
  

Chapter 11Chapter 11 Special Theory of Relativity
 Beginning with Chapter 11 we employ Gaussian units for EM quantities.

 Special Relativity (SR) is believed to apply to all forms of interaction except 
large-scale gravitational phenomena.

 Before SR, it had been believed that the laws of mechanics were the same in 
different coordinate systems moving uniformly relative to one another i― nvariant 
under Galilean transformations

Ex: consider a group of particles interacting via two-body central potentials

 The form of the equations of classical mechanics under Galilean transformation 
is preserved, but the form of the wave equation is not.

The Situation Before 1900, Einstein's 2 Postulates  
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 The form of the EM wave equations is not invariant under Galilean 
transformations.

 3 possibilities:

(1) The Maxwell equations were incorrect. The proper theory of EM is invariant
      under Galilean transformations. []

(2) Galilean relativity applied to classical mechanics, but EM had a preferred
      reference frame, the frame in which the luminiferous ether was at rest. []

(3) There is a relativity principle for classical mechanics & EM, but it was not 
     Galilean relativity. This would imply that the laws of mechanics were in need
     of modification. []

 Michelson-Morley’s experimentMichelson-Morley’s experiment fails to find ether, but leads to the FitzGerald-
Lorentz contraction hypothesis: objects moving at a velocity v through the ether 

are contracted in the direction of motion

 Lorentz & Poincaré showed that the Maxwell equations are invariant in form 
under the Lorentz transformations and the contraction held for moving charge 
densities.

 The hypothesis of an ether was abandoned because of the implausibility of the 
explanation of experiments.
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Michelson interferometer



  

 Einstein's special theory of relativity is based on 2 postulates:

1. POSTULATE OF RELATIVITY1. POSTULATE OF RELATIVITY 
The laws of nature & the results of all experiments performed in certain frames 
of reference are independent of the translational motion of the system as a 
whole.

2. POSTULATE OF THE CONSTANCY OF THE SPEED OF LIGHT2. POSTULATE OF THE CONSTANCY OF THE SPEED OF LIGHT 
The speed of light is finite and independent of the motion of its source. 

 These equivalent coordinate systems are called inertial reference frames.

 The 2nd postulate can be rephrased as

22. POSTULATE OF A UNIVERSAL LIMITING SPEED. POSTULATE OF A UNIVERSAL LIMITING SPEED 
In every inertial frame, there is a finite universal limiting speed c for physical 
entities.



  

A. Ether DriftA. Ether Drift 
 The null result of the Michelson-Morley experiment established that the 

velocity of the earth through the presumed ether was less than 1/3 of its orbital 
speed of approximately 3×104 m/s.

 These null results can be explained without abandoning the concept of an ether 
by the hypothesis of the FitzGerald-Lorentz contraction.

 The MThe Möössbauer effectssbauer effect: the recoil momentum from the emission/absorption of 
a γ ray is taken up by the whole solid rather than by the emitting/absorbing 

nucleus 

 With such recoilless transitions there are no thermal Doppler shifts. The γ-ray 
line approaches its natural shape with no broadening or shift in frequency.

 Employing an absorber containing the same material as the emitter, one can 
study nuclear resonance absorption or use it as an instrument for the study of 
extremely small changes of frequency.

 The phase of a plane wave is an invariant quantity because the elapsed phase 
of a wave is proportional to the number of wave passing the observer. Since this 
is merely a counting operation, it must be independent of coordinate frame. 

 

Some Recent Experiments 
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 The unit wave normal is an invariant in all 
inertial frames. But the direction of energy 
flow changes from frame to frame.

 The direction of motion of the wave packet, 
ie, the direction of energy flow, is not parallel 
to n in K
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 It is a consequence of the validity of both the wave equation 
in the ether rest frame and Galilean relativity to 
transform to other inertial frames. Since it 
involves v0, it predicts an ether driftether drift effect.

 Consider 2 Mössbauer systems, one an 
emitter and the other an absorber, moving 
with velocities u 1 & u 2 in the lab

 The experiment showed that the search for the ether velocity gives a null result. 

 The Doppler shift experiments set observable ether drift speed limits 1000 times 
smaller than the speed of the earth and make the detection of any motion relative 
to some "absolute" reference frame quite implausible.
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B. Speed of Light from a Moving Source B. Speed of Light from a Moving Source 

 The 2nd postulate of Einstein destroys the concept of time as a universal variable 
independent of the spatial coordinates.

 In the CERN experiment, the speed of 6 GeV photons produced in the decay of 
energetic neutral pions was measured by time of flight over paths up to 80m. 

 The pions were produced by bombardment of a beryllium target by 19.2 GeV 
protons and had speeds of 0.99975c.

 Within experimental error it was found that the speed of the photons emitted by 
the extremely rapidly moving source was equal to c. 



  

. Frequency Dependence of the Speed of Light in VacuumС. Frequency Dependence of the Speed of Light in VacuumС  

 One possible source of frequency 
           dependence is photon mass

 The change in velocity of propagation from a photon mass is

 Another source of frequency variation in the speed of light is dispersion of the 
vacuum, a concept occurring in models with a discrete space-time.

 The small time duration of the pulse from pulsars permits a simple estimate for 
the upper limit of variation on the speed of light for 2 frequencies

 Up to very high energies there is no evidence for dispersion of the vacuum. The 
speed of light is a universal constant, independent of frequency. 
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 The constancy of the velocity of light gives the relation between space and time 
coordinates in different inertial reference frames as Lorentz transformationsLorentz transformations.

