Cnziptar 7 Electrodynamics

Electromotive Force

Ohm’s Law

® For most substances, the current density J is proportional to the

force per unit charge, f: J =0 f < o : conductivity not surface charge , f=—

q
: 1 .
® The reciprocal of o is called the resistivity: p = — not charge densit
P P="7 g y

® Even insulators conduct slightly, though the conductivity of a metal is much

greater; in fact, for most purposes metals can be regarded as perfect
conductors, with o = o0, while for insulators we can pretend o = 0.

Material Resistivity Material Resistivity
Conductors: Semiconductors:

Silver 1.59 x 1078  Sea water 0.2

Copper 1.68 x 107®  Germanium 0.46

Gold 2.21 x 107®  Diamond 2.7
Aluminum 2.65 x 10~%  Silicon 2500

Iron 9.61 x 108 Insulators:

Mercury 9.61 x 1077 Water (pure) 8.3 x 10°
Nichrome 1.08 x 107  Glass 10° — 10"
Manganese  1.44 x 107® Rubber 108 — 10%°
Graphite 1.6 x 10> Teflon 10%? — 10%



Material Conductivity” Material Conductivity”
Silver 6.2 x 107 H,O 2x107¢
Copper 5.8 x 107 Marble 10°3
Pure iron 1.0 x 107 Wood 1079
Steel 0.2 x 107 Glass 10~ 1
Mercury 10° Oil 10~ 14
Carbon 104 Polyethylene 10713
Silicon 10~2 Fused quartz 10717
Alcohol 3x 1074 True vacuum ?

* Conductivities are expressed in (ohm-meters)”*, or (Q-m)™ .




® It’s usually an EM force that drives the charges to produce the current, so

F
J=cf=0-"L=0(E+vXxB) = J=cE Ohmslaw < v<1
q
® E=0 in a conductor for stationary charges (J=0) but not true for current#0.

® For perfect conductors, E = e O even if current exists. Metals are usually
good conductors, the electric field required to drive current in them is negligible.
® We routinely treat the connecting wires in electric circuits as equipotentials.

@ Resistors are made from poorly conducting materials.



Example 7.1 >
<
L
Example 7.2: 2 long coaxial metal cylinders | —-——-—---—— IE ______________ X

(radii a and b) are separated by material of |&
conductivity o. If they are maintained at a

potential difference V, what current flows b 7Tt
from one to the other, in a length L?
oK = A S < \: charge/length on the inner cylinder L
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® The total current flowing from one electrode to the other is proportional to the
potential difference between them: V=] R

® The constant R is called the resistance; it’s a function of the geometry of the
arrangement and the conductivity of the medium between the electrodes.

®In Ex. 7.1, R:L;inEX. 7.2, RI#IHé .
o A 2mol a

® Resistance is measured in ohms ({2): an ohm is a volt per ampere.

® The proportionality between V & I is a direct consequence of J = o E: if you
want to double V, you double the charge on the electrodes—that doubles E,
which doubles J, which doubles /.

® For steady currents and uniform conductivity, V -E = % V - J =0. Therefore the

charge density inside is 0; any unbalanced charge resides on the surface.

® We proved this using the fact E=0 for the case of stationary charges; evidently,
it is still true when the charges are allowed to move.

@ It follows that Laplace’s equation holds within a homogeneous ohmic material
carrying a steady current, so all the tools/tricks of Chapter 3 are available for
calculating the potential.



Example 7.3: Prove that the field in Ex. 7.1 is uniform.

® At the left end let the potential =0 and at the right end the potential =V,

® On the cylindrical surface, J-n=0 no leaking = E-n=- 8_(1) =0

on

® With ® or its normal derivative specified on all surfaces, the potential is
uniquely determined (Prob. 3.5).

V,z
® One potential under Laplace’s eqn and the boundary conditions: ¢ ( Z) = z
. . . Vo
® The uniqueness theorem guarantees that it’s the solution > E=—V & =— T Z

® Charge arranges itself over the surface of the wire in such a way as to produce
a nice uniform field within.

® Contrast the enormously more difficult problem —

that arises if the conducting material is removed,
leaving only metal plates.

(I):O V()

® Ohm’s law implies that a constant field produces a
constant current, which suggests a constant velocity. ~

Isn’t that a contradiction to Newton’s law? U



® No, because of the frequent collisions of electrons as they pass down the wire.

® If the length of a block is A and your acceleration is a, the time it takes to go a

block is | |
a 2 2 2

@ In practice, the charges are already moving very fast because of their thermal
energy. But the thermal velocities have random directions, and average to 0. The
drift velocity is a tiny extra bit:

A a nfq)\F_nf)\qu

= vave:2 = J:nfqvavezz m_2
1% v mvthermal

® The eqn correctly predicts that conductivity is proportional to the density of the
moving charges and decreases with increasing temperature.

[ =

v

thermal thermal thermal

® Due to all the collisions, the work done by the electrical force is converted into
heat in the resistor.

® Since the work done per unit charge is V and the charge flowing per unit time
is I, the power deliveredis P=V I =1 R® Joule heating law

® With / in amperes and R in ohms, P comes out in watts (joules/second).



Example: A system is grounded by using ————SSO ==
a perfectly conducting sphere of radius R R

a with half of the sphere in contact with
the ground. The layer of earth of radius b

that is in immediate contact with the sphere 1
has a conductivity o,, and the rest of the

ground has a conductivity o,.

o
2
Assuming that there is a current / flowing from the sphere to the ground
I . I r
/J-daZI = J=—2r = E12=J = 5
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Example: Consider a sphere of radius R and conductivity o,, placed in an initially

uniform current with density J,=J,, Z . The medium surrounding the sphere is of
conductivity o,.

This problem is analogous to the dielectric problem (EX 4.7) where a dielectric
sphere is placed in an external electric field, E = E, z . The potentials in the
dielectric case are as follows:

€, —€ RS
Cbout:—EOz+¥E0—zcose, r>R
€. +2¢, r z N
3¢ A A
& =——=—F, z, r<R
€. +2¢,

We follow the similar track:
V.- J=cV-E=0 « J=cE
> J=—0V&® = V’®=0
¢ = ZA r'P,(cos 6)

P,(cos )

(1) P, ( )— out( ) boundary
(R)=—0,0,%,(R)

conditions * ' t t
__0-28 q)out(R> out, r
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inside the sphere r<R

[3(r-J,)r—J,], outside the sphere r>R



Electromotive Force
® The current is the same all the way around the loop;

otherwise charge would be piling up somewhere, and
the electric field of this accumulating charge is in
such a direction as to even out the flow.

"/
@ In practice, we can safely assume the current is the same all aroun

the circuit, even in systems that oscillate at radio frequencies.

® 2 forces are involved in driving current around a circuit: the
source, fs confined to one portion of the loop (battery), and an

electrostatic force, which smooths out the flow and communicate
the influence of the source to distant parts of the circuit: f=f +E.

