

= ∫
bar

(v×B)⋅d r −∮ Eq⋅d r =−v B ℓ=−
d ΦB

d t
⇒ I=ℰ

R
=−

v B ℓ
R

E
=E +E i=E + v×B ⇒ ∫

bar

E 
⋅d r= ∫

bar

E⋅d r + ∫
bar

(v×B)⋅d r =0



  

Example 7.4: Find the current in the resistor.

 The velocity at a distance s from the axis is

 This example (the Faraday disk, or Faraday dynamo) involves a motional emf 
that you can’t calculate from the flux rule.

 For eddy currents, take a chunk of metal and shake it around in a nonuniform 
magnetic field. Currents will be generated in the material, and you will feel a 
kind of “viscous drag.”

 To confirm that eddy currents are 
responsible, one repeats the demon-
stration using a disk that has many 
slots cut in it, to prevent the flow of 
large-scale currents. This time the 
disk swings freely, unimpeded by the 
field.

ω

v=ω× s ⇒ f mag=v×B=ω B s

⇒ ℰ=∫ f mag⋅d s=ω B ∫
0

a

s d s=
ω B a2

2

⇒ I =ℰ

R
=

ω B a2

2 R



  



  

Electromagnetic Induction
Faraday’s LawFaraday’s Law
 Faraday’s 3 experiments:

Experiment 1: Pull a loop of wire to the right through a magnetic field. 
                          A current flows in the loop.
Experiment 2: Move the magnet to the left, holding the loop still.
                          A current flows in the loop.
Experiment 3: With both the loop and the magnet at rest, change the strength 
                          of the field. Once again, current flows in the loop.
 
 The 1st experiment is a straightforward case of motional emf; 

                                                                       the flux rule gives ℰ=−
d ΦB

d t



  

 The first 2 cases show that all the idea matters is the relative motion of the 
magnet and the loop. Indeed, in the light of special relativity it has to be so.

 If the loop moves, it’s a magnetic force that sets up the emf, but if the loop is 

stationary, the force cannot be magnetic—stationary charges experience no 
magnetic forces.

 Faraday came up an ingenious inspiration:

 This induced electric field accounts for the emf in Experiment 2. And the emf is 
again equal to the rate of change of the flux,

 Faraday’s law reduces to the old rule                        (or,                 ) in the static 
case (constant B).

 In Experiment 3, the magnetic field changes for totally different reasons, but 

according to Faraday’s law an electric field is induced, giving rise to emf

A changing magnetic field induces an electric field.

ℰ=∮ E⋅d ℓ=−
d ΦB

d t
⇒ ∮ E⋅d ℓ=−∫ ∂ B

∂ t
⋅d a Faraday’s law

⇒ ∇×E=−
∂ B
∂ t

⇐ Stokes’ theorem

∇×E=0

−
d ΦB

d t

∮ E⋅d ℓ=0



  

 All 3 cases can be subsumed into a kind of universal flux rule:

   Whenever (and for whatever reason) the magnetic flux through a loop

   changes, an emf                    will appear in the loop.

 In Experiment 1 it’s the Lorentz force law at work; the emf is magnetic. But in 

the other two it’s an electric field (induced by the changing magnetic field) that 
does the job.

 It is astonishing that all 3 processes yield the same formula for the emf. In fact, 
it was this “coincidence” that led Einstein to the special theory of relativity.

Example 7.5: Graph the emf induced in the 
ring, as a function of time. 

 Surface current and magnetic field inside

 The flux through the ring is 0 when the 
magnet is far; it builds up to a maximum of 
μ0 M π a2 as the leading end passes through; and It drops back to 0 as the trailing 
end emerges.

 The emf is (minus) the time derivative of ΦB, so it consists of 2 spikes.

ℰ=−
d ΦB

d t

K b=M ϕ̂ B=μ0 M



  

 The right-hand rule does the job to know which way around the ring the 
induced current flows.

 ΦB is positive to the left in the figure,  the positive direction for current in the 

ring is counterclockwise; since the first spike is negative, the 1st current pulse 

flows clockwise, and the 2nd counterclockwise.

 Lenz’s law helps to get the directions right: Nature abhors a change in flux. 

 The induced current will flow in such a direction that the flux it produces tends 
to cancel the change.

 Notice that it is the change in flux, not the flux itself, that nature abhors.

 Faraday induction is a kind of “inertial” phenomenon: A conducting loop “likes” 
to maintain a constant flux through it; if you change the flux, the loop responds 
by sending a current around in such a direction as to frustrate your efforts.



  

Example 7.6: The “jumping ring” demonstration.

 When a flux appeared upwards, and the emf generated 
in the ring led to a current in the ring which was in such 
a direction that its field tended to cancel this new flux.

 Thus the current in the loop is opposite to 
the current in the solenoid. And opposite 
currents repel, so the ring flies off.



  

The Induced Electric FieldThe Induced Electric Field
 Faraday’s law generalizes the electrostatic rule ∇×E=0 to the time-dependent 

régime. The divergence of E is still given by Gauss’s law (          ).

 If E is a pure Faraday field (due exclusively to a changing B, with ρ=0),

 Faraday-induced electric fields are determined by            in exactly the same 
way as magnetostatic fields are determined by μ0 J.

 The analog to 
   Biot-Savart is

 If symmetry permits, we can use all the tricks associated with Ampère’s law in 

integral form (                            ), only now it’s Faraday’s law in integral form:

 The rate of change of (magnetic) flux through the Amperian loop plays the role 
formerly assigned to μ0 Ienc . 

−
∂ B
∂ t

E=−
1

4 π
∫ ∂t B× �̂

�2
d τ =−

1
4 π

∂

∂ t
∫ B× �̂

�2
d τ

∮ B⋅d ℓ=μ0 I enc

∮ E⋅d ℓ=−
d ΦB

d t

∇⋅E=
ρ

ϵ0

∇⋅E=0 , ∇×E =−
∂ B
∂ t

[vs ∇⋅B=0 , ∇×B=μ0 J (magnetostatics)]



  

∇×E =−
∂ B
∂ t

=−
∂

∂ t
∇×A=∇×(−

∂ A
∂ t
) ⇐ B=∇×A

⇒ ∇×( E+
∂ A
∂ t
)=0 ⇒ E +

∂ A
∂ t

=−∇ Φ ⇒ E =−∇ Φ−
∂ A
∂ t

⇒ E=E q+E i ⇐

Eq≡−∇ Φ :  from charge, conservative (nonsolenoidal)

E i≡ −
∂ A
∂ t

:  induced field, nonconservative (solenoidal)

⇒ ∇×Eq=0 , ∇×E i=−
∂ B
∂ t

⇒ ∮
C

E⋅d ℓ=∮
C

E i⋅d ℓ=−
d ΦB

d t
=−

d
d t
∫
S

B⋅d a=−
d

d t
∮
C

A⋅d ℓ

 



  

Example 7.7: A uniform magnetic field B(t), pointing 

upwards, fills the shaded circular region. If B is changing 
with time, what is the induced electric field?