A. Simple Lorentz Transformation of CoordinatesA. Simple Lorentz Transformation of Coordinates 
 Einstein's 2nd postulate implies that observers in both frame K and K will see a 

spherical shell of radiation expanding outward from the origins with speed c.

  

Lorentz Transformations and Basic Kinematic Results of Special 
Relativity
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 The coordinates ⊥ to the direction of relative motion are unchanged while the ‖ 
coordinate & the time are transformed, contrasted with Galilean transformation.

 If the axes in К and К remain ‖, but the velocity v of frame К in frame К is in 

an arbitrary direction

 The structure of the equations is a rotation of coordinates, but hyperbolically 
instead of circularly, because of the relative negative sign between the space and 
time.
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B. 4-VectorsB. 4-Vectors 
 The Lorentz transformation describes the transformation of the coordinates of 

a point from one inertial frame to another.

 Anticipate that there are numerous physical quantities that transform under 
Lorentz transformations in the same manner as a point ― 4-vectors.
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        DilatationDilatation 
 The velocity of light is an upper bound on all 

velocities, thus the space-time domain can be 
divided into 3 regions by a light conelight cone, ie, 
x 2 + y 2 + z 2 = c 2 t 2 .

 As time goes on a particle traces out a path, 
called its world line, inside the upper half-cone.

 The upper half-cone (t>0) is the future. The 
lower half-cone (t<0) is the past.

 A system at О can never reach or come from a point outside the light cone. 

 The square of the 
   invariant interval

 For a timelike path, it is always possible to find a Lorentz transformation to a 

new coordinate frame such that

ie, in the new frame the 2 events occur at the same space point, but are 
separated in time.
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 For a spacelike path, it is possible to find a new inertial frame such that 

ie, in the new frame the 2 events occur at different space points at the same 
instant of time. 

            implies lightlike separation. The events lie on the light cone with respect 
to each other and can be connected only by light signals. 

 The division of the separation of 2 events in space-time is a Lorentz invariant 
one. 2 events within one separation in one coordinate system stay in the same  
separation in all coordinates.

 Events in timelike domains can be causally related, but not in spacelike 
domains.

 

 The time τ is called the proper time, the time seen in the rest frame of a system.
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 A certain proper time interval will be seen in the frame as a time interval 

 A moving clock runs more slowly than a stationary clock.

 For equal time intervals in the clock's rest frame, the time intervals observed in 
the other frame are greater by a factor of γ>1.

 This result is verified daily in high-energy physics labs where beams of 
particles of lifetimes с τ0 are transported before decay over distances much 

longer than с τ0.

 Time dilatation has also been verified with the comparison of the clock in an 
airplane with the one on the ground.
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D. Relativistic Doppler ShiftD. Relativistic Doppler Shift 
 Consider a plane wave 

 The frequency and wave number of any plane wave form a 4-vector.

 The invariance of phase is the invariance of the scalar product of 2 4-vectors.

 For light wave

 There exists a relativistic transverse Doppler shift, observed with atoms in 
motion and in a precise resonance-absorption Mössbauer experiment.    
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Addition of Velocities, 4-Velocity 
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 The formula for the addition of velocities is verified with the Fizeau 
experiments on the speed of light in moving liquids and the aberration of star 
positions from the motion of the earth in orbit.
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 The addition law for velocities is not a 4-vector transformation law because 
time is not invariant under Lorentz transformations. The proper time τ is a 
Lorentz invariant. Thus define a 4-velocity by differentiation of the 4-position 
with respect to τ:  
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 For a particle with speed small compared to the speed of light

 Nonrelativistically, the rest energies can be ignored; it is only a constant.

 In SR, the rest energy cannot be ignored; it is the total energy that matters.

 Wish to find expressions for the momentum & energy consistent with the 
Lorentz transformation law of velocities and reducing to (@) nonrelativistically

 Consider the elastic collision of 2 identical particles
and require that conservation of momentum & energy 
hold in all equivalent inertial frames

Relativistic Momentum and Energy of a Particle 
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In the lab frame K
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 �(0) cannot be determined from elastic scattering, but can be found from 
inelastic processes in which one particle is transformed into another or others of 

different masses. 
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 2

2
, sin θ


∼θ



uc x
2
=

c2
β

2 sin2
θ


γ
2
(1+β

2 cos θ

)
2
≈

ua
2

4
(1−β

2
) θ

 2
⇐ up to the order of θ

2

uc z
2
=

c2
β

2
(1+ cos θ


)
2

(1+β
2 cos θ


)
2 ≈

ua
2

4
( 1+β

2

1+β
2 cos θ


)2( 2− θ

 2

2
)2

≈ua
2( 1+ β

2
θ
 2

2 (1+β
2
)
)2( 1− θ

 2

2
)≈ ua

2( 1+ β
2

θ
 2

1+β
2
)( 1− θ

 2

2
)

≈ua
2( 1−

1−β
2

2 (1+β
2
)

θ
 2)=ua

2
−

ua
2

2 γ a

θ
 2

⇒ uc
2
=uc x

2
+uc z

2
≈ ua

2
+

ua
2

4 γ a

[γ a (1−β
2
)−2] θ

 2
=ua

2
−

1
γ a

3

c2
β

2
θ
 2

1−β
2 =ua

2
−

η

γ
3

ud z
2
=

c2
β

2
(1−cos θ


)