I

m

@ The physical agency responsible for f, can be many different things. Whatever
the mechanism, its net effect is determined by the line integral of f around the

circuit:
gZ](f-dKZ%fs-dK = %E-d £=0 for electrostatic fields

® /£ is called the electromotive force (or electromotance), or emf, of the
circuit. It's the integral of a force per unit charge.

@ If work is done, f. must be nonconservative in the region containing the loop.



® Since, usually, f #0 only "inside" the source of emf, ie, localized, one writes

gZ%f-dEz/bf.dz  Wwhere a and b are points |f=f +E, o— o
s . at the terminals of the source| J =0 f = f=0

b b .
. / fs-d£+/ E.d¢f=0 - theworkdone by both f, and E in
a a transporting charge from a to b 1s 0
b b
= V:—/ E-dKZ/ fs'dﬁzygfs'dfzg = E=—-Ff,

® The function of a battery is to establish and maintain a voltage difference
equal to the electromotive force. The resulting electrostatic field drives current
around the rest of the circuit.

® Because it’s the line integral of f, ¢ can be interpreted
as the work done per unit charge, by the source.

® If there is resistance to the current flow inside

the source, then current can flow only if Source
b of emf

/ (fS+E)-d£:/bf.d£>o s

b .
:>Vab=/f-d£=r1<:r:mt?mal = & —rl=V
. resistance



. Electrons
Batteries —

@ A common emf source is the ordinary voltaic battery, @[

in which the mechanism whereby energy is made |

available to produce currents has a chemical origin. g

® Chemical reactions occur in which chemical

energy is released to do the work required to

produce a charge separation. The Sunlight

charge separation in turn produces an electric :
potential difference to move charges in wires. £

® For solar batteries, rays of sunlight fall on a \

sensitive metal surface, which consequently emits
electrons via the photoelectric effect.

® For a nuclear battery, a radioactive source is
placed at one terminal, and the charged radiation
emitted is collected at another terminal. The

action is similar to the solar battery except that [
the source of energy here is nuclear  Metal box
rather than electromagnetic (sunlight). :

Radioactive
pellet

® The common characteristic of all
sources of emf is their ability to effect
a charge separation.

o particles



Motional emf
® Generators exploit motional emfs,

which arise when you move a wire through
a magnetic field. B® |+—x—

_ d¢B
OZZ%fmag-dﬁszhz P

® The integrals performed to calculate & is carried out at one instant of time.

Rz —v

-— S~ —P

a d

\4
® Although the magnetic force is responsible for establishing the A—>
emf, it is not doing any work—magnetic forces never do work.

@ The person pulling on the loop is supplying the u W
energy that heats the resistor. | fmag 0
|
® With the current flowing, the free charges in vB, 0 ( -
segment ab have a vertical velocity (call it @) in ub f

pull
addition to the horizontal velocity v from the motion of the loop. So the magnetic

force has a component g u B to the left.

® To counteract this, the person pulling on the wire must exert a force per unit

charge f ., = u B to the right. This force is transmitted to the charge by the
structure of the wire.



® Meanwhile, the particle is actually moving in the direction of the resultant
velocity w, and the distance it goes is s sec 6. The work done per unit charge is

W:/fpuu°d£:uBhS€CHSin0:VBh:g

® So the work done per unit charge is exactly equal to the emf, though the integrals
are taken along different paths, and completely different forces are involved.

® To calculate the emf, you integrate around the loop at one instant, but to
calculate the work done you follow a charge in its journey around the loop.

b C b C
, - |
A Y
h/cos ©
al
[ oo < o -~
a d a a’ d

(a) Integration path for computing (b) Integration path for calculating work
€ (follow the wire at one instant done (follow the charge around the loop)

of time).



e f ., contributes nothing to the emf ¢, because it L the wire, whereas f, .,

contributes nothing to work w because it | the motion of the charge.

@ Let ®, be the flux of B through the loop: @BE/B-da = ®,=Bhx

d o dod
s_gpSro _ppy - g=_S
dt dtr dtr

® The flux rule for motional emf: the emf generated in the loop is minus the rate
of change of flux through the loop.

—

® The flux rule has the virtue of applying to nonrectangular loops moving in

arbitrary directions through nonuniform magnetic fields; the loop need not even
maintain a fixed shape.

Proof: the figure shows a loop of wire at time 7, and also a short time d ¢ later.
@ The change in flux: d ®,=®, (1+dt)—®,(t)=P ... = / B-da
ribbon

® Point P moves to P’ in time d . v is the velocity of the wire, and u is the velocity
of a charge down the wire; w=v+u is the resultant velocity of a charge at P.

® The infinitesimal element of area on the ribbon: da:(VXdﬂ)dt and u||d£
d e
= dtB:%B-VXdKZj[B-wde:—j[wa-dKz—j[fmag°d£=—é”




Surface S

Loop at  Loop at
time ¢t time ( ¢ + dr)

b
@\'

Enlargement of da

® In applying the flux rule, sign consistency is governed
(as always) by your right hand: If your fingers define the
positive direction around the loop, then your thumb

indicates the direction of da.

® If the emf comes out negative, the current will
flow in the negative direction around the circuit.

® A “flux rule paradox” involves the circuit.

Ribbon

a

B®




® When the switch is thrown (from a to b) the flux through the circuit doubles,
but there’s no motional emf (no conductor moving through a magnetic field), and

the ammeter (A) records no current.

o % d ®,

1. The change in magnetic flux through a loop fixed in space (in our reference
system) due to variation of B(7) in time.

2. The change in magnetic flux through a well-defined conducting loop which
moves (relative to our reference system) through B constant in time.

3. The flux "swept out" by a conducting loop as it changes its dimensions in the
presence of B constant in time.

4. A linear combination of items 1 & 2 or 1 & 3 above.

A d®, d 0
L = B-da=- /—da /B—da
dz? dt Ot

0B
Z/VXEF-da—%B VvXd £l < FaradaysLaWa—+V><E o mention

4 later
:%(EF+VXB)-d£:]{(EF+EL)-d sz{Ei-dK



Example: Conducting Bar Moving Through a Constant Magnetic Field
l B

@ From the rest frame, charges under the influence of the Lorentz force and the
forces constraining the charges to remain in the bar will move until equilibrium

is established,
F=gvXB+gE=0 = E=—-vXB

@ From the observer moving with the bar, an electric field E . is observed
everywhere in space having the constant value

F=¢gE +gE=0 > E=-E, > E.=vXB

® This argument stands in the nonrelativistic cases, ie, v <« c.




Example: Conducting Bar Moving on Stationary
Tracks Through B Field

® If we calculate the emf around the loop
at any instant, w: drift velocity,

g:/ (vXB)-dr—/ E-dr
bar bar

— / E-dr+ / (
track bar + track

do
2/ (VXB)odr—y{Eq-dr:—vBéz— c > I:E:—VBE
bar d? R R

® From the co-moving frame with the bar, the observer sees the electric field as

E=E+E =E+vXB =>/ E/-dr:/ E-dr+/ (VvXB)-dr=0
bar bar bar

=

® However, the moving observer sees the U-shaped section of the loop moving
with velocity v'=—v. So the moving observer will find an emf | vB£| due to the
moving loop.

