Chaptar 1L Special Theory of Relativity

® Beginning with Chapter 11 we employ Gaussian units for EM quantities.

® Special Relativity (SR) is believed to apply to all forms of interaction except
large-scale gravitational phenomena.

The Situation Before 1900, Einstein's 2 Postulates

® Before SR, it had been believed that the laws of mechanics were the same in
different coordinate systems moving uniformly relative to one another—invariant

under Galilean transformations r=r—-vt (%) Galil lativit
*x) < Galilean relativity

t' =t
Ex: consider a group of particles interacting via two-body central potentials

dv, -V 3V, (r-r)) in reference _ V,=V,—V dv, _dv,
drt L frame K’ V;:Vi Todr dr
d 1 / /
m =V, Z V., |r r |) in reference  _ r,—r,=r,-r,
d t frame K
® The form of the equations of classical mechanics under Galilean transformation
is preserved, but the form of the wave equation is not.
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® The form of the EM wave equations is not invariant under Galilean
transformations.

® 3 possibilities:

(1) The Maxwell equations were incorrect. The proper theory of EM is invariant
under Galilean transformations. [ X]

(2) Galilean relativity applied to classical mechanics, but EM had a preferred
reference frame, the frame in which the luminiferous ether was at rest. [ X]

(3) There is a relativity principle for classical mechanics & EM, but it was not
Galilean relativity. This would imply that the laws of mechanics were in need
of modification. [O]

@ Michelson-Morley’s experiment fails to find ether, but leads to the FitzGerald-

Lorentz contraction hypothesis: objects moving at a velocity v through the ether

2
are contracted in the direction of motion [, (v )= Lyy1- V_2 =L,\V1— B* = B= i
C C
® Lorentz & Poincaré showed that the Maxwell equations are invariant in form
under the Lorentz transformations and the contraction held for moving charge

densities.

® The hypothesis of an ether was abandoned because of the implausibility of the
explanation of experiments.
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® Einstein's special theory of relativity is based on 2 postulates:

1. POSTULATE OF RELATIVITY

The laws of nature & the results of all experiments performed in certain frames
of reference are independent of the translational motion of the system as a
whole.

2. POSTULATE OF THE CONSTANCY OF THE SPEED OF LIGHT
The speed of light is finite and independent of the motion of its source.

® These equivalent coordinate systems are called inertial reference frames.

® The 2" postulate can be rephrased as

2. POSTULATE OF A UNIVERSAL LIMITING SPEED

In every inertial frame, there is a finite universal limiting speed c¢ for physical
entities.



Some Recent Experiments

A. Ether Drift

® The null result of the Michelson-Morley experiment established that the
velocity of the earth through the presumed ether was less than 1/3 of its orbital

speed of approximately 3X10*m/s.

® These null results can be explained without abandoning the concept of an ether
by the hypothesis of the FitzGerald-Lorentz contraction.

® The Mossbauer effect: the recoil momentum from the emission/absorption of
a -y ray is taken up by the whole solid rather than by the emitting/absorbing
2
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® With such recoilless transitions there are no thermal Doppler shifts. The ~-ray
line approaches its natural shape with no broadening or shift in frequency.

< M : the mass of the nucleus

nucleus E -0 = E =E,>E,—

recoil

® Employing an absorber containing the same material as the emitter, one can
study nuclear resonance absorption or use it as an instrument for the study of
extremely small changes of frequency.

® The phase of a plane wave is an invariant quantity because the elapsed phase
of a wave is proportional to the number of wave passing the observer. Since this
is merely a counting operation, it must be independent of coordinate frame.
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Doppler shift formulas of Galilean relativity

® The unit wave normal is an invariant in all

ie, the direction of energy flow, is not parallel

tonin K’ cn—V
m=
lcn —v|
m-v, v,
n-= 1 o c m+7 = VO_VIab_Vether

® Consider a plane wave whose frequency is w

B
inertial frames. But the direction of energy
flow changes from frame to frame.
® The direction of motion of the wave packet, \|\4 n

in the ether rest frame, w, in the lab, and w,
in an inertial frame K,
B n-v, B n-v, m,, ~
w,=w | 1-— , wo=w | 1-
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u, v,
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® It is a consequence of the validity of both the wave equation
in the ether rest frame and Galilean relativity to
transform to other inertial frames. Since it

involves V,, it predicts an ether drift effect.

® Consider 2 Mossbauer systems, one an
emitter and the other an absorber, moving

with velocities u, & u, in the lab

(vo),

Aw_w1_w2_u2_u1.( Vo)

m+—
Wy Wy C C

=

oy = 2 v lsinQ¢ < (w,—uw,)Llm .

® The experiment showed that the search for the ether velocity gives a null result.

® The Doppler shift experiments set observable ether drift speed limits 1000 times
smaller than the speed of the earth and make the detection of any motion relative
to some "absolute" reference frame quite implausible.



B. Speed of Light from a Moving Source

® The 2™ postulate of Einstein destroys the concept of time as a universal variable
independent of the spatial coordinates.

@ In the CERN experiment, the speed of 6 GeV photons produced in the decay of
energetic neutral pions was measured by time of flight over paths up to 80m.

® The pions were produced by bombardment of a beryllium target by 19.2 GeV
protons and had speeds of 0.99975c¢.

@ Within experimental error it was found that the speed of the photons emitted by
the extremely rapidly moving source was equal to c.