 E points in the circumferential direction. Draw an 

Amperian loop of radius s, and apply Faraday’s law:

 If B is increasing, E runs clockwise viewed from above.

 If B is produced inside a long solenoid of radius R and 

of turn density n, then

 ℰ and E for s > R can be calculated in a similar way.

d B
d t

=μ0 n
d I
d t

⇒ ℰ=−μ0 n π s2 d I
d t

⇒ E=−
μ0 n s

2
d I
d t
ϕ̂   for s<R

ℰ=∮ E⋅d ℓ=E⋅2 π s=−
d Φ
d t

=−
d

d t
[π s2 B (t )]

=−π s2 d B
d t

⇒ E=−
s
2

d B
d t
ϕ̂



  

Example 7.8: A line charge λ is glued onto the rim of a 
wheel of radius b horizontally, and free to rotate. In the 

central region, out to radius a, there is a uniform magnetic 

field B0 pointing up. What happens when someone turns 
the field off?

 The changing magnetic field induces an electric 
field, curling around the axis of the wheel. This 
electric field exerts a force on the charges at 
the rim, and the wheel starts to turn.

 By Lenz’s law, its rotation direction tends to 
restore the upward flux; it’s counterclockwise.

 The torque on a segment of length dℓ is r×F, or b λ E dℓ. The total torque on 

the wheel is

 No matter how quickly or slowly you turn off the field, the resulting angular 
velocity of the wheel is the same regardless. 

ℰ=∮ E⋅d ℓ=E⋅2 π b=−
d ΦB

d t
=−π a2 d B

d t
⇒ E =−

a2

2 b
d B
d t
ϕ̂

N =b λ (− a2

2 b
d B
d t
) ∮ d ℓ=−b λ π a2 d B

d t

⇒ L=∫ N d t=−λ π a2 b ∫
B0

0

d B=λ π a2 b B0 ⇐ angular
momentum



  

 It’s the electric field that did the rotating because the magnetic field is 0 at the 
location of the charge.

 Electromagnetic induction occurs only when the magnetic fields are changing, 
but we use the apparatus of magnetostatics (Ampère’s law, the Biot-Savart law, 
etc) to calculate those magnetic fields.

 Technically, any result derived in this way is only approximately correct. But in 
practice the error is usually negligible, unless the field fluctuates extremely 
rapidly, or you are interested in points very far from the source.

 This régime, in which magnetostatic rules can be used to calculate the 
magnetic field on the right hand side of Faraday’s law, is called quasistatic.

 It is only when we come to EM waves and radiation that we must worry 
seriously about the breakdown of magnetostatics.



  

Example 7.9: A long straight wire carries a 
slowly varying current I(t). Determine the 
induced electric field, as a function of the 
distance s from the wire.

 The magnetic field is           , circling 

around the wire. So E runs parallel to the axis, like B vs I in an infinite solenoid.

 For the rectangular “Amperian loop,” Faraday’s law gives:

 The actual value of K depends on the whole history of the function I(t).

 The equation has the peculiar implication that E blows up as s goes ∞. That is 
because we have overstepped the limits of the quasi-static approximation. EM 
“news” travels at the speed of light, and at large distances B depends not on the 
current now, but on the current as it was at earlier time.

 If τ is the time it takes I to change substantially, the quasi-static approximation 
should hold only for s≪c τ, hence the eqn does not apply, at extremely large s.

μ0 I

2 π s

∮ E⋅d ℓ=E (s0) ℓ−E (s) ℓ=−
d

d t
∫ B⋅d a=−

μ0 ℓ

2 π

d I
d t
∫

s0

s d s

s
=

μ0 ℓ

2 π
ln

s0

s
d I
d t

⇒ E (s)=( μ0

2 π

d I
d t

ln
s
s0

+E (s0)) ẑ=( μ0

2 π

d I
d t

ln s+K ) ẑ



  

 

InductanceInductance

 With the vector potential and Stokes’ theorem,

 2 important things about mutual inductance:
   1: M21 is a purely geometrical quantity, having to do with 
       the sizes, shapes, and relative positions of the 2 loops.
   2: The integral is unchanged if we switch the roles of 
       loops 1 & 2, ie, M21=M12, symmetric.

 Whatever the shapes and positions of the loops, 
the flux through 2 when we run a current I around 1 is identical to the flux through 1 
when we send the same current I around 2.

Φ2=∫ B1⋅d a2=∫ ∇×A1⋅d a2=∮ A 1⋅d ℓ2

=
μ0 I 1

4 π
∮ ∮ d ℓ1

�
⋅d ℓ2 ⇐ A 1=

μ0 I 1

4 π
∮ d ℓ1

�

⇒ M21=
μ0

4 π
∮ ∮ d ℓ1⋅d ℓ2

�
Neumann formula

B1=
μ0

4 π
I 1 ∮ d ℓ1× �̂

�2
∝ I 1

Φ2=∫ B1⋅d a2=M 21 I1 ⇐ M21 : mutual
inductance

�



  

Example 7.10: A short solenoid (ℓ, a, n1) lies on the axis of a long solenoid (b, n2). 

Current I flows in the short solenoid. What is the flux through the long solenoid? 

 Since the inner solenoid is short, it has a complicated field; it puts a different 
flux through each turn of the outer solenoid. It is hard to compute the total flux.

 If we exploit the equality of the mutual inductances, the problem becomes easy. 
Just look at the reverse situation: run the current I through the outer solenoid, 
and calculate the flux through the inner one.

 The field inside the long solenoid is constant:

 It’s also the flux a current I in the short solenoid putting through the long one.

B=μ0 n2 I ⇒ Φsingle=B⋅π a2
=μ0 n2 I π a2

⇒ Φtotal=μ0 π a2 n1 n2 ℓ I

M =μ0 π a2 n1 n2 ℓ



  

Problem 7.22: A small loop of radius a is held a distance z above the 
center of a large radius b. The planes of the 2 loops are ‖, and ⊥ the 
common axis.
 Let current Ib flows in the big loop, 

    by Ex. 5.6, its Bb along the z axis is

 The little loop is small so the field of the big loop to be essentially constant. 