® The sense of current flow will be the same as found above. Again, consistent
results are obtained for the 2 observers.



Example 7.4: Find the current in the resistor.

® The velocity at a distance s from the axis is

VowXs = fmag:va:wBs (Sliding contact)
a B 2
= gZ/fmag-dssz/ sds=—21
0 2
) 1
& wBa R
= [ = —
R 2R

® This example (the Faraday disk, or Faraday dynamo) involves a motional emf
that you can’t calculate from the flux rule.

® For eddy currents, take a chunk of metal and shake it around in a nonuniform
magnetic field. Currents will be generated in the material, and you will feel a
kind of “viscous drag.”

® To confirm that eddy currents are
responsible, one repeats the demon-
stration using a disk that has many
slots cut in it, to prevent the flow of
large-scale currents. This time the
disk swings freely, unimpeded by the
field.







Electromagnetic Induction

Faraday’s Law
® Faraday’s 3 experiments:

Experiment 1: Pull a loop of wire to the right through a magnetic field.

A current flows in the loop.

Experiment 2: Move the magnet to the left, holding the loop still.

A current flows in the loop.

Experiment 3: With both the loop and the magnet at rest, change the strength
of the field. Once again, current flows in the loop.

® The 1% experiment is a straightforward case of motional emf;

B (in)

the flux rule gives

&=

d o,
d1

D$ v v

(a)

B (in)

B

D

25

(b)

y—

changing
magnetic field

(c)



® The first 2 cases show that all the idea matters is the relative motion of the
magnet and the loop. Indeed, in the light of special relativity it has to be so.

® If the loop moves, it's a magnetic force that sets up the emf, but if the loop is

stationary, the force cannot be magnetic—stationary charges experience no
magnetic forces.

® Faraday came up an ingenious inspiration:
A changing magnetic field induces an electric field.

® This induced electric field accounts for the emf in Experiment 2. And the emf is
again equal to the rate of change of the flux,

d o,
gZ%E-dﬁz— 1 = ]{Edﬁ— /—da Faraday’s law

OB
= VXE=-— = < Stokes’ theorem

® Faraday’s law reduces to the old rule 7{ E-d€=0 (or, V XE =0) in the static
case (constant B).

@ In Experiment 3, the magnetic field changes for totally different reasons, but
do,

d?




® All 3 cases can be subsumed into a kind of universal flux rule:
Whenever (and for whatever reason) the magnetic flux through a loop

changes, an emf &£ =— d—B will appear in the loop.
4

® In Experiment 1 it’s the Lorentz force law at work; the emf is magnetic. But in

the other two it’s an electric field (induced by the changing magnetic field) that
does the job.

® It is astonishing that all 3 processes yield the same formula for the emf. In fact,
it was this “coincidence” that led Einstein to the special theory of relativity.

Example 7.5: Graph the emf induced in the
ring, as a function of time. Ta

@ Surface current and magnetic field inside? « - <

® The flux through the ring is 0 when the
magnet is far; it builds up to a maximum of

oM 7 a* as the leading end passes through; and It drops back to O as the trailing
end emerges.

® The emf is (minus) the time derivative of ®,, so it consists of 2 spikes.



WoMmaz |

=Y
=Y

L)v

(a) (b)

® The right-hand rule does the job to know which way around the ring the
induced current flows.

@ P, is positive to the left in the figure, the positive direction for current in the

ring is counterclockwise; since the first spike is negative, the 1% current pulse
flows clockwise, and the 2™ counterclockwise.

® Lenz’s law helps to get the directions right: Nature abhors a change in flux.

@® The induced current will flow in such a direction that the flux it produces tends
to cancel the change.

® Notice that it is the change in flux, not the flux itself, that nature abhors.

® Faraday induction is a kind of “inertial” phenomenon: A conducting loop “likes”
to maintain a constant flux through it; if you change the flux, the loop responds
by sending a current around in such a direction as to frustrate your efforts.



Example 7.6: The “jumping ring” demonstration.

® When a flux appeared upwards, and the emf generated
in the ring led to a current in the ring which was in such
a direction that its field tended to cancel this new flux.

® Thus the current in the loop is opposite to
the current in the solenoid. And opposite
currents repel, so the ring flies off. :D:

NN NN

NNV N NN

solenoid



The Induced Electric Field

® Faraday’s law generalizes the electrostatic rule VXE=0 to the time-dependent
P
.

régime. The divergence of E is still given by Gauss’s law ( VV -E =
€o

® If E is a pure Faraday field (due exclusively to a changing B, with p=0),

0B
V-E=0, VXEZ—@— [vs V-B=0, VXB=pu,J (magnetostatics)]

!
0B

® Faraday-induced electric fields are determined by — —— in exactly the same
way as magnetostatic fields are determined by p,J.

@ The analog to 1 0,BXr 1 G/BXI?"

dr

Biot-Savart is - 4 7 2 dr=- 4 Ot r

® If symmetry permits, we can use all the tricks associated with Ampere’s law in

integral form ( 7{ B-d¢=p,1,.), only now it’s Faraday’s law in integral form:

do,
]{E.de:—
d1

® The rate of change of (magnetic) flux through the Amperian loop plays the role
formerly assigned to u 1

enc °




- __oB__ 0 _ _9a ) _ p-
eV XE = 5= atV><A_V><( . ) B=V xA

= VX(E+%—?):O = E+66—A:—V<I> > E=—V&-——

E =- V & : from charge, conservative (nonsolenoidal)

> E=E+E, « o A
E=— 5, : induced field, nonconservative (solenoidal)

B
= VXEq:O, VXEi:—E

do, d d
= %E-dﬁz%Ei-dﬁz— :——/B-daz——j{A-dE
dt dt . d? .

C C




Example 7.7: A uniform magnetic field B(¢), pointing

upwards, fills the shaded circular region. If B is changing
with time, what is the induced electric field?

® E points in the circumferential direction. Draw an
Amperian loop of radius s, and apply Faraday’s law:

¢
&= ]{E df= EZWS——d———i[TFSzB(Z)] .
d? d? Amperian loop

A
e

® If B is increasing, E runs clockwise viewed from above.

e If B is produced inside a long solenoid of radius R and
of turn density n, then

e, '
! - .
B5on T 22
Potete’e e
R »

aB_ Al Ldl
dr M4y Ho dt i
I
nsdjJ -
= EZ—MO2 dt¢ for s<R

: r ‘ P ot
R SRR
wiateg et e
O i

® & and E for s > R can be calculated in a similar way.