2

(1−β
2 cos θ


)
2
≈

c2
β

2

(1−β
2 cos θ


)
2

θ
 4

4
∼0  η≡

c2
β

2
θ
 2

1−β
2

⇒ ud
2
≈ud x

2
=

c2
β

2 sin2
θ


γ
2
(1−β

2 cos θ

)
2≈

c2
β

2
θ
 2

1−β
2 = η



  

 Another way to find �(0): the conservation equations are 4 equations assumed 
to be valid in all equivalent inertial frames, thus are identified as relations among 
4-vectors 

From the 1st postulate, (#) must be valid in all inertial frames. If  = 0 in all 

inertial frames, 0
 = 0 from the Lorentz transformation

 The energy-momentum 4-vector

The equation and the conservation equations form a powerful & elegant means of 
treating relativistic kinematics in collision and decay processes.

p⃗=( p0 , p) ⇒ p=m U ⇒ p0=m U 0=m γ c ⇐ p⃗=m U⃗

⇒ E =c p0+� (0)−m c2
⇒

∑
initial

( p0)a−∑
final

( p0)b=Δ0

0=∑
initial

p a−∑
final

p b=Δ

(#)

⇒ Δ⃗=(Δ0 , Δ =0)
E a=Eb

⇒ c Δ0=∑
final

[� b (0)−mb c2
]−∑

initial
[� a (0)−ma c2

]

⇒ � (0)=m c2

p⃗=( p0=
E
c

, p ) ⇒ u= c2

E
p

p⃗=m U⃗ ⇒ p⃗2
=m2 c2

=m2 U⃗ 2
⇒ U⃗ 2

=c2
⇐ constraint

⇒ p⃗2
= p0

2
−p2

=m2 c2
⇐ invariant ⇒ E=c √ p2

+m2 c2
⇐ m :  rest mass



  

 It is sometimes convenient to use the 2 components of p ⊥ the z axis and a 
rapidity as kinematic variables.

 One convenience of p⊥ & ξ as kinematic variables is a Lorentz transformation in 

the z direction shifts all rapidities by a constant amount, ξ  ξ − Z .

 With these variables, the configuration of particles in a collision process viewed 
in the laboratory frame differs only by a trivial shift of the origin of rapidity from 
the same process viewed in the center of mass frame.     

p=p+ p∥ ẑ   in K ⇒ p∥

=0   in K 

⇒ p
=p ,

E 

c
=Ω=√ p

2
+m2 c2

⇒ p , p∥=Ω sinh ξ ,
E
c
=Ω cosh ξ   in K ⇐ (1) ⇒

Ω
c

: the transverse
longitudinal

 mass

At rest in K
⇒ p=0 ⇒ p=m c sinh ξ , E=m c2 cosh ξ ⇐ cosh ξ=γ

sinh ξ= γ β



  

 3d rotations in classical & quantum mechanics can be discussed with the group 
of transformations of the coordinates that leave the norm of a 3-vector invariant.

 In SR, Lorentz transformations of the 4d coordinates follow from the invariance

We can rephrase the kinematics of special relativity as the consideration of the 
group of all transformations that leave s2 invariant―homogeneous Lorentz group. 

 Inhomogeneous Lorentz group or Poincaré group: the group of transformations 
that leave invariant

contains translations & reflections in space-time + transformations of the 
homogeneous Lorentz group.

 The mathematical equations of the laws of nature must be covariant, ie, 
invariant in form, under the transformations of the Lorentz group ⇒ need to 
study spacetime. 

 The space-time continuum is defined in terms of a 4d space with coordinates. 
Suppose that there is a well-defined transformation that yields new coordinates

 A scalar (tensor of rank 0) is a single quantity whose value is not changed by 
the transformation. The interval is a Lorentz scalar.

Mathematical Properties of the Space-Time of SR

x  μ
= x μ

( x0 , x1 , x2 , x3
) μ=0, 1, 2, 3

s2
= x0

2
− x1

2
− x2

2
− x3

2 interval

s2
(x , y)=( x0− y0)

2
−( x1− y1)

2
−(x2− y2)

2
−( x3− y3)

2



  

 Vectors (tensors of rank 1) have 2 kinds

 Summation conventionSummation convention: a repeated index means a summation over all the range.

 Contravariant vectors & covariant vectors correspond to the presence of       
and its inverse in the rule of transformation.

 If the law of transformation is linear then the coordinates form the components 
of a contravariant position vector.

 The inner or scalar product of 2 vectors is the product of the components of a 
covariant and a contravariant vector

 The scalar product is an invariant or scalar under the transformation

B⃗
⋅A⃗

=
∂ x β

∂ x  α

∂ x α

∂ xγ Bβ Aγ
=
∂ xβ

∂ x γ Bβ Aγ
=δ

β
γ Bβ Aγ

= B⃗⋅A⃗

contravariant vector A α
=
∂ x  α

∂ x β Aβ
=
∂ x α

∂ x0
A0
+
∂ x α

∂ x1
A1
+
∂ x  α

∂ x2
A2
+
∂ x α

∂ x3
A3

covariant vector Bα

=

∂ xβ

∂ x α Bβ=
∂ x0

∂ x  α B0+
∂ x1

∂ x α B1+
∂ x2

∂ xα B2+
∂ x3

∂ x α B3

F α β
=
∂ x α

∂ xγ

∂ x β

∂ xδ Fγ δ , Gα β

=

∂ xγ

∂ x α

∂ xδ

∂ x β Gγ δ , H α
β=

∂ x α

∂ xγ

∂ xδ

∂ x  β Hγ
δ

∂ x  α

∂ xβ

B⃗⋅A⃗≡Bμ Aμ
=Bμ Aμ



  

 The geometry of the space-time of SR is defined by the invariant interval

 For the flat space-time of SR, the metric tensor is diagonal

familiar in form from continuity of charge and current density, the Lorentz 
condition on the scalar and vector potentials, etc.