Then the flux through it is

 Current Ia flows in the little loop, 

considering it as a dipole, its Ba is 

Φa= ∫
Sa

Bb⋅d a=
μ0 π a2 b2 I b

2 (z2
+b2

)
3/2

Bb=
μ0 b2 I b

2 (z2
+ b2

)
3 /2 ẑ

⇒ Φb= ∫
S b

Ba⋅d a=
μ0 m

4 π
∫ 2 cos θ r̂ +sin θ θ̂

(s2
+ z2

)
3/2

⋅s d s d ϕ ẑ ⇐
ẑ= r̂ cos θ

− θ̂ sin θ

=
μ0 m

2
∫

0

b
3 cos2

θ−1

(s2
+ z2

)
3 /2 s d s=

μ0 m

4
∫

0

b

( 3 z2

(s2
+ z2

)
5 /2 −

1
(s2

+ z2
)
3 /2 ) d s2

=
μ0 m b2

2 (b2
+ z2

)
3 /2

=
μ0 π a2 b2 I a

2 (z2
+b2

)
3 /2

Φa=M a b I b , Φb=M b a I a ⇒ M a b=
Φa

I b

=
μ0 π a2 b2

2 (z2
+b2

)
3 /2 =

Φb

I a

= M b a

Ba=
μ0 m

4 π r3
(2 cos θ r̂ +sin θ θ̂) ⇐ m=π a2 I a



  

Example: Determine the mutual inductance between a 
conducting triangular loop and a very long straight wire.

Apply Ampere's law and write the expression for B2, caused 

by a current I2 in the long straight wire:

The equation of the sloped line of the triangle is

z=[(d +b)−r ] tan π

3
=√3 (d +b− r ) ⇒ d a1= z d r ϕ̂

⇒ Φ1=∫ μ0 I 2

2 π r
z d r =√3

μ0 I 2

2 π
∫

d

d + b
d +b−r

r
d r

=
√3 μ0 I 2

2 π
( (d +b) ln

d +b
d

−b )⇒ M1 2 I 2

⇒ M =M1 2=
√3 μ0

2 π
( (d +b) ln

d + b
d

−b )

I1

I2

∮ B2⋅d ℓ=μ0 I 2 ⇒ B2=
μ0 I 2

2 π r
ϕ̂ ⇒ Φ1=∫ B2⋅d a1



  

 If you vary the current in loop 1, the flux through 

loop 2 will vary accordingly,

 Every time you change the current in loop 1, an 
induced current flows in loop 2—even though there 
are no wires connecting them!

 A changing current not only induces an emf in any 
nearby loops, it also induces an emf in the loop itself.

 The field (thus the flux) ∝ the current:

 Inductance is measured in henries (H); a henry is a volt-second per ampere.

 The emf from the self-induction and the mutual induction combined can be 

expressed as ℰ=−
d

d t
Φ1 , total=−L

d I 1

d t
−∑

i=2

M1 i

d I i

d t

Φ=L I ⇐ L :  self inductance ⇒ ℰ=−L
d I
d t

ℰ2=−
d Φ2

d t
=−M

d I 1

d t



  

Example 7.11: Find the self-inductance of a toroidal coil 
with rectangular cross section (inner radius a, outer 

radius b, height h), that carries a total of N turns.

 The magnetic field inside the toroid is

 The total flux is N times this, so the self-inductance 

 Lenz’s law dictates that the emf is in such a direction as to oppose any change 
in current. For this reason, it is called a back emf.

 Whenever you alter the current in a wire, you must fight against this back emf.

 Inductance plays the same role in electric circuits that mass does in mechanical 

systems: The greater L is, the harder it is to change the current, as the larger the 
mass, the harder it is to change an object’s velocity.

B=
μ0 N I
2 π s

L=
μ0 N 2 h

2 π
ln

b
a

⇒ Φsingle=∫ B⋅d a=
μ0 N I

2 π
h ∫

a

b
d s
s
=

μ0 N I h

2 π
ln

b
a



  



  

Example 7.12: The total emf in this circuit is ℰ0 from the 

battery plus              from the inductance. Ohm’s law is

 Had there been no inductance in the circuit, the current would have jumped 

immediately to     .

 In practice, every circuit has some 
self-inductance, and the current approaches 

       asymptotically.

 The quantity             is the time constant; it tells you how long the current 

takes to reach a substantial fraction (roughly     ) of its final value.
2
3

−L
d I
d t

ℰ0

R

τ =
L
R

ℰ0

R

ℰ0−L
d I
d t

= I R ⇒ I (t)=
ℰ0

R
+ k e

−
R t
L

I (0)=0 ⇒ k=−
ℰ0

R
⇒ I (t )=

ℰ0

R
( 1−e

−
R t
L )=ℰ0

R
( 1−e

−
t
τ ) ⇐ τ ≡

L
R



  

Energy in Magnetic FieldsEnergy in Magnetic Fields
 Energy delivered to the resistors and converted into heat is irretrievably lost.

 The work done against the back emf to get the current going is a fixed amount, 
and it is recoverable: you get it back when the current is turned off.

 It represents energy latent in the circuit; it can be regarded as energy stored in 
the magnetic field.

 The work done on a unit charge, against the back emf, in one trip around the 
circuit is −ℰ. The amount of charge per unit time passing the wire is I. So the 

total work done per unit time is

 It does not depend on how long we take to crank up the current, only on the 

geometry of the loop, ie, L, and the final current I.

 For a nicer way to write W,

⇒ W =
1
2

I ∮ A⋅d ℓ=
1
2
∮ A⋅I d ℓ

=
1
2
∫
V

A⋅J d τ =
1

2 μ0

∫
V

A⋅∇×B d τ ⇐ ∇×B=μ0 J

L I =Φ=∫ B⋅d a=∫ ∇×A⋅d a=∮ A⋅d ℓ

d W
d t

=−ℰ I =L I
d I
d t

⇒ W =
1
2

L I2



  

∇⋅(A×B )=B⋅(∇×A)−A⋅(∇×B) ⇒ A⋅(∇×B)=B2
−∇⋅(A×B)

⇒ W =
1

2 μ0
[∫ B2 d τ −∫ ∇⋅(A×B) d τ ]= 1

2 μ0 [ ∫ V

B2 d τ − ∮
S

(A×B)⋅d a ]
 The integration with current density is taken over the entire volume occupied by 

the current. But any region larger than this will do, for J is 0 out there anyway.

 The larger the region we pick the greater is the contribution from the volume 
integral, and therefore the smaller is that of the surface integral.

 If we integrate over all space, the surface integral=0,

 This result indicates that the energy is “stored in the magnetic field,” in the 

amount           per unit volume. This is a nice way to think of it.