Example 7.8: A line charge A is glued onto the rim of a )
wheel of radius b horizontally, and free to rotate. In the T
central region, out to radius a, there is a uniform magnetic

field B, pointing up. What happens when someone turns —
the field off? //—————m\\
E

® The changing magnetic field induces an electri a
field, curling around the axis of the wheel. This
electric field exerts a force on the charges at

the rim, and the wheel starts to turn. R.otatl.on dl T
direction
® By Lenz’s law, its rotation direction tends to A
restore the upward flux; it’s counterclockwise.
do d B a> dB
ef=@QE-dl=E-27mb=— e qd®— = E=-—
]{ d? dt 2b dt ¢

® The torque on a segment of length d€ is rXF, or b A Ed{. The total torque on

2
the wheelis N=bH A _a 48 %d[:_b)\wazd_B
2b dt dr

0
= L:/th:—)\wazb/ dB=Ara’*bB, < ngular
B, momentum

® No matter how quickly or slowly you turn off the field, the resulting angular
velocity of the wheel is the same regardless.



® It’s the electric field that did the rotating because the magnetic field is 0 at the
location of the charge.

® Electromagnetic induction occurs only when the magnetic fields are changing,
but we use the apparatus of magnetostatics (Ampere’s law, the Biot-Savart law,
etc) to calculate those magnetic fields.

® Technically, any result derived in this way is only approximately correct. But in
practice the error is usually negligible, unless the field fluctuates extremely
rapidly, or you are interested in points very far from the source.

® This régime, in which magnetostatic rules can be used to calculate the
magnetic field on the right hand side of Faraday’s law, is called quasistatic.

® It is only when we come to EM waves and radiation that we must worry
seriously about the breakdown of magnetostatics.



- | — »

Example 7.9: A long straight wire carries a
slowly varying current /(#). Determine the
induced electric field, as a function of the

|
. . | '«— Amperian loop
distance s from the wire. | |
|

I
| I

i e
e The magnetic field is 22", circling fs . MK
27

around the wire. So E runs parallel to the axis, like B vs I in an infinite dolenoid.

-

® For the rectangular “Amperian loop,” Faraday’s law gives:

14 S ! /
7{E'd£:E<SO)£—E(S)£:—%/B-da:_'uo dI/ d/s_,LLO lnSodl

2w dr ) s 27 s dt
= E(s)= Fo dIln S+E(so) 7= ﬁd—Ilns+K Z
2m dt s, 2m dt

® The actual value of K depends on the whole history of the function (7).

® The equation has the peculiar implication that £ blows up as s goes . That is
because we have overstepped the limits of the quasi-static approximation. EM

“news” travels at the speed of light, and at large distances B depends not on the
current now, but on the current as it was at earlier time.

® If 7is the time it takes I to change substantially, the quasi-static approximation
should hold only for s<<c T, hence the eqn does not apply, at extremely large s.



Inductance A Loop 2
A Ho d £, Xr
*B,=_"-1I ]{ — s < 5L
4 1

. mutual B, B,
5<I>2=/B1-da2 M, I, < M,

" inductance
@ With the vector potential and Stokes’ theorem,

Z/Bl-daZZ/VXAl-dazz%A -d £, —Loop 1
ae, de, \
4 ™ dl,
deé,-de
= M, = 4—0 j[ j{ L 2 Neumann formula Loop 2
T I

® 2 important things about mutual inductance:
1: M,, is a purely geometrical quantity, having to do with

the sizes, shapes, and relative positions of the 2 loops.
2: The integral is unchanged if we switch the roles of

loops 1 & 2, ie, M,,=M,,, symmetric.

Loop 1

® Whatever the shapes and positions of the loops,  dl,
the flux through 2 when we run a current I around 1 is identical to the flux through 1
when we send the same current I around 2.
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Example 7.10: A short solenoid (4, a, n,) lies lon the axis of a long solenoid (b, n,).
Current I flows in the short solenoid. What is the flux through the long solenoid?

® Since the inner solenoid is short, it has a complicated field; it puts a different
flux through each turn of the outer solenoid. It is hard to compute the total flux.

@ If we exploit the equality of the mutual inductances, the problem becomes easy.
Just look at the reverse situation: run the current / through the outer solenoid,
and calculate the flux through the inner one.

® The field inside the long solenoid is constant:
B=pu,n, I = @

® [t’s also the flux a current / in the short solenoid putting through the long one.

— 2 __ 2 _ 2
single_B T da —,LLOI/ZZIT('CZ = étotal_lu’Oﬂ-a n1n2€l

e M=p,ma’n, n,t



Problem 7.22: A small loop of radius a is held a distance z above the

center of a large radius b. The planes of the 2 loops are |, and L the Z
common axis.

@ Let current /, flows in the big loop, B po b1, @
= Z

by Ex. 5.6, its B, along the zaxisis =" 2 (24 p?)*/
@ The little loop is small so the field of the big loop to be essentially constant.
o [o T a’ b’ I,
Then the flux throughitis & = B,-da= REREICTD
s, 2(z"+b7)
@ Current /_ flows in the little loop, o M . A 9
. . . . B = (2cos@r+sinf0) em=ma’l
considering it as a dipole, its B is R R a
m [ 2cosOT+sin 06 . 7 =TI
” (I)b:/ Ba~da:'uo / 5, sdsdez = z ECOSH
s, 47 (s*+2%) — 0 sin 6

:,uom/bBCoszH—lSdS:,uom/b( 3z° B 1 )dsz
2 0 (SZ_I_ZZ)B/Z 4 0 (S2+Z2)5/2 (S2+Z2)3/2

,uomb2 _uowazbzla
9 (b2+zz)3/2 _ 9 (z2+b2)3/2

& p,ma’bh’ @,
a = Mab:I = 2 23/2:I :Mba
b 2<Z +b) a




Example: Determine the mutual inductance between a
conducting triangular loop and a very long straight wire.

Apply Ampere's law and write the expression for B,, caused
by a current 7, in the long straight wire:
B _ _ Koly _
,cdl=p, I, = B,= ¢ > &=/ B,da,

2mTr

The equation of the sloped line of the triangle is

Z:[(d+b)—r]tan%=\/§(d+b—r) = da1=zdrq75

] ] d+b .
= <I>1:/MO 2Zdr=\/§'u0 2/ d+b Ladr

2mr 217 J r

d+b

V3 1
=12 Fo 2((a’+b)ln
2

V3
> M=M,,= “0((d+b)1nd+b—b)
2T d

—b) =>M,, I,

12



® If you vary the current in loop 1, the flux through
d P d/
loop 2 will vary accordingly, & = — - 2—_ M - L
5 5
@ Every time you change the current in loop 1, an
induced current flows in loop 2—even though there
are no wires connecting them!

1
® A changing current not only induces an emf in any L
nearby loops, it also induces an emf in the loop itself.

® The field (thus the flux) o< the current: d7

®=L] < L: selfinductance = g:_LE

® Inductance is measured in henries (H); a henry is a volt-second per ampere.