 The 4d Laplacian operator is defined 
             to be the invariant contraction,

xα=gα β x β , xα
= gα β xβ , F⋅ ⋅⋅ ⋅ α ⋅⋅

= gα β F⋅⋅ β
⋅⋅ ⋅⋅ , G⋅ ⋅⋅ α ⋅

⋅ ⋅⋅
= gα β G⋅⋅ ⋅⋅

⋅⋅ ⋅ β

⇒ Aα
=(A0 , A) , Aα=(A0 ,−A ) ⇒ B⃗⋅A⃗=Bα Aα

=B0 A0
−B⋅A

d s2
=(d x0

)
2
−(d x1

)
2
−(d x2

)
2
−(d x3

)
2
= gα β d xα d xβ

⇐ gα β=gβ α : metric
tensor

∂

∂ x  α =
∂ xβ

∂ x α

∂

∂ xβ ⇒ differentiation wrt a contravariant component of the
coordinate vector transforms as a covariant vector operator

⇒ ∂α≡
∂

∂ xα =( ∂

∂ x0 , ∇ ) , ∂
α
≡

∂

∂ xα

=( ∂

∂ x0 ,−∇ )
⇒ ∂α Aα

=∂
α Aα=

∂ A0

∂ x0 +∇⋅A

□≡∂μ ∂
μ
= ∂

2

∂ x02 −∇
2
=∂0

2
−∇

2

g00=1 , g11= g22=g33=−1 ⇒ gα β
= gα β ⇐ gα γ gγ β=δ

α
β



  

 The contravariant coordinate vector can be written as

 Matrix scalar products of 4-vectors

 2 examples of improper transformations, 

Matrix Representation of Lorentz Transformations, Infinitesimal 
Generators

�= [
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1] ⇒ �2

= I4 ⇒ x=� x⃗= [
x0

− x1

− x2

− x3] ⇐ covariant coordinate
vector

⇒ a⃗⋅b⃗=(a⃗ , � b⃗)=(� a⃗ , b⃗)= a⃗T � b⃗ ⇐ scalar product
x⃗ 
=Λ x⃗ ⇒ x⃗T ΛT � Λ x⃗ ⇐ x⃗  T � x⃗= x⃗T � x⃗ ⇐ invariant ⇒ ΛT � Λ=� (2)

⇒ det (ΛT � Λ)=det � (det Λ)2=det � ⇒ det Λ=±1

⇒
det Λ= 1 : proper Lorentz transformations , continuous with the

identity transformation
det Λ=−1 : improper Lorentz transformations , sufficient but not necessary

Λ= � space inversion ⇒ det Λ=−1
Λ=− I4 space & time inversion ⇒ det Λ=+1

(a⃗ , b⃗)≡ a⃗T b⃗

x⃗=[
x0

x1

x2

x3]



  

 The No. of free parameters:

 Here we consider only proper Lorentz transformations.

 Λ= lim
n ∞

( I + L
n
)

n

=eL ⇒ 1=det Λ=det eL=eTr L
⇒ L ∈ ℝ is traceless

(2) ⇒ �ΛT �=Λ−1
⇐ �2

= I ⇒ ΛT
=eL

T

, �ΛT �=e� L
T � , Λ−1

=e−L

⇒ � LT �=−L ⇒ (� L )T=−� L ⇒ � L  antisymmetric (� L )μ ν=−(� L )ν μ

⇒ L= [
0 L01 L02 L03

L01 0 L12 L13

L02 −L12 0 L23

L03 −L13 −L23 0 ]=[ 0 boosts

boosts rotations ] ⇒ 6  fundamental matrices

⇒

S1= [
0 0

0 0 0
0 0 0 −1

0 1 0 ] , S2= [
0 0

0 0 1
0 0 0 0
−1 0 0 ] , S3= [

0 0
0 −1 0

0 1 0 0
0 0 0] ⇐ rotations

K 1= [
0 1 0 0
1
0 0
0

] , K 2=[
0 0 1 0
0
1 0
0

] , K3= [
0 0 0 1
0
0 0
1

] ⇐ boosts

4×4−10 (No. of eqns)=6=3 (rotation )+3 (boost )
 (2)



  