 Someone prefers to say that the energy is stored in the current distribution, in 

the amount           per unit volume. Both are fine.

 Magnetic fields do no work, but producing a magnetic field requires changing 

the field, and a changing B -field induces an electric field. The latter does work.

 In the beginning and at the end, there is no E; but in between, while B is 

building up, there is an E, and it is against this that the work is done.

W =
1

2 μ0

∫
all space

B2 d τ

A⋅J
2

B2

2 μ0



  

Example 7.13: Find the magnetic energy stored in a section of length ℓ.

 According to Ampère’s law, only the field between the cylinders is nonzero, 

 This method of calculating self-inductance is especially useful when the current 
is not confined to a single path, but spreads over some surface or volume, so that 
different parts of the current enclose different amounts of flux.

B=
μ0 I

2 π s
ϕ̂ ⇒ energy density w=

1
2 μ0

( μ0 I

2 π s
)

2

=
μ0 I 2

8 π
2 s2

⇒ W =∫ w d τ =∫ μ0 I 2

8 π
2 s2 2 π ℓ s d s=

μ0 I 2 ℓ

4 π
∫

a

b
d s
s

=
μ0 I 2 ℓ

4 π
ln

b
a

W =
1
2

L I 2
⇒ L=

μ0 ℓ

2 π
ln

b
a

external inductance  of a coaxial line

W mag=
1
2
∫ A⋅J d τ =

1
2 μ0

∫ B2 d τ ⇔ W elec=
1
2
∫ ρ Φ d τ =

ϵ0

2
∫ E2 d τ



  

Example 7.13’: Same as Ex. 7.13, but consider the current I is uniformly 
distributed in a solid inner conductor of radius a.

 According to Ampère’s law,

 The new term         from the flux linkage internal to the solid inner conductor is 

known as the internal inductance of the inner conductor.

 In high-frequency cases the current in a good conductor tends to shift to the 
surface of the conductor (due to skin effect, mentioned later), resulting in an 
uneven current distribution in the inner conductor an thus changing the value of 
the internal inductance.

 In the extreme case the current essentially concentrate in the "skin" of the 
inner conductor as a surface current, the internal self-inductance is reduced to 0.

energy density w=
1

2 μ0

( μ0 I s

2 π s>
2 )

2

=
μ0 I 2 s2

8 π
2 s>

4

⇒ W =∫ w d τ = ∫
0

b μ0 I 2 s2

8 π
2 s>

4 2 π ℓ s d s=
μ0 I 2 ℓ

4 π
( ∫

0

a
s3

a4 d s+ ∫
a

b d s
s
)

=
μ0 I 2 ℓ

4 π
( 1

4
+ ln

b
a
) ⇒ L=

μ0 ℓ

2 π
( 1

4
+ ln

b
a
) ⇐ W =

1
2

L I 2

μ0 ℓ

8 π

∮ B⋅d ℓ=μ0 I ⇒ B=
μ0 I

2 π

s
s>

2
ϕ̂ ⇐ s>=max (s , a)



  

Example: calculate the self-inductance of 2 infinitely long 
wires, of radii ρ1 & ρ2, carrying currents I & −I,
and a distance h between their centers.

 The vector potential of a
cylindrical wire was showed 
in p.43 of Chapter 5 note as

The magnetic energy of the system can be calculated as

Az=−
μ0 I

4 π
( s2

s>
2 +2 ln

s>

a
)+ Az (0) ⇐

s>=max (s , a)
let Az (0)=0  for convenience

⇒ A1=−
μ0 I

4 π [
ρ

2

ρ1
2

ln ρ
2

ρ1
2 +1 ] ẑ for [

ρ≤ρ1

ρ> ρ1
] , A 2=

μ0 I

4 π [
ρ
 2

ρ2
2

ln ρ
 2

ρ2
2 +1 ] ẑ for [

ρ

≤ρ2

ρ

> ρ2

]

U =
1
2
∫ J⋅A d τ =

1
2
( ∫

S1

J 1⋅(A1+A2) d a1 d z+ ∫
S2

J 2⋅(A1+A2) d a2 d z )
=

I

2 π ρ1
2 ∫

S1

(A1+ A2) d a1 d z−
I

2 π ρ2
2 ∫

S2

(A1+ A2) d a2 d z ⇐ J 1,2=±
I ẑ

π ρ1,2
2



  

 Since the potentials are independent of z and are in the direction of z, then the 

energy per unit length

ρ
 2
=ρ

2
+ h2

+2 ρ h cos ϕ   in S1

⇒ ∫
S1

(A1+ A2) d a1=
μ0 I

4 π
∫

S1

( 1+ ln
ρ

2
+h2

+2 ρ h cos ϕ

ρ2
2

−
ρ

2

ρ1
2
) ρ d ρ d ϕ

=
μ0 I ρ1

2

8
+

μ0 I

4 π
∫

0

ρ1

ρ d ρ ∫
0

2 π

[ ln ρ
2
+h2

ρ2
2 + ln ( 1+

2 h ρ

ρ
2
+h2 cos ϕ )] d ϕ

=
μ0 I ρ1

2

8
+

μ0 I

2
∫

0

ρ1( ln
ρ

2
+h2

ρ2
2

+ ln
h2

ρ
2
+h2
) ρ d ρ=

μ0 I ρ1
2

4
( 1

2
+ ln

h2

ρ2
2
)

⇒ Similarly ∫
S2

(A1+ A2) d a2=−
μ0 I ρ2

2

4
( 1

2
+ ln

h2

ρ1
2
)

⇒ u=
μ0 I 2

8 π
( 1+2 ln

h2

ρ1 ρ2
)⇒

1
2

L
ℓ

I 2
⇒

L
ℓ
=

μ0

4 π
( 1+2 ln

h2

ρ1 ρ2
)

u≡
U
ℓ
=

I
2 π [

1
ρ1

2 ∫
S1

(A1+ A2) d a1−
1
ρ2

2 ∫
S2

(A1+ A2) d a2]



  