® The emf from the self-induction and the mutual induction combined can be

dl/ dl,
expressed as g:—ﬂcp =—L 1—ZM1. ’
dr = 'dt

d { 1, total —




a
Example 7.11: Find the self-inductance of a toroidal coil . >
with rectangular cross section (inner radius a, outer P > h
radius b, height /), that carries a total of N turns. >
i o . g po N 1 ds
® The magnetic field inside the toroid is B = 5 AXiS
TS
NI (’ds NIh_ p
el (Psingle:/B°da:’ul0 h/ :'LLO In —
2T . S 2T a
A - | | poN*h b
® The fotal flux is N times this, so the self-inductance [ = 2— In —
T a

® Lenz’s law dictates that the emf is in such a direction as to oppose any change
in current. For this reason, it is called a back emf.

® Whenever you alter the current in a wire, you must fight against this back emf.

® Inductance plays the same role in electric circuits that mass does in mechanical

systems: The greater L is, the harder it is to change the current, as the larger the
mass, the harder it is to change an object’s velocity.



ﬂl—za—-‘-

Complete winding
contains N turns

S



Example 7.12: The total emf in this circuit is &', from the

L
battery plus — L d_ from the inductance. Ohm’s law is R
4
dl & L
go_L_:IR = I(t):—0+ke L S —
d? R
& & _Re & _L L
1(0)=0 = k=—— = I(t)z—o l-e " |=—=(1-¢" & T=—
R R R R

@ Had there been no inductance in the circuit, the current would have jumped

&, I A
immediately to R

. L EJR === R
® In practice, every circuit has some 0
self-inductance, and the current approaches |

go .
R asymptotically.

_

L/R 2L/R 3L/R

L
® The quantity 7= E is the time constant; it tells you how long the current

takes to reach a substantial fraction (roughly g ) of its final value.



Energy in Magnetic Fields
® Energy delivered to the resistors and converted into heat is irretrievably lost.

® The work done against the back emf to get the current going is a fixed amount,
and it is recoverable: you get it back when the current is turned off.

® It represents energy latent in the circuit; it can be regarded as energy stored in
the magnetic field.

® The work done on a unit charge, against the back emf, in one trip around the
circuit is —& . The amount of charge per unit time passing the wire is /. So the

total work done per unit time is d—W —— &£ I=L1 ﬂ = W= l L I°
dr dr 2
® It does not depend on how long we take to crank up the current, only on the

geometry of the loop, ie, L, and the final current /.

® For a nicer way to write W, LIZQZ/B-daZ/VXA-daZ%AdK

= Wle%A-dﬁzl%A-Idﬁ
2 2

:l/ A.JdT:L/ A-VXBdr « VXB=yu,J
2.J v 2p0J v



V (AxB)=B-(VxA)-A-(VxB) = A-(VXxB)=B*-V-(AXB)
L /Bsz—/V'(AXB>dT L / Bsz—j[ (AXB)-da

= W=— R
2 [, 2 1,

® The integration with current density is taken over the entire volume occupied by

the current. But any region larger than this will do, for J is 0 out there anyway.

® The larger the region we pick the greater is the contribution from the volume
integral, and therefore the smaller is that of the surface integral.

1
® If we integrate over all space, the surface integral=0, W =—— / B°dr
all space

2 g
@ This result indicates that the energy is “stored in the magnetic field,” in the
BZ
amount 2— per unit volume. This is a nice way to think of it.
Ho
® Someone prefers to say that the energy is stored in the current distribution, in
A-J

the amount per unit volume. Both are fine.

® Magnetic fields do no work, but producing a magnetic field requires changing
the field, and a changing B -field induces an electric field. The latter does work.

® In the beginning and at the end, there is no E; but in between, while B is
building up, there is an E, and it is against this that the work is done.




Example 7.13: Find the magnetic energy stored in a section of length /.

® According to Ampere’s law, only the field between the cylinders is nonzero,

I . I\° I’
B= Ho ¢ = energy density w= L ( Ho ) = ,u02 >
2Ts 2p, \27s 87 s
r’e [ I’e p
= W= /WdT / 27T€st—MO /dS:Mo In —
8m’ s’ 47 .S 47 a
ol b ] o
external inductance of a coaxial line

W=— L I> > L=
2 2T a

® This method of calculating self-inductance is especially useful when the current

is not confined to a single path, but spreads over some surface or volume, so that

different parts of the current enclose different amounts of flux.



Example 7.13’: Same as Ex. 7.13, but consider the current [/ is uniformly
distributed in a solid inner conductor of radius a.

2T ¢

)i 2 12 2
energy density w = L ( o 2 ) _Fol 7
2p, \ 27 si 87’5t

2 2 2 a
s I°/ 3 b
= W= /WdT—/ 27r€sds='u0 ( S—4ds+/ E)
8 1’ S 4 0 d . S

I’/ l
= Fo (—+lné) I (l+1n2) = W=2Lr1
4 4 a 21 \ 4 a 2

Il A
® According to Ampere’s law,j{B-dZ:luOI = B:'uo izq') = s>:max(s,a)
>

H : . :
® The new term SL from the flux linkage internal to the solid inner conductor is
T

known as the internal inductance of the inner conductor.

@ In high-frequency cases the current in a good conductor tends to shift to the
surface of the conductor (due to skin effect, mentioned later), resulting in an
uneven current distribution in the inner conductor an thus changing the value of
the internal inductance.

® In the extreme case the current essentially concentrate in the "skin" of the
inner conductor as a surface current, the internal self-inductance is reduced to O.



Example: calculate the self-inductance of 2 infinitely long
wires, of radii p, & p,, carrying currents / & —/1,
and a distance /& between their centers.

® The vector potential of a
cylindrical wire was showed
in p.43 of Chapter 5 note as

Il 2 _
A:_,Uo (S—+21n§)+A (0) « s.,=max (s, a)

’ 4w \ s a ) let A.(0)=0 for convenience
v e
tol 2 ) P =< p,] to I 2 N p =P,
= A, =-— p '021 z for , A,= 2 p; z for
T 74 ! /
ln’o—2+1 P> P lnp—2+1 p>p,
5’ ] | .

The magnetic energy of the system can be calculated as

U:%/."AdT:%(/ Jl-(A1+A2)da1dz+/ JZ°(A1+A2)da2dZ)
S. s,

Iz

1 1
/ (A1+A2)da1dz— 2/ (A1+A2)da2dz = J1’2=i

= 2
ZWP? s, 2mpyJ o, T P12



® Since the potentials are independent of z and are in the direction of z, then the

. U I/
energy per unit length yu=—=

¢ 27
/2 2 2 )
p - =pth"+2phcos¢ in S,

1 1
2/ (A, +A,)da,——; (A,+A,)d a,

2
P1 Py

I 2 2 2
= /<A+A>da1 o / (1+1nf’+h+2fhcos¢—p2)pdpd¢
Po P4
! 2
== 2, / pdp/ ln(1+ zhpzcosgb) d ¢
p +h

I/ 2 I o> 2
No p1 No / (ln : +1n 2h 2) pdp::“o P1 (l+lnh—2)
8 2 0 P, p +h 4 2 05

I p; 2
= Similarly / (A1+A2)da2:_'u04p2(l+lnh_)