S i=− ϵ̄0 i
μ ν ê μ ê ν ⇐ ϵ̄

0 1 2 3
=[0123]=1

ϵ̄0 1 2 3 =1
, μ , ν , σ ,⋯ : from 0  to 3

i , j , k ,⋯ : from 1  to 3

⇒ S i S j= ϵ̄0 i
k n

ϵ̄0 j n
m ê k êm=(δ i

m
δ j

k
−δ i j δ

k m
) ê k ê m= ê i ê j−δ i j I3

⇒ [S i , S j ]=S i S j−S j S i=(δ i
m

δ j
k
−δ i

k
δ j

m
) ê k ê m=− ϵ̄0 i j n ϵ̄0

n k m ê k êm

= ϵ̄0 i j
k S k=ϵi j

k S k ⇐ ϵ̄0 i j n ϵ̄0 k m
n
= ϵi j n ϵk m

n
=δi k δ j m−δ i m δ j k

K i= ê0 ê i+ ê i ê0=(δ0
μ

δ i
ν
+ δ0

ν
δ i

μ
) êμ  êν

⇒ K i K j=(δ0
μ

δ i σ+ δ0 σ δ i
μ
) (δ0

σ
δ j

ν
+δ0

ν
δ j

σ
) êμ ê ν=(δ0

μ
δ0

ν
δi j+ δ0 0 δ i

μ
δ j

ν
) êμ êν

=δ i j ê 0 ê 0+ ê i ê j

⇒ [K i ,K j ]=K i K j−K j K i=(δ i
μ

δ j
ν
−δ j

μ
δi

ν
) ê μ ê ν=−ϵi j

k S k

S i K j=− ϵ̄0 i
μ σ
(δ0 σ δ j

ν
+ δ0

ν
δ j σ) ê μ ê ν= ϵ̄0 i j

μ
δ0

ν ê μ ê ν= ϵ̄0 i j
k ê k  ê0

K j S i=−(δ0
μ

δ j σ+δ0 σ δ j
μ
) ϵ̄0 i σ

ν êμ ê ν=− ϵ̄0 i j
ν

δ0
μ ê μ ê ν=− ϵ̄0 i j

k ê0 ê k

⇒ [S i ,K j]=( ϵ̄0 i j
μ

δ0
ν
+ ϵ̄0 i j

ν
δ0

μ
) êμ  ê ν= ϵ̄0 i j

k
(δk

μ
δ0

ν
+ δk

ν
δ0

μ
) êμ ê ν= ϵi j

k K k



  

S1
2
=[

0 0
0
−1

0 −1 ] , S2
2
= [

0 0
−1

0
0 −1] , S3

2
= [

0 0
−1

−1
0 0 ] ⇒ S i

2
= ê i ê i− I3

K1
2
=[

1 0
1

0
0 0 ] , K2

2
= [

1 0
0

1
0 0 ] , K 3

2
=[

1 0
0

0
0 1] ⇒

K i
2
= ê 0 ê 0

+ ê i ê i

 The squares of these 6 matrices are all diagonal

                                                                                                               any power 
of one of the matrices can be expressed as a multiple of the matrix or its square. 
[Problem 11.10]

 L=−ω⋅S⃗−ξ⋅K⃗ ⇒ Λ=e−ω⋅S⃗−ξ⋅K⃗

For ω=0 , ξ=ξ ê 1 ⇒ L=−ξ K1 + K1
3
=K1

⇒ Λ=eL= I−K1 sinh ξ+K1
2
(cosh ξ−1)=[

cosh ξ −sinh ξ 0 0
− sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

]=(1)

(ϵ⋅S⃗)3=−ϵ⋅S⃗ , (ϵ⋅K⃗ )3=ϵ⋅K⃗ ⇐ ϵ , ϵ ∈ ℝ  are unit 3-vectors ⇒



  

(ϵ

⋅K⃗ )2= ϵ

 i
ϵ
 j ê i⊗ ê j+ ê 0⊗ ê 0 , (ϵ


⋅K⃗ )3=ϵ⋅K⃗ ⇐ |ϵ


|=1

e−ξ⋅K⃗=e−ξ ξ̂⋅K⃗
=∑

n=0

∞ (−ξ ξ̂⋅K⃗ )n

n!
= I−∑

odd n

ξ
n

n!
(ξ̂⋅K⃗ )n

+∑
even n

ξ
n

n!
(ξ̂⋅K⃗ )n

= I−(ξ̂⋅K⃗ )∑
m=1

ξ
2 m−1

(2 m−1)!
+(ξ̂⋅K⃗ )2∑

m=1

ξ
2 m

(2 m)!

= I−(ξ̂⋅K⃗ ) sinh ξ+(ξ̂⋅K⃗ )2 (cosh ξ−1)

Let ξ= ξ ê1 ⇒ ξ̂⋅K⃗=K1 , (ξ̂⋅K⃗ )2= ê1⊗ ê 1+ ê 0⊗ ê 0

⇒ e−ξ⋅K⃗=e−ξ K1= I−K1 sinh ξ +K 1
2
(cosh ξ−1)

(ϵ⋅S⃗)2=ϵ
i
ϵ

j ê i⊗ ê j− I3 , (ϵ⋅S⃗)3=−ϵ⋅S⃗ ⇐ |ϵ|=1

e−ω⋅S⃗=∑
n=0

∞ (−ω ω̂⋅S⃗ )n

n!
= I +(ω̂⋅S⃗ )∑

m=1

(−1)m
ω

2 m−1

(2 m−1)!
−(ω̂⋅S⃗ )2∑

m=1

(−1)m
ω

2 m

(2 m)!

= I−(ω̂⋅S⃗) sin ω−(ω̂⋅S⃗ )2 (cos ω−1)

Let ω=ω ê 3 ⇒ ω̂⋅S⃗=S3 , (ω̂⋅S⃗ )2=− ê 1⊗ ê 1− ê2⊗ ê2

⇒ e−ω⋅S⃗=e−ω S3= I−S3 sin ω−S3
2
(cos ω−1)



  

 The 6 matrices are a representation of the infinitesimal generators of the 
Lorentz group. They satisfy the following commutation relations,

 The commutation relations, with the minus sign in the last one, specify the 
algebraic structure of the Lorentz group to be SL(2,C) or O(3,1).