S= ∫
0

2 π

ln (1+β cos ϕ) d ϕ=2 ∫
0

π

ln (1+β cos ϕ) d ϕ

=2( ∫
0

π /2

ln (1+β cos ϕ) d ϕ+ ∫
0

π /2

ln (1−β cos ϕ) d ϕ )
=2 ∫

0

π /2

ln (1−β
2 cos2

ϕ) d ϕ=2 ∫
0

π /2 ∫
0

β
2

−cos2
ϕ

1− x cos2
ϕ

d x d ϕ

=2 ∫
0

β
2

∫
0

π /2( 1− 1
1− x cos2

ϕ
) d ϕ

d x
x

= ∫
0

β
2

( π−2 ∫
0

π /2 sec2
ϕ

sec2
ϕ− x

d ϕ ) d x
x

∫
0

π /2 sec2
ϕ d ϕ

sec2
ϕ− x

= ∫
0

π /2 d tan ϕ

1− x+ tan2
ϕ
=

1

√1− x
∫

0

∞ d y
1+ y2

⇐ y=
tan ϕ

√1− x

=
tan−1 y

√1− x |
0

∞

=
π /2

√1− x

⇒ S=π ∫
0

β2

( 1
x
−

1
x √1− x

) d x=2 π ∫
1

√1− β2 d t
t+1

⇐ x=1− t2

=2 π ln 1+√1−β
2

2
, −1<β<1



  

Magnetic Energy in MatterMagnetic Energy in Matter

 In terms of H and the magnetization M

 The 1st term is the energy density of the magnetic field in vacuum. The 2nd term 
is the energy density stored in the material itself.

 For linear isotropic materials,

 In linear materials the work for building a magnetic field depends only on the 
final value of the magnetic field. This implies that these systems are reversible, ie, 
that the energy in establishing the magnetic system can be recovered as the field 
is switched off.

 In nonlinear materials it is not true because hysteresis plays an important role. 

B=μ0 (H +M ) ⇒ energy density u=
1
2

H⋅B=
μ0

2
H 2

+
μ0

2
H⋅M

W =
1
2
∫
V

A⋅J d τ =
1
2
∫
V

A⋅∇×H d τ ⇐ ∇×H= J

=
1
2
∫
V

H⋅∇×A d τ −
1
2
∫
V

∇⋅(A×H ) d τ ⇐
∇⋅(A×H )=H⋅∇×A

−A⋅∇×H

=
1
2
∫
V

H⋅B d τ −
1
2
∮
S

A×H⋅d a= 1
2
∫

all space

H⋅B d τ = ∫
all space

u d τ

B=μ H ⇒ energy density u=
μ

2
H 2

=
B2

2 μ



  

 The irreversible changes in the domain 
configurations that are responsible for 
the hysteresis cause energy losses in 
the form of heat.

 Consider a circuit in the form of a solenoid that 
has N current turns and negligible resistance, and completely filled with a ferro-

magnetic material, the work done by an external source ΔW in a time interval Δt 

 d w represents the work necessary to establish the magnetic field from H to 

H+d H and to magnetize the material from M to M+d M. 

Δ W a=−ℰ I Δ t = I Δ ΦB ⇐ ℰ=−
d ΦB

d t

=( 1
N
∮
C

H⋅d ℓ ) ( N A Δ B ) ⇐ ∮ H⋅d ℓ=N I , Δ ΦB= N A Δ B

= ∮
C

H⋅(Δ B d ℓ) A= ∮
C

H⋅(Δ B d ℓ) A ⇐
choose d ℓ  along Δ B
⇒ Δ B d ℓ=Δ B d ℓ

= ∮
C

H⋅Δ B A d ℓ= ∫
V

H⋅Δ B d τ ⇐ Replace ∮
C

A d ℓ  to ∫
V

d τ

⇒ d w=H⋅d B=μ0 H d H +μ0 H⋅d M ⇐ B=μ0 (H +M ) , w≡
d W a

d τ



  

 The total energy density w required to build H/M
from 0 to H0/M(H0) is

 For a ferromagnetic material, 
the system returns to its initial 
magnetic state (H,B) after completing 
its whose hysteresis curve, the overall 
change in its magnetic energy is 0, so

The integral is the area enclosed by 
the hysteresis loop.

 It takes more energy to produce the magnetization than is returned when the 
magnetization is reduced. The energy lost is the hysteresis loss; it goes into heat.

 By varying the magnetic field applied to material, it is possible to change the
temperature of the sample (heat it or cool it). This principle has been used to 
provide a means for attaining very low temperatures, ie, magnetic cooling.

∮ H⋅d B=−∮ B⋅d H

w= ∫
0

B0

H⋅d B=
μ0

2
H 0

2
+μ0 ∫

0

H0

H⋅d M

w= ∮
C

H⋅d B=μ0 ∮
C

H⋅d M



  

Forces & Torques Using the Magnetostatic EnergyForces & Torques Using the Magnetostatic Energy
 Use the magnetic-energy formalism to determine applied forces and torques.

 Consider a rigid circuit. Let the circuit make a virtual displacement dr while 

the current is kept constant. Only consider static situations where the circuits are 

stationary. For this displacement, a mechanical work dWmech is done by the 

magnetic force Fmag, and an electrical work dWb is done by the battery against the 
induced electromotive force to maintain the current in the circuit.

 The sum of these 2 effects is equal to the change
                     in the magnetic energy of the system:

 Another physical situation arises when the circuit is isolated from the external 
sources (batteries). So a virtual rigid movement of the circuit results in a change 
in the current. According to Lenz's law, the amount of change in the induced 
current due to the induced emf is such that the magnetic flux ΦB passing through 
the circuits stays the same.  

d W b=−ℰ I d t= I d ΦB , d U =d( 1
2

L I 2)=d ( 1
2

I ΦB)= I
2

d ΦB

⇒ d W b=2 d U ⇒ d W mech=d U (constant current ) + d W mech=Fmag⋅d r

⇒ d U =Fmag⋅d r ⇐ ⇒ Fmag=∇ U (constant current ) ⇒ F mag , i=
∂ U
∂ x i |I

−d W mech+d W b=d U



  

 The same procedure followed above can be used to find the magnetic torques 
acting on the circuits. If the circuit is allowed to have a rigid virtual rotation d θ, 

then                           gives the torque in the increasing θ direction in the case of 
                                  constant current,

and                            gives the torque in the increasing θ direction in the case of 
                                  constant flux.

τ θ=−
∂ U
∂ θ |ΦB

d W b=0 ⇒ d U =−d W mech (constant flux) + d W mech=F mag⋅d r

⇒ Fmag=−∇ U (constant flux ) ⇒ F mag , i=−
∂U
∂ x i |ΦB

τ θ=
∂ U
∂ θ |I



  

Example: Force Exerted by a 
Solenoid on a Magnetic Slab: 
A solenoid of cross-sectional 
area A, N turns, and length ℓ, 
is connected to an external 
source that sets up a constant 
current I through it. A rod 
of a magnetic material of constant 
permeability μ and cross-sectional 
area A is partially inserted in the solenoid.