S,

2
]2 2 2
= u:No 1+21n h :>l£]2 = é:ﬁ 1+21In h
8w p 2 ¢ { 4 P1 P>




S = /2wln(1+ﬂcosq§)dgb=2 /Wln(1+ﬂcos¢)dq5

0 0

/ <1+/3cos¢>d¢+/m <—5cos¢>d¢)
n(1

—B%cos’¢)d p= 2/ / —cos” ¢ dxdg

-+
o

1— xcoscb
1 ™2 gec? d x
= [ (i et [ (e [ 5 ee) %
1—xcos ¢ 0 o sec ¢ —x X
/”/zseczqﬁdqﬁ_ ™2 dtan ¢ 1 T ody o y= tan ¢
0 secng—x 0 1—x+tan2q5 V1—x 1+y \/1—x
_ tan~ y _ 7/2
Vvli—x|, v1—x

5 e
5 S=7r/ (1— 1 )dx=27r/ dr P
o \ X xyV1l—x ] t+1

1+y1-p°

=27 In 5 , —1<p<1




Magnetic Energy in Matter
.W:l/ A-JdT:l/ A-VXHdT « VxH=J
2J) v 2J v

_1 _ 1 , . V:(AXH)=H-VxA
_Z/VH VXAdr 2/VV (AXH)dT CAVxH

:l/ H.Bdf—lf AXH-da:l/ H~Bd7-:/ udT
2 V 2 S 2 all space all space

® In terms of H and the magnetization M

B=p,(H+M) = energy density u=%H-B=%H2+%H-M

® The 1°' term is the energy density of the magnetic field in vacuum. The 2™ term
is the energy density stored in the material itself.

BZ
2p
® In linear materials the work for building a magnetic field depends only on the

final value of the magnetic field. This implies that these systems are reversible, ie,

that the energy in establishing the magnetic system can be recovered as the field
is switched off.

® For linear isotropic materials, B=pyuH = energy density u = # H? =

® In nonlinear materials it is not true because hysteresis plays an important role.



® The irreversible changes in the domain 4 m N\

configurations that are responsible for ‘\ \
the hysteresis cause energy losses in }
the form of heat. \ C

Nk /

. ——

® Consider a circuit in the form of a solenoid that
has N current turns and negligible resistance, and completely filled with a ferro-
magnetic material, the work done by an external source AW in a time interval At
d e,

d?

—(1 7{ Hde) (NAAB) - ny-de:Nl, AD =N AAB

%HABdE ]{HABdE  choose d £ along AB
= ABdé=ABd/

:7{ H-ABAdZZ/ H-ABd7T < Replace j{ Ad/ to / dr
C 1% ¢ 14
dw,_

dr
® d w represents the work necessary to establish the magnetic field from H to

H-+d H and to magnetize the material from M to M+d M.

AW =—&IAt=IAD, = &=

= dw=H-dB=p,HdH+p,H-dM < B=py,(H+M), w=




= O

® The total energy density w required to build H/M
from 0 to H/M(H,) is

/HdB——H+ / H-dM

® For a ferromagnetic material,
the system returns to its initial Hrmax

magnetic state (H,B) after completing I

its whose hysteresis curve, the overall
change in its magnetic energy is 0, so . j{ B.dH

:7{ H-deMO]{ H-dM
C C

The integral is the area enclosed by
the hysteresis loop.

@ It takes more energy to produce the magnetization than is returned when the
magnetization is reduced. The energy lost is the hysteresis loss; it goes into heat.

® By varying the magnetic field applied to material, it is possible to change the
temperature of the sample (heat it or cool it). This principle has been used to

provide a means for attaining very low temperatures, ie, magnetic cooling.



Forces & Torques Using the Magnetostatic Energy
® Use the magnetic-energy formalism to determine applied forces and torques.

® Consider a rigid circuit. Let the circuit make a virtual displacement dr while

the current is kept constant. Only consider static situations where the circuits are
stationary. For this displacement, a mechanical work dW ., is done by the

mec

magnetic force Fmag, and an electrical work dW, is done by the battery against the
induced electromotive force to maintain the current in the circuit.

® The sum of these 2 effects is equal to the change dw
in the magnetic energy of the system: mech

I
edW,=—&1dt=1dd,, dU:d(lle):d (11c1>3):—d<1>3
2 2 2

+dW,=dU

= dW,=2dU = dW,_,=dU (constantcurrent) + dW__, = F .dr
= dU=F,,dr « = F_=VU (constant current) = Fmag,i=+% |
X i

® Another physical situation arises when the circuit is isolated from the external
sources (batteries). So a virtual rigid movement of the circuit results in a change
in the current. According to Lenz's law, the amount of change in the induced

current due to the induced emf is such that the magnetic flux ¢, passing through
the circuits stays the same.



edW,=0 > dU=-dW,_, (constantflux) + dW__ =F _ -dr

mech ~— * mag
= Fmagz—VU (constant flux) = Fmag,iz—gUi
X

Dy

® The same procedure followed above can be used to find the magnetic torques

acting on the circuits. If the circuit is allowed to have a rigid virtual rotation d 6,
oU . : : : : ..

then 7,=+ — gives the torque in the increasing 6 direction in the case of
00 || constant current,

oU

and 7,=——— gives the torque in the increasing 6 direction in the case of
060 |o constant flux.
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Pk N

Example: Force Exerted by a

Solenoid on a Magnetic Slab: r- {
A solenoid of cross-sectional

AX —n  |g— —ped  fe—
area A, N turns, and length /, | M | Ax
is connected to an external L_ l

source that sets up a constant

current / through it. ATod o+ ¢ « o s ¢ s ¢ ¢ s ¢ s » o « o

of a magnetic material of constant ' ’.l
permeability u and cross-sectional X

area A is partially inserted in the solenoid.

@ To calculate the force, we need to calculate the magnetic energy of the system

as a function of x. Assume that when the slab is slightly moved by Ax from its
position, the structure of the field remains the same, the only difference being

that a Ax of the slab is effectively transferred from the very outer region to the
region well inside the solenoid.

= AU:U(x+Ax)—U(x)~“_“0/ Hd T
%
2

NI
/

2
BT Ho N 1
2 14

) AAx « V=AAx, H=

— 2
= The force on the slab F ~ A—U — R Ho (N1 A
Ax |, 2 14



Example: Force Between a Wire and a Circular Loop:
A current /,, flows in a circular loop of radius R. An

infinite wire carrying a current 1, is in the plane of
the loop and at a distance d>R from its center.