C. Frequency Dependence of the Speed of Light in Vacuum

O o
dependence is photon mass —, < huw,:photon rest energy
Ac _
® The change in velocity of propagation from a photon mass is — ~ 10 10
C

® Another source of frequency variation in the speed of light is dispersion of the
vacuum, a concept occurring in models with a discrete space-time.

2
® One possible source of frequency . (w) _. \/1 W

W

® The small time duration of the pulse from pulsars permits a simple estimate for
the upper limit of variation on the speed of light for 2 frequencies

At
D

® Up to very high energies there is no evidence for dispersion of the vacuum. The
speed of light is a universal constant, independent of frequency.

e (wy) e (w,)=



Lorentz Transformations and Basic Kinematic Results of Special
Relativity

® The constancy of the velocity of light gives the relation between space and time
coordinates in different inertial reference frames as Lorentz transformations.

A. Simple Lorentz Transformation of Coordinates
® Einstein's 2"¢ postulate implies that observers in both frame K and K’ will see a
spherical shell of radiation expanding outward from the origins with speed c.

2.2 . 2 2, 2 _~ - 2.2, 2 12, /2
't +x" +y +z7 =0 inK |, —c"t7+x"+y " +z ~  Where

O / / / B / —_—
— %41 % +y%+72=0 inK =N (= P+ +y°+ ) A=X(v)

= A=1 < inverse from K’ to K
xo="7 (x,— B x,) Xo=C1 v _
x/_ (X _BX) . = /3 C /B_|18|
= Lorentz transformation 1~ 1\ M1 o) < M7
Xo= Xy Aoy =
’ — 2
X;= X, X;=Y 1-5
/ /
Xo=" (%08 x,)
x, = (x)+ 8 x,) - -
= 1 1 0/ < inverse Lorentz transformation
Xog= Xy

/
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xz_x1) _()’2_)’1) _<Z2_Z1> /
=’ (t/z —t/l)z — (x/z —x/l)z — (y/2 — y/1>2_ (z; — z/l)z for light

= define an (infinitesimal) interval d s’=c’dr’—dx’—d y2 —d 7 for 2 events

= ds’=ds? < ds'’=a(v)ds®, ds'=a(v)ds?® = a=+1 = a=1

= Cdif—dx’=cdi’*—dx? = dy=dy’, dz=d7

et dx'=A (d x—vdt ) < generalized Galilean transformation
dt' = Bdt+Dd x

= czdtz—dxzzcz(Bdt+Ddx)2—A2(dx—vdt)2
=(c*B*—A*Vv)dr’+2(c*BD+A%v)drdx—(A*-c*D?)d x°

B —B*A’=1 . B(B+cBD)=1
= 2 0 __ = A°=——BD =
cBD+A p=0 3 ~ S D(B+cpD)=1
A—c"D =1 15



- p=—Pp o B’(1-p°)=1 > B=+~ = A’=B’ = A=+~
C

Choose + for v approaching O continuously.
cdt'=v(cdt— B dx) cdt=v(cdt'+ B dx)

- dx::fy( dx—pBcdt) - dx=~( dx//+ﬂcdt/) ~ Inverse Lorentz
dy = dy dy= dy transformation
dz = dz dz= dz

® The coordinates | to the direction of relative motion are unchanged while the ||
coordinate & the time are transformed, contrasted with Galilean transformation.

® If the axes in K and K’ remain ||, but the velocity v of frame K’ in frame K is in

an arbitrary direction x,=+ (x,—f8r), r/:r+(7—1)(,@-r),@—7ﬂxo (0)

0 0=0<l - tanh E=PB < &: boost parameter or rapidity = sinh £ = 3
l=y=ow cosh £ =«
cosh & —sinh &

—sinh & cosh &

X, =+x,cosh £ — x, sinh ¢ (1) = |%o|= X,

/
0
/

1

/ .
x,=—x,sinh & +x, cosh ¢ X X,

® The structure of the equations is a rotation of coordinates, but hyperbolically
instead of circularly, because of the relative negative sign between the space and
time.



B. 4-Vectors

® The Lorentz transformation describes the transformation of the coordinates of
a point from one inertial frame to another.

® Anticipate that there are numerous physical quantities that transform under
Lorentz transformations in the same manner as a point — 4-vectors.

A/_ (A _IBA> /2 /12 2 2
Ai: A,

eA=(A,, A)
(AO’Al’AZ’ AB)

/ /

B= ,B,—A-B'=A,B,—A-B < the scalar product is an invariant
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C. Light Cone, Proper Time, and Time Future

Dilatation

® The velocity of light is an upper bound on all

velocities, thus the space-time domain can be

divided into 3 regions by a light cone, ie,

X*+yi+z2=c?t?.

® As time goes on a particle traces out a path,

called its world line, inside the upper half-cone.

® The upper half-cone (>0) is the future. The
lower half-cone (1<0) is the past. ' A

® A system at O can never reach or come from a point outside the light cone.
s, >0, timelike
2 _ 2 ( )2 2 9 .
sp=c (L —1,) —|r —r,[ = s;, <0, spacelike
s5,=0, lightlike

@ For a timelike path, it is always possible to find a Lorentz transformation to a

® The square of the
invariant interval

. 2 2 2
new coordinate frame such that r;=r, = s}, =c (t/l — t/z) >0

ie, in the new frame the 2 events occur at the same space point, but are
separated in time.



® For a spacelike path, it is possible to find a new inertial frame such that

no__on 2 2
L =t, = s,=