Λboost (β)=e− ξ⋅K⃗=e− β̂⋅K⃗ tanh−1
β
⇐ ξ= β̂ tanh−1

β

= [
γ −γ β1 − γ β2 −γ β3

− γ β1 (γ−1)
β1

2

β
2 +1 (γ−1)

β1 β2

β
2 (γ−1)

β1 β3

β
2

− γ β2 (γ−1)
β1 β2

β
2 (γ−1)

β2
2

β
2 +1 (γ−1)

β2 β3

β
2

− γ β3 (γ−1)
β1 β3

β
2 (γ−1)

β2 β3

β
2 (γ−1)

β3
2

β
2 +1

]⇒ x⃗=Λboost (β) x⃗
=(0)

[S i , S j ]=ϵi j k S k commutation relations for angular momentum

[S i ,K j ]=ϵi j k K k K⃗  transforms as a vector under rotations

[K i ,K j]=−ϵi j k S k boosts do not in general commute

⇐ [A , B]
= A B−B A

For ξ=0 , ω=ω ê 3 ⇒ Λ= [
1 0 0 0
0 cos ω sin ω 0
0 −sin ω cos ω 0
0 0 0 1

] ⇐
clockwize rotation
around z -axis



  

 In general the result of successive Lorentz transformations depends on the 
order in which they are performed.

 The commutation relations imply that successive Lorentz transformations are 
equivalent to a single Lorentz transformation + a 3d rotation⇒Thomas precession

 Uhlenbeck & Goudsmit introduced the idea of electron spin and showed that, if 
the electron had a g factor of 2, the anomalous Zeeman effect could be explained, 
as well as the existence of multiplet splittings.

 The observed fine structure intervals were only half the theoretical values.

 Thomas showed that the origin of the discrepancy was a relativistic kinematic 
effect which gave both the anomalous Zeeman effect and the correct fine 
structure splittings with g=2.

 The Thomas precession also gives a qualitative explanation for a spin-orbit 
interaction in atomic nuclei and shows why the doublets are "inverted" in nuclei.

 The Uhlenbeck-Goudsmit hypothesis was that an electron possesses a spin 

angular momentum (        along any axis) and a magnetic moment

Thomas Precession

±
ℏ

2
μ=

g e
2 m c

s ⇐ g=2 ⇐ μL=
e L
2 m



  

 Suppose that an electron moves with a velocity in external fields E and B. Then 
the equation of motion for its angular momentum in its rest frame

The interaction energy gives the anomalous Zeeman effect correctly, but has a 
spin-orbit interaction twice too large.

 The error comes from the incorrectness of (b) for the electron spin.

 If the coordinate system rotates

 The origin of the Thomas precession frequency is the acceleration experienced 
by the electron as it moves under the action of external forces.

 The electron's rest frame: a co-moving sequence of inertial frames whose 
successive origins move at each instant with the velocity of the electron.

d s
d t ∣rest

=N=μ×B
≃μ×(B−β×E ) (b) ⇐ B

≃B−β×E

e E=− r̂ d Φ
d r

⇐ Φ (r ) : average
potential energy

+
L=r×m v
=c m r×β

: orbital angular
momentum

⇒ U 
=−μ⋅B

≃−μ⋅(B−β×E )=− g e
2 m c

s⋅B + g
2 m2 c2

s⋅L
r

d Φ
d r

⇒
d s
d t ∣nonrot

= s×( g e
2 m c

B
−ωT ) ⇒ U=U

+ s⋅ωT

d Q
d t ∣nonrot

=
d Q
d t ∣rest

+ωT ×Q ⇐ ωT :
angular

velocity of
rotation



  

x⃗ 
=Λboost (β) x⃗ ⇐ c β=v (t)

x⃗″=Λboost (β+ δ β) x⃗ ⇐ c (β+ δ β)=v (t + δ t)
⇐ v : the velocity of the rest

frame wrt the lab frame

⇒ x⃗″=ΛT x⃗ ⇐ ΛT=Λboost (β+ δ β)Λboost
−1

(β)

=Λboost (β+ δ β)Λboost (−β)

⇒ Λboost (−β)= [
γ γ β 0 0

γ β γ 0 0
0 0 1 0
0 0 0 1

] ⇐
Let β  along the 1 axis ( x -axis)
δ β  lies on the 1-2 plane ( xy -plane)

⇒ Λboost (β+ δ β)= [
γ (1+γ

2
β δ β1) −γ (β+ γ

2
δ β1) − γ δ β2 0

−γ (β+ γ
2

δ β1) γ (1+γ
2

β δ β1)
γ−1

β
δ β2 0

−γ δ β2
γ−1

β
δ β2 1 0

0 0 0 1
]



  

⇒ ΛT=[
1 −γ

2
δ β1 −γ δ β2 0

− γ
2

δ β1 1 γ−1
β

δ β2 0

−γ δ β2 −
γ−1

β
δ β2 1 0

0 0 0 1
]

⇒ ΛT= I−(γ−1) β̂× δ β

β
⋅S⃗−(γ2

δ β∥+ γ δ β)⋅K⃗

=Λboost (Δ β)R (ΔΩ)=R (ΔΩ)Λboost (Δ β)   to the 1st order

where Λboost (Δ β)= I−Δ β⋅K⃗
R (ΔΩ)= I−ΔΩ⋅S⃗

⇐

Δ β=γ
2

δ β∥+γ δ β

ΔΩ=(γ−1) β̂× δ β

β
=

γ
2

γ +1
β×δ β

 Thus the pure Lorentz boost to the frame with velocity c(β+δβ) is equivalent to 
a boost to a frame moving with velocity cβ, followed by an infinitesimal Lorentz 
transformation consisting of a boost with velocity cβ and a rotation Ω.