® Since we are interested in the force between the

wires, we calculate only the interaction energy I
U=1,9, < <1>1:/ B, da d
loop
2T
R pdpdo l
d+pCOS¢ 12
27
pdp do 27r
=— g, , —1<pB<1
0 o v d? —p , 1+Bcos ¢ \/1
=po I,(Vd —d) = U=poly 1, d*—R _d)
= the force between the wires F _oU =u, I, 1 d —1 ) >0
od |11,12 Hof1 s \/a'Z—R2



/71' d ¢ _ /2 d ¢ . n d ¢ C <
o 1+8 cos ¢ o, 1+Bcos¢ 1y L+ cos ¢

/2 /2 /2
[ ge 46 __, ["_ds_
o, 1+pBcos¢ o 1—pBcos¢ o 1—pB%cos” ¢
w2 d¢ wl2 SeCZHdH
:2 2 2 2 :2 2 2 2 2
o 1—pB"+B"sin" ¢ o (1—pB7)sec”@+B tan" 0
_ /”/2 dtan 2 /7”2 d tan 0
o 1—-B°+tan”0 1-8°J, 14 tan” 6
-8
/ 2 tan ' x| = —Z
\/1 ﬁ 1+x° \/ - B° 0 \/1—

[T _de ., [T __d¢ 27r
/0 1+Bcos¢_2/1+ﬁcosqﬁ \/1

o0

tan 0

<:x:\/1_752




™2 sin® ¢ d ¢ e sin® ¢ d ¢

—

/” sin“¢gd¢
01+Bcosq§_ o l+pBcos¢
:/w/2 Sin2¢d¢+

0

¥

T

— (1

182

Thus/ coS gbdqﬁ: 7

™2 gin® odo

1+ Bcos ¢ o 1—pBcos¢

™2 sin*o d ¢ 2

o 1-8°+f%sin’¢

_p 1+ B cos o

BI<1

_9 /”/2 sinqudgb

o 1—pB°cos’¢
1-B°

/:,2(1_

1 B 2 sec’6d 6

1— 8%+ B%sin’ &

_1/1 B?)

o 1+ 5 coso \/1_52

T (1-41-5
B’

1—B%tan ' x

77_2/
— B%)sec” @+ B% tan” 0 52 B> J

1__\/1 d / 1+x2 ;

o0

1
—

)as

™2 dtan 0

1+

X =




Maxwell’s Equations

Electrodynamics Before Maxwell
P 0B

i) V-E=— Gauss's law iii) V XE=—— Faraday's law
€ 0t
® So far 0 .
(i) V-B=0 Domagnelic (i) YV xB=y J Ampere's law
monopole

® These equations represent the state of EM theory in the mid-nineteenth
century, when Maxwell began his work.

® There is a fatal inconsistency in these formulas. It has to do with the old rule
that divergence of curl is always 0.

OZV-(VXE)ZV-(—G—B)I—EV-BZO good
® ot ot /
0=V (VxB)=p,V-J#0 in general ($)

Amperian loop

® For steady currents, the divergence

of J is 0, but when we go beyond magne-

tostatics Ampere’s law cannot be right. A ——
Capacitor
@ In the process of charging up a capa-
citor. In integral form, Ampere’s law

%B.d‘ezuolenc

o 1

Battery



® For the plane of the loop, /. =I; for the balloon-shaped surface, no current
passes through this surface, so /__ =0!

® The conflict arises only when charge is piling up (on the capacitor plates).

® For nonsteady currents “the current enclosed by the loop” is an ill-defined
notion; it depends entirely on what surface you use.

® We had no right to expect Ampere’s law to hold outside of magnetostatics;
after all, we derived it from the Biot-Savart law.

® The flaw was a purely theoretical one, and Maxwell fixed it by purely
theoretical arguments.



How Maxwell Fixed Ampere’s Law
® The problem is on the right side of ($), which should be 0, but isn’t.

® Applying the continuity equation and Gauss’s law, the offending term becomes

V-Jz—a—pz—i<eov.n>=—v-( aE)

€o
ot ot ot
® If we were to combine ¢, 8— with J, in Ampere’s law, it would be just right to
4
kill off the extra divergence: |/ xB = o J + 1y €, @
ot

® Such a modification changes nothing, as far as magnetostatics is concerned:
when E is constant, we still have VXB = WoJ. But the modification plays a crucial
role in the propagation of EM waves.

® Apart from curing the defect in Ampere’s law, Maxwell’s term has a certain
aesthetic appeal: Just as a changing magnetic field induces an electric field, so

A changing electric field induces a magnetic field.

® The confirmation of Maxwell’s theory was Hertz’s experiments on EM waves.

® Maxwell called his extra term the displacement current: J —¢, —
[



@ If the capacitor plates are very close together, the electric field between them

F=0 Q . @E: 1 dQ: I/
€ €A ot €,A dt €A

= %Bd‘e lu’O enc /’LOEO/—da

® If we choose the flat surface, then E=0 and /__=I. If, on the other hand, we use

I
60

the balloon-shaped surface, then /=0, but / —-da=

® So we get the same answer for either surface, though in the 1 case it comes
from the conduction current, and in the 2™ from the displacement current.



Example 7.14: Imagine 2 concentric metal spherical shells.
The inner one carries a charge Q(f), the outer one an
opposite charge —(Q(f). The space between them is filled

with Ohmic material of conductivity o, so a radial
current flows:

J=oE=—7_2; 1:—Q=/J-da:1Q
€o

47T60r

This configuration is spherically symmetrical, so the
magnetic field has to be 0. But currents produce magnetic fields! How can there

be a J with no accompanying B?

® This is not a static configuration: Q, E, and J are all functions of time; Ampeére
and Biot-Savart do not apply.

O E ) . .
=€, = 1 Q2 r—— 70 ;T exactly cancels
ot 4mr 4me,r
the conduction current, and the magnetic field (determined by V - B=0, VXB=0)
is indeed O.

® The displacement current J



Maxwell’s Equations
® Maxwell’s equations:

0B
(i) V- -E= eﬁ Gauss's law  (iii) VXE=— A Faraday's law
0

o E Ampere's law
with Maxwell’s

correction

together with the Lorentz force law, F = ¢ (E +v X B) summarize the entire
theoretical content of classical electrodynamics.

(i) V-B=0 " magnetic (iv) VXB=p, J+p,€,—
monopole Ot

® Even the continuity equation, f;_,O +V -J =0, the expression of conservation
4
of charge, can be derived from Maxwell’s eqns by applying the divergence to (iv).

® This form of Maxwell’s equations reinforces the notion that electric fields can

be produced either by charges p or by changing magnetic fields @ , magnetic

Ot
OE

fields can be produced either by currents J or by changing electric fields —.

0B _OE ot

® It is misleading because —— & —— are themselves due to charge & current.

Ot Ot



0B
() V-E=2Z (iii) VxE+ Zo=
@ It is logically better to write €o 0t

19
i) VB=0 (iv) VXB-pye, " =pd

0

® This notation emphasizes that all EM fields are attributable to charges and
currents. Maxwell’s equations tell you how charges produce fields; reciprocally,
the Lorentz force law tells you how fields affect charges.



Magnetic Charge
® There is a pleasing symmetry to Maxwell’s equations; it is particularly striking

OB

V. -E=0, VXE= -—-—/—

in free space, where p and J vanish: g ]l;.}
vV -B=0, VXB:MOGOE

® If you replace E by B and B by —u, €, E, the 1* pair of equations turns into the
2" and vice versa.