 To calculate the force, we need to calculate the magnetic energy of the system 
as a function of x. Assume that when the slab is slightly moved by Δx from its 
position, the structure of the field remains the same, the only difference being 
that a Δx of the slab is effectively transferred from the very outer region to the 
region well inside the solenoid.

⇒ Δ U =U (x+Δ x )−U ( x )≈
μ−μ0

2
∫
V

H 2 d τ

≈
μ−μ0

2
( N I
ℓ
)2

A Δ x ⇐ V= A Δ x , H =
N I
ℓ

⇒ The force on the slab F≈
Δ U
Δ x |I

=
μ−μ0

2
( N I
ℓ
)2

A



  

Example: Force Between a Wire and a Circular Loop:
A current I1, flows in a circular loop of radius R. An

infinite wire carrying a current I2, is in the plane of 

the loop and at a distance d>R from its center.

 Since we are interested in the force between the 
wires, we calculate only the interaction energy

U = I 1Φ1 ⇐ Φ1= ∫
loop

B2⋅d a

⇒ Φ1=−
μ0 I 2

2 π
∫

0

R

∫
0

2 π
ρ d ρ d ϕ

d +ρ cos ϕ

=−μ0 I 2 ∫
0

R
ρ d ρ

√d2
−ρ

2
⇐ ∫

0

2 π d ϕ

1+β cos ϕ
=

2 π

√1−β
2

, −1<β <1

=μ0 I 2 (√d2
−R2

− d ) ⇒ U =μ0 I 1 I 2 (√d2
−R2

−d )

⇒ the force between the wires F =
∂ U
∂ d |I 1 , I2

=μ0 I1 I 2( d

√d2
−R2

−1 )>0



  

∫
0

π d ϕ

1+β cos ϕ
= ∫

0

π /2 d ϕ

1+β cos ϕ
+ ∫

π /2

π d ϕ

1+β cos ϕ
⇐ |β|<1

= ∫
0

π /2 d ϕ

1+β cos ϕ
+ ∫

0

π /2 d ϕ

1−β cos ϕ
=2 ∫

0

π /2 d ϕ

1−β
2 cos2

ϕ

=2 ∫
0

π /2 d ϕ

1−β
2
+β

2 sin2
ϕ
=2 ∫

0

π /2 sec2
θ d θ

(1−β
2
) sec2

θ +β
2 tan2

θ

=2 ∫
0

π /2 d tan θ

1−β
2
+ tan2

θ
=

2
1−β

2
∫

0

π /2 d tan θ

1+
tan2

θ

1−β
2

=
2

√1−β
2
∫

0

∞ d x

1+ x2 =
2

√1−β
2

tan−1 x|
0

∞

=
π

√1−β
2

⇐ x=
tan θ

√1−β
2

⇒ ∫
0

2 π d ϕ

1+β cos ϕ
=2 ∫

0

π d ϕ

1+β cos ϕ
=

2 π

√1−β
2



  

∫
0

π sin2
ϕ d ϕ

1+β cos ϕ
= ∫

0

π /2 sin2
ϕ d ϕ

1+β cos ϕ
+ ∫

π /2

π sin2
ϕ d ϕ

1+β cos ϕ
⇐ |β|<1

= ∫
0

π /2 sin2
ϕ d ϕ

1+ β cos ϕ
+ ∫

0

π /2 sin2
ϕ d ϕ

1−β cos ϕ
=2 ∫

0

π /2 sin2
ϕ d ϕ

1−β
2 cos2

ϕ

=2 ∫
0

π /2 sin2
ϕ d ϕ

1−β
2
+β

2 sin2
ϕ
=

2
β

2 ∫
0

π /2( 1− 1−β
2

1−β
2
+ β

2 sin2
ϕ
) d ϕ

=
π

β
2
−2 1−β

2

β
2
∫

0

π /2 sec2
θ d θ

(1−β
2
) sec2

θ +β
2 tan2

θ
=

π

β
2
−

2
β

2
∫

0

π /2 d tan θ

1+
tan2

θ

1−β
2

=
π

β
2 −

2
β

2 √1−β
2 ∫

0

∞ d x

1+ x2 =
π

β
2 −

2
β

2 √1−β
2 tan−1 x|

0

∞

⇐ x=
tan θ

√1−β
2

=
π

β
2
(1−√1−β

2
)

Thus ∫
0

π cos2
ϕ d ϕ

1+β cos ϕ
=

π

√1−β
2
−

π

β
2 (1−√1−β

2
)=

π

β
2 ( 1

√1−β
2
−1)



  

Maxwell’s Equations
Electrodynamics Before MaxwellElectrodynamics Before Maxwell

 So far

 These equations represent the state of EM theory in the mid-nineteenth 
century, when Maxwell began his work.

 There is a fatal inconsistency in these formulas. It has to do with the old rule 
that divergence of curl is always 0.

 For steady currents, the divergence 

of J is 0, but when we go beyond magne-
tostatics Ampère’s law cannot be right.

 In the process of charging up a capa-
citor. In integral form, Ampère’s law 

0=∇⋅(∇×E )=∇⋅(− ∂ B
∂ t
)=−

∂

∂ t
∇⋅B=0 good

0=∇⋅(∇×B)=μ0 ∇⋅J ≠0  in general ($)

(i) ∇⋅E=
ρ

ϵ0
Gauss's law (iii) ∇×E=−

∂ B
∂ t

Faraday's law

(ii) ∇⋅B=0 no magnetic
monopole

(iv) ∇ ×B=μ0 J Ampere's law

∮ B⋅d ℓ=μ0 I enc



  

 For the plane of the loop, Ienc=I; for the balloon-shaped surface, no current 

passes through this surface, so Ienc=0!

 The conflict arises only when charge is piling up (on the capacitor plates).

 For nonsteady currents “the current enclosed by the loop” is an ill-defined 
notion; it depends entirely on what surface you use.

 We had no right to expect Ampère’s law to hold outside of magnetostatics;  
after all, we derived it from the Biot-Savart law.

 The flaw was a purely theoretical one, and Maxwell fixed it by purely 
theoretical arguments.  



  

∇×B=μ0 J +μ0 ϵ0

∂ E
∂ t

How Maxwell Fixed Ampère’s LawHow Maxwell Fixed Ampère’s Law
 The problem is on the right side of ($), which should be 0, but isn’t.

 Applying the continuity equation and Gauss’s law, the offending term becomes

 If we were to combine              with J, in Ampère’s law, it would be just right to 

kill off the extra divergence:

 Such a modification changes nothing, as far as magnetostatics is concerned: 
when E is constant, we still have ∇×B =μ0 J. But the modification plays a crucial 
role in the propagation of EM waves.