 Consider the rest-frame coordinates at t+δt that are given from those at t by

The rest system of coordinates x‴ is rotated by −Ω to the boosted lab axes x″.

x⃗‴=Λboost (Δ β) x⃗ 
=R (−ΔΩ)Λboost (β+ δ β) x⃗



  

 For the proper time rate of change of a physical vector in the rest frame, the 
precession of the rest-frame with respect to the lab makes the vector have a total 
time rate of change with respect to the lab axes

 The Thomas precession is purely kinematical. If a component of acceleration 
exists ⊥ v, then there is a Thomas precession, independent of other effects.

 For electrons in atoms the acceleration is caused by a screened Coulomb field

 With g=2 the spin-orbit interaction is reduced by ½ (Thomas factor).

 In atomic nuclei one can treat the nucleons as moving separately in a short-
range, spherically symmetric, attractive, potential well ΦN. Then each nucleon 
will experience

 Since Φ and ΦN are attractive, the signs of the spin-orbit energies are opposite. 
This means that in nuclei the single particle levels form "inverted" doublets.

d Q
d t ∣nonrot

=
d Q
d t ∣rest

+ωT ×Q=
1
γ

d Q
d τ ∣rest

+ωT×Q ⇐ ωT=− lim
δ t  0

δ Ω
δ t

=γ
2 β̇ ×β

γ +1

m a=m c β̇ =e E=− r̂ d Φ
d r

⇒ ωT ≃−
1

2 c2

r̂×v
m

d Φ
d r

=−
1

2 m2 c2

L
r

d Φ
d r

⇒ U=U 
+ s⋅ωT=−

g e
2 m c

s⋅B+ g−1
2 m2 c2

s⋅L
r

d Φ
d r

U N =U 
+ s⋅ωT ≃ s⋅ωT≃−

1
2 M2 c2

s⋅L
r

d ΦN

d r
⇐ EM forces are

comparatively weak



  

 The invariance of form or covariance of the Maxwell & Lorentz force equations 

implies that the various quantities ρ, J, E, B in these equations transform in well-
defined ways under Lorentz transformations.

 Experiments support the invariance of electric charge under Lorentz 
transformations, or the indep. of the observed charge of a particle on its speed. 

 The continuity equation

 J α is a legitimate 4-vector follows from the invariance of electric charge  

Invariance of Electric Charge; Covariance of Electrodynamics

d p
d t

=q (E+β×B) ⇒
d p
d τ

=
q
c
(U 0 E +U×B) ⇐

p⃗=( p0 , p)=m (U 0 , U)
c p0=E (energy)

To form 
d p⃗
d τ

= f⃗ (ρ , U⃗ , E , B) ⇒
d p0

d τ
=

q
c
U⋅E the change rate of energy

δ q=ρ d3 x=ρ
 d3 x ⇐ invariance of electric charge

d4 x 
=
∂ ( x 0 , x 1 , x 2 , x 3

)

∂ (x0 , x1 , x2 , x3
)

d4 x=det Λ d4 x=d4 x=d x0 d3 x ⇐
4d volume
element is a
Lorentz invariant

⇒ c ρ  transforms like x0

∂ ρ

∂ t
+∇⋅J=0 ⇒ ∂μ J μ

=0 ⇐ J⃗ =(c ρ , J )



  

1
c2

∂
2 A
∂ t2 −∇

2 A=
4 π

c
J

1
c2

∂
2Φ

∂ t2 −∇
2Φ= 4 π ρ

⇐
1
c
∂t Φ+∇⋅A=0 ⇒

□ Aμ
=

4 π

c
J μ

∂μ Aμ
=0

⇐ A⃗=(Φ , A)

E=− 1
c
∂ A
∂ t

−∇ Φ

B=∇×A
⇒

E x=−
1
c
∂t Ax−∂ xΦ=−(∂

0 A1
−∂

1 A0
)

Bx= ∂y Az−∂z Ay=−(∂
2 A3

−∂
3 A2

)

⇐ ∂
μ
=(∂0 ,−∇)

 Define 2nd-rank antisymmetric field-strength tensor 
Fμ ν

=∂
μ Aν

−∂
ν Aμ

= [
0 −E x −E y −E z

E x 0 −B z By

E y Bz 0 −Bx

E z −By Bx 0 ]
⇒ Fμ ν= gμ λ gν σ Fλ σ

=∂μ Aν−∂ν Aμ

=[
0 E x E y E z

−E x 0 −Bz By

−E y Bz 0 −Bx

−E z −By Bx 0 ]
ℱ

α β
≡

1
2

ϵ
α β γ σ Fγ σ

dual field - strength tensor

= [
0 −Bx −B y −Bz

Bx 0 E z −E y

By −E z 0 E x

Bz E y −E x 0 ] ⇐
ϵ

α β γ σ
=[

+1 , [0123]  & even
permutation

−1 , odd permutation
0 , others

ϵα β γ σ=− ϵ
α β γ σ pseudotensor



  

⇒

∂α Fα β
=

4 π

c
J β

⇐

∇⋅E=4 π ρ

∇×B− 1
c
∂ E
∂ t

=
4 π

c
J

∂α ℱ
α β
=0 ⇐

∇⋅B=0

∇×E + 1
c
∂ B
∂ t

=0
⇒ ∂α Fβ γ+∂β Fγ α+∂γ Fα β=0

⇒
d pα

d τ
=m

d U α

d τ
=

q

c
Fα β U β

covariant Lorentz
force law

⇒
d p⃗

d τ
=m

d U⃗
d τ

=
q

c
F⋅U⃗

For Macroscopic
Maxwell equations

∂αGα β
=

4 π

c
J β

∂α ℱ
α β
=0

⇐ Gα β
= [

0 −Dx −Dy −D z

D x 0 −H z H y

D y H z 0 −H x

D z −H y H x 0 ]
 With D, H, P, M as macroscopic averages of atomic properties in the rest frame 

of the medium, the electrodynamics of macroscopic matter in motion is specified. 