® This symmetry between E and B is spoiled by the charge term in Gauss’s law
and the current term in Ampere’s law.

® What are the corresponding quantities “missing” from V-B=0 &V XE = — %_B
5
- 1 OB
(i) V-E:E—pe (iii) VXE=—p,J, — —
® What if we had 0 ; ];
(ii) V-B:uopm (iV) VXB: MOJe'I':uoeoE

p,, represents the density of magnetic “charge,” and p, the density of electric
charge; J is the current of magnetic charge, J, the current of electric charge.



0 0
® Both charges are conserved:\/.J =— 8pm , V- J =— ape , by application
" t ‘ t
of the divergence to (iii), the latter by taking the divergence of (iv).

® In a sense, Maxwell’s equations beg for magnetic charge to exist—it would fit in
SO nicely.

® As far as we know, p, is 0 everywhere, and so is J ; B is not on equal footing
with E: there exist stationary sources for E (electric charges) but none for B.

® This is reflected in the fact that magnetic multipole expansions have no
monopole term, and magnetic dipoles consist of current loops, not separated
north and south “poles.”

® In gquantum electrodynamics, it’s a more than merely aesthetic shame that
magnetic charge does not seem to exist: Dirac showed that the existence of
magnetic charge would explain why electric charge is quantized.

Problem 7, 11, 18, 22, 26, 33, 37, 43, 54, 63



Maxwell’s Equations in Matter
® When you are working with materials that are subject to electric and magnetic

polarization there is a more convenient way to wrifte Maxwell’s equations.

® For inside polarized matter there will be accumulations of “bound” charge and
current, over which you exert no direct control. It would be nice to reformulate
Maxwell’s equations so as to make explicit reference only to the “free” charges
and currents.

® From the static case, an electric polarization P produces a bound charge
density, pb=—V- P; a magnetic polarization (“magnetization”) M results in a
bound current, J b=v><M.

® One new feature to consider in the nonstatic case: Any change in the electric
polarization involves a flow of (bound) charge (call it J p), which must be included
in the total current.

® The polarization introduces a charge density o,=P at one end, —o, at the other

b‘
‘ +0,

® If P increases a bit, the charge on each end increases, giving

0 oP d
aibdalza—lpda = ==

Ot + POt

a net current d [ =



@ This polarization current has nothing to do with the bound current J,. The
latter is associated with magnetization of the material and involves the spin and
orbital motion of electrons; Jp is the result of the linear motion of charge when
the electric polarization changes.

e If P points to the right increasingly, then each +charge moves a bit to the right
and each —charge to the left; the cumulative effect is the polarization current Jp.

oP 0 o)
— V P =— P
ot Ot Ot
® The continuity eqn is satisfied; in fact, Jp is essential to ensure the conservation
of bound charge.

® Its consistency with the continuity eqn: V - J = V-

® A changing magnetization does not lead to any analogous accumulation of
charge or current. Only the bound current J b=V><M varies to changes in M.

® The total charge density can be separated into 2 parts: p=p,+p,=p,— V-P

oP
® The current density has 3 parts: J:Jf+]b+]p:1f+V><M+a_
5

® Gauss’s law is written as V -E = -
0

= V-D=p, « D=¢,E+P



® Ampere’s law (with Maxwell’s term) becomes

oP o8 U
VXB:,LLO(J +VXM+E)+/LO —

“05¢
oD B
XH=J .+ — H=—-M
~ V Jf Ot . Mo

® Faraday’s law and V - B = 0 are not affected by our separation of charge and
current into free and bound parts, since they do not involve p or J.

® In terms of free charges and currents, then, Maxwell’s equations read

(i) V- -D=p, & %D-da:Q
(i) V-B=0 & jfB-da:O
(iii) VXE= —-—— o ]{E d L= ——/B da

(iv) VXH = Jf+— = ]{H d L= I+—/Dda

® These eqns are in no way more “general” than the earlier ones; they simply
reflect a convenient division of charge and current into free and nonfree parts.



® They have the disadvantage of hybrid notation, since they contain both E and
D, both B and H.

® They must be supplemented by appropriate constitutive relations, giving D
and H in terms of E and B.

® These depend on the nature of the material; for linear media
_ D=cE _
P_COXeE o 1 — € — €O<]‘+Xe>
M= x,H H=2B  p=p(l+x,)

® D is called the electric “displacement”; and the 2™ term in the Ampeére/Maxwell

oD

equation (iv), J,=——, is called the displacement current.
‘0t



Boundary Conditions
® The fields E, B, D, and H are discontinuous at a boundary between 2 different

media, or at a surface that carries a charge density ¢ or a current density K.

® The explicit form of these discontinuities can be deduced from Maxwell’s
equations in their integral form

(1) f D.da:Qfenc
S
(i ) ]{ B-da=0
S
d

(i) 7{ E.df= _ % [ B.qq| foranysurface S
c dr J s bounded by the

(iv)%H-delfenC+i D-da| &Od100P
. dt J s C

® Applying (i) to a tiny, wafer-thin
Gaussian pillbox extending just
slightly into the material on
either side of the boundary:

over any closed surface S

D, a-D,a=0,a

The positive direction for @ is 2—1. The thicknes
of the edge—0; no volume charge density. D,



® The component of D | the interface is discontinuous as: DlL — Dzl =0,

@ Identical reasoning, applied to equation (ii), yields Bf — 1'32L =0

® Turning to (iii), a very thin Amperian loop straddling the surface gives
E1-£—E2-£=—%/B-da — 0 as the loop's width - 0 = E!—E!ZO

® The components of E | the interface are continuous across the boundary.

® By the same token, (iv) implies
H - ¢-H, (=] I

® No volume current density contributes in the limit of
infinitesimal width, but a surface current can.

: free current passing through the Amperian loop
ni

fenc f enc

e(mnx£)Ltheloop = I
> H|-H),=K, xn
® The parallel components of

H are discontinuous by an

amount proportional to the
free surface current density.

=K, nx£=K xXn-£

f enc




® The general statements about the EM boundary conditions:

1. The tangential component of an K field is continuous across an interface.

2. The tangential component of an H field is discontinuous across an interface
where a surface current exists by H! - H! =K X n.

3. The normal component of a D field is discontinuous across an interface
. L 1L
where a surface charge exists by D, — D, =0, .

4. The normal component of a B field is continuous across an interface.

® In the case of linear media, they can be expressed in terms of E and B alone:
(i) ¢ Ey —e,Ey =0, (iii) E}—E}=0
B|| B|| X
(ii) B;y— B;=0 (iv) ———=K,xn

K1 Mo

® If there is no free charge or free current at the interface, then
(i) ¢ Ef —e,E; =0 (iii) El—E)=0
[ [
B, B,
K Mo
® These equations are the basis for the theory of reflection and refraction.

1

(ii) B;— B, =0 (iv)




@ In the case of perfect conductor (for Medium 2)

€1E1L:O'f, Ezi:()
E =0, E,=0
B;=0, B, =0
B||
—=K,xn, B)=0

Hq
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