 Apart from curing the defect in Ampère’s law, Maxwell’s term has a certain 
aesthetic appeal: Just as a changing magnetic field induces an electric field, so

 The confirmation of Maxwell’s theory was Hertz’s experiments on EM waves. 

 Maxwell called his extra term the displacement current:

A changing electric field induces a magnetic field.

J d =ϵ0

∂ E
∂ t

ϵ0

∂ E
∂ t

∇⋅J =−
∂ ρ

∂ t
=−

∂

∂ t
(ϵ0 ∇⋅E )=−∇⋅( ϵ0

∂ E
∂ t
)



  

 If the capacitor plates are very close together, the electric field between them

 If we choose the flat surface, then E=0 and Ienc=I. If, on the other hand, we use 

the balloon-shaped surface, then Ienc=0, but

 So we get the same answer for either surface, though in the 1st case it comes 
from the conduction current, and in the 2nd from the displacement current.

∫ ∂ E
∂ t

⋅d a= I
ϵ0

E=
σ
ϵ0
=

Q
ϵ0 A

⇒
∂ E
∂ t

=
1

ϵ0 A
d Q
d t

=
I

ϵ0 A

⇒ ∮ B⋅d ℓ=μ0 I enc+μ0 ϵ0 ∫ ∂ E
∂ t

⋅d a



  

Example 7.14: Imagine 2 concentric metal spherical shells. 
The inner one carries a charge Q(t), the outer one an 

opposite charge −Q(t). The space between them is filled 
with Ohmic material of conductivity σ, so a radial 
current flows:

This configuration is spherically symmetrical, so the 
magnetic field has to be 0. But currents produce magnetic fields! How can there 
be a J with no accompanying B?

 This is not a static configuration: Q, E, and J are all functions of time; Ampère 
and Biot-Savart do not apply.

 The displacement current                                                              exactly cancels

the conduction current, and the magnetic field (determined by ∇⋅B=0, ∇×B=0) 
is indeed 0.

J d =ϵ0

∂ E
∂ t

=
1

4 π

Q̇
r2

r̂ =−
σ Q

4 π ϵ0 r2
r̂

J =σ E=
σ

4 π ϵ0

Q
r2

r̂ , I =−Q̇=∫ J⋅d a= σ
ϵ0

Q



  

(i) ∇ ⋅ E=
ρ

ϵ0
Gauss's law ( iii) ∇×E=−

∂ B
∂ t

Faraday's law

(ii) ∇ ⋅ B=0 no magnetic
monopole

(iv) ∇ ×B=μ0 J +μ0 ϵ0

∂ E
∂ t

Ampere's law
with Maxwell’s

correction

Maxwell’s EquationsMaxwell’s Equations
 Maxwell’s equations:

together with the Lorentz force law,                              summarize the entire 
theoretical content of classical electrodynamics.

 Even the continuity equation,                          , the expression of conservation 

of charge, can be derived from Maxwell’s eqns by applying the divergence to (iv).

 This form of Maxwell’s equations reinforces the notion that electric fields can 

be produced either by charges ρ or by changing magnetic fields       , magnetic

fields can be produced either by currents J or by changing electric fields        .

 It is misleading because       &       are themselves due to charge & current. 

∂ E
∂ t

F=q (E +v×B)

∂ ρ

∂ t
+∇⋅J =0

∂ B
∂ t

∂ B
∂ t

∂ E
∂ t



  

 It is logically better to write
 

 This notation emphasizes that all EM fields are attributable to charges and 
currents. Maxwell’s equations tell you how charges produce fields; reciprocally, 
the Lorentz force law tells you how fields affect charges.

(i) ∇⋅E =
ρ

ϵ0
(iii) ∇×E+

∂ B
∂ t

= 0

(ii) ∇⋅B= 0 (iv) ∇ ×B−μ0 ϵ0

∂ E
∂ t

=μ0 J



  

(i) ∇ ⋅ E=
1
ϵ0

ρe (iii) ∇×E =−μ0 J m−
∂ B
∂ t

(ii) ∇ ⋅ B=μ0 ρm (iv) ∇×B= μ0 J e+μ0 ϵ0

∂ E
∂ t

Magnetic ChargeMagnetic Charge
 There is a pleasing symmetry to Maxwell’s equations; it is particularly striking 

in free space, where ρ and J vanish:

 If you replace E by B and B by −μ0 ϵ0 E, the 1st pair of equations turns into the 
2nd, and vice versa.

 This symmetry between E and B is spoiled by the charge term in Gauss’s law 
and the current term in Ampère’s law.

 What are the corresponding quantities “missing” from ∇⋅B=0 &  

 What if we had

ρm represents the density of magnetic “charge,” and ρe the density of electric 

charge; Jm is the current of magnetic charge, Je the current of electric charge.

∇×E=−
∂ B
∂ t

∇ ⋅ E =0 , ∇×E= −
∂ B
∂ t

∇ ⋅ B=0 , ∇×B=μ0 ϵ0

∂ E
∂ t



  

 Both charges are conserved:                                                      , by application 

of the divergence to (iii), the latter by taking the divergence of (iv).

 In a sense, Maxwell’s equations beg for magnetic charge to exist—it would fit in 
so nicely.

 As far as we know, ρm is 0 everywhere, and so is Jm; B is not on equal footing 

with E: there exist stationary sources for E (electric charges) but none for B.

 This is reflected in the fact that magnetic multipole expansions have no 
monopole term, and magnetic dipoles consist of current loops, not separated 
north and south “poles.”

 In quantum electrodynamics, it’s a more than merely aesthetic shame that 

magnetic charge does not seem to exist: Dirac showed that the existence of 

magnetic charge would explain why electric charge is quantized.

Problem 7, 11, 18, 22, 26, 33, 37, 43, 54, 63

∇⋅J m=−
∂ ρm

∂ t
, ∇⋅J e=−

∂ ρe

∂ t



  

Maxwell’s Equations in MatterMaxwell’s Equations in Matter
 When you are working with materials that are subject to electric and magnetic 

polarization there is a more convenient way to write Maxwell’s equations.

 For inside polarized matter there will be accumulations of “bound” charge and 
current, over which you exert no direct control. It would be nice to reformulate 
Maxwell’s equations so as to make explicit reference only to the “free” charges 
and currents.

 From the static case, an electric polarization P produces a bound charge 

density, ρb=−∇⋅P; a magnetic polarization (“magnetization”) M results in a 

bound current, Jb=∇×M.