  

 E and B have no independent existence. A purely electric or magnetic field in 
one coordinate system will appear as a mixture of both fields in another frame.

 A purely electrostatic field in one coordinate system cannot be transformed into 
a purely magnetostatic field in another.

 One should properly speak of the EM field F, rather than E or B separately.

 For a moving point charge, the coordinates of the observer P are   

Transformation of EM Fields 

F α β
=
∂ x α

∂ xγ

∂ x  β

∂ xσ Fγ σ

⇔ F 
=Λ F ΛT

⇒

E1

=E1 ,

E2

=γ (E2−β B3) ,

E3

= γ (E3+β B2) ,

B1

=B1

B2

=γ (B2+β E 3)

B3

=γ (B3−β E2)

⇒
E
= γ (E  

+β×B)−(γ−1) (β̂⋅E) β̂
B
=γ (B−β×E )−(γ−1) (β̂⋅B) β̂

⇐
γ

2

γ +1
=

γ−1
β

2

c t
x1=0
x2=b
x3=0

  in K ⇒

c t= γ (c t−β x1)=γ c t
x1

=β c t

x2

=b

x3

=0

 in K
⇒

r=√b2
+(β c t)2

=√b2
+γ

2
β

2 c2 t2

If B
=0  in K

⇒ E= γ E 
−(γ−1) (β̂⋅E

) β̂

B=γ β×E 
⇒ B=β×E   in K



  

⇒ E
= [

−
q v t

r 3

q b
r  3

0
] & B

=0

⇒ E= [
E1


γ E2


0 ]
= [

−
q γ v t

(b2
+ γ

2 v2 t2
)
3 /2

γ q b
(b2

+ γ
2 v2 t2

)
3 /2

0
] & B= [

0
0

γ β E2
 ]=[

0
0

β E2
]= [

0
0

γ β q b
(b2

+γ
2 v2 t2

)
3 /2 ]

β ≪ 1 ⇒ γ≃1 ⇒ B=
q
c
v×r

r3
Ampere-Biot-Savart expression

β  1 ⇒ γ ≫ 1 ⇒ B3 E2 , E2 (t=0)=γ E2 , nonrelativistic (t=0)

time interval for the
fields being appreciable

Δ t≃(0.77)
b

γ v
⇐ E2 (Δ t)= 1

2
E2 , max=

1
2

E2 (0)=
γ q

2 b2

'



  

 As γ increases, the peak fields increase, 
but their duration decreases inversely. 

 The time integral of the fields 
times v is indep. of velocity.

 
 For β1 the observer at P 

sees nearly equal transverse 
and mutually ⊥ E & B. 

 In practice the observer will see only the transverse fields

 E is radial, but not isotropic

 The compression of the lines of 
force in the transverse direction is
a consequence of the FitzGerald-
Lorentz contraction.    

E (ψ=0 , π )∝
1
γ

2 , E (ψ=
π

2
)∝ γ

∫
−∞

∞

E 2 d t=
2 q
v b

E1

E 2

=−
v t
b

⇒ E=
q r̂

r2
γ

2
(1−β

2 sin2
ψ )

3/2
, B=β×E ⇐ ψ=cos−1

( r̂⋅v̂ )

⇐ ∫
−∞

 ∞

E1 d t=0



  

r2
=v2 t2

+b2 , sin ψ≡
b
r

, r̂=cos ψ x̂ + sin ψ ŷ=− v t
r

x̂ + b
r
ŷ

⇒ r 2
=γ

2 v2 t2
+b2

= γ
2 r2

+(1−γ
2
) b2

= γ
2 r2( 1+ 1−γ

2

γ
2

b2

r2
)

= γ
2 r2

(1−β
2 sin2

ψ) ⇒ r  3
=γ

3 r3
(1−β

2 sin2
ψ )

3 /2

⇒ E=E1 x̂ +E2 ŷ=
γ q (−v t x̂ +b ŷ )

r  3 =
γ q (−v t x̂ +b ŷ )

γ
3 r3

(1−β
2 sin2

ψ)
3 /2

=q
−

v t
r

x̂ + b
r
ŷ

γ
2 r2

(1−β
2 sin2

ψ )
3 /2
=

q r̂
γ

2 r2
(1−β

2 sin2
ψ )

3 /2



  

 In doing relativistic kinematics, it is customary to suppress all factors of с by 
suitable choice of units.

 Adopt the convention that all momenta, energies, and masses are measured in 
energy units, while velocities are measured in units of the velocity of light

 As energy units, the electron volt (eV), the megaelectron volt (MeV), and the 
gigaelectron volt (GeV) are convenient

Selected problem: 3, 10, 14, 19, 23, 28

Note on Notation and Units in Relativistic Kinematics  

(I) a⃗⋅b⃗=aμ bμ
=a0 b0− a⋅b (II) P⃗= p⃗+ q⃗ ⇒ Pμ

= pμ
+qμ

[
c p
E

m c2

v
c

] ⇒ [
p
E
m

v ] ⇒
E2
= p2

+m2

v=
p
E

1 eV=1.602×10−12 erg=1.602×10−19 joule
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