 One new feature to consider in the nonstatic case: Any change in the electric 

polarization involves a flow of (bound) charge (call it Jp), which must be included 
in the total current.

 The polarization introduces a charge density σb=P at one end, −σb at the other.

 If P increases a bit, the charge on each end increases, giving 

a net current  d I =
∂ σb

∂ t
d a

⊥
=

∂ P
∂ t

d a
⊥

⇒ J p=
∂ P
∂ t



  

 This polarization current has nothing to do with the bound current Jb. The 
latter is associated with magnetization of the material and involves the spin and 
orbital motion of electrons; Jp is the result of the linear motion of charge when 
the electric polarization changes.

 If P points to the right increasingly, then each +charge moves a bit to the right 

and each −charge to the left; the cumulative effect is the polarization current Jp.

 Its consistency with the continuity eqn:

 The continuity eqn is satisfied; in fact, Jp is essential to ensure the conservation 
of bound charge.

 A changing magnetization does not lead to any analogous accumulation of 
charge or current. Only the bound current Jb=∇×M varies to changes in M.

 The total charge density can be separated into 2 parts:

 The current density has 3 parts:

 Gauss’s law is written as ∇⋅E=
ρ f −∇⋅P

ϵ0
⇒ ∇⋅D=ρ f ⇐ D≡ ϵ0 E +P

∇⋅J p=∇⋅
∂ P
∂ t

=
∂

∂ t
∇⋅P=−

∂ ρb

∂ t

ρ=ρ f +ρb=ρ f −∇⋅P

J = J f + J b+ J p= J f +∇×M +
∂ P
∂ t



  

 Ampère’s law (with Maxwell’s term) becomes

 Faraday’s law and ∇⋅B = 0 are not affected by our separation of charge and 

current into free and bound parts, since they do not involve ρ or J.

 In terms of free charges and currents, then, Maxwell’s equations read

 These eqns are in no way more “general” than the earlier ones; they simply 
reflect a convenient division of charge and current into free and nonfree parts.

(i) ∇ ⋅ D =ρ f ⇔ ∮ D⋅d a=Q

(ii) ∇ ⋅ B=0 ⇔ ∮ B⋅d a=0

(iii) ∇ ×E = −
∂ B
∂ t

⇔ ∮ E⋅d ℓ= −
d

d t
∫ B⋅d a

(iv) ∇×H= J f +
∂ D
∂ t

⇔ ∮ H⋅d ℓ= I +
d

d t
∫ D⋅d a

∇×B=μ0( J f +∇×M +
∂ P
∂ t
)+μ0 ϵ0

∂ E
∂ t

⇒ ∇×H= J f +
∂ D
∂ t

⇐ H≡
B
μ0

−M



  

 They have the disadvantage of hybrid notation, since they contain both E and 

D, both B and H.

 They must be supplemented by appropriate constitutive relations, giving D 

and H in terms of E and B.

 These depend on the nature of the material; for linear media

 D is called the electric “displacement”; and the 2nd term in the Ampère/Maxwell 

equation (iv),                  , is called the displacement current.J d ≡
∂ D
∂ t

P =ϵ0 χe E
M = χm H

⇒
D = ϵ E

H=
1
μ

B
⇐

ϵ= ϵ0 (1+χe)

μ=μ0 (1+χm)



  

Boundary ConditionsBoundary Conditions
 The fields E, B, D, and H are discontinuous at a boundary between 2 different 

media, or at a surface that carries a charge density σ or a current density K.

 The explicit form of these discontinuities can be deduced from Maxwell’s 
equations in their integral form

 Applying (i) to a tiny, wafer-thin 
Gaussian pillbox extending just 
slightly into the material on 
either side of the boundary:

The positive direction for a is 21. The thickness 
of the edge0; no volume charge density.

(i) ∮
S

D⋅d a=Q f enc

(ii) ∮
S

B⋅d a=0 ] over any closed surface S

(iii) ∮
C

E⋅d ℓ= −
d

d t
∫
S

B⋅d a

(iv) ∮
C

H⋅d ℓ= I f enc+
d

d t
∫
S

D⋅d a ]
for any surface S
bounded by the
closed loop 
C

D1⋅a−D2⋅a=σ f a



  

 The component of D ⊥ the interface is discontinuous as:

 Identical reasoning, applied to equation (ii), yields

 Turning to (iii), a very thin Amperian loop straddling the surface gives

 The components of E  the interface are continuous across the boundary.

 By the same token, (iv) implies

 No volume current density contributes in the limit of 
infinitesimal width, but a surface current can.

 The parallel components of 

H are discontinuous by an 
amount proportional to the 
free surface current density.  

B1
⊥
−B2

⊥
= 0

(n̂× ℓ)⊥ the loop ⇒ I f enc= K f⋅n̂× ℓ=K f × n̂⋅ℓ
⇒ H1

∥
−H2

∥
= K f × n̂

D1
⊥
−D2

⊥
=σ f

E1⋅ℓ−E2⋅ℓ=−
d

d t
∫ B⋅d a  0  as the loop's width  0 ⇒ E1

∥
−E1

∥
=0

H1⋅ℓ−H 2⋅ℓ= I f enc ⇐ I f enc : free current passing through the Amperian loop



  

 The general statements about the EM boundary conditions:

   1. The tangential component of an E field is continuous across an interface.

   2. The tangential component of an H field is discontinuous across an interface 
        where a surface current exists by                              .

   3. The normal component of a D field is discontinuous across an interface 
        where a surface charge exists by                         .

   4. The normal component of a B field is continuous across an interface.

 In the case of linear media, they can be expressed in terms of E and B alone:

 If there is no free charge or free current at the interface, then

 These equations are the basis for the theory of reflection and refraction.

(i) ϵ1 E 1
⊥
− ϵ2 E2

⊥
=0 (iii) E1

∥
−E2

∥
=0

(ii) B1
⊥
− B2

⊥
=0 (iv)

B1
∥

μ1
−

B2
∥

μ2
=0

(i) ϵ1 E1
⊥
−ϵ2 E2

⊥
=σf (iii) E1

∥
−E2

∥
=0

(ii) B1
⊥
− B2

⊥
=0 ( iv)

B1
∥

μ1
−

B2
∥

μ2
=K f × n̂

H1
∥
−H2

∥
=K f × n̂

D1
⊥
−D2

⊥
=σ f



  

  In the case of perfect conductor (for Medium 2)

ϵ1 E1
⊥
=σ f , E2

⊥
=0

E1
∥
= 0 , E2

∥
=0

B1
⊥
= 0 , B2

⊥
=0

B1
∥

μ1
=K f × n̂ , B2

∥
=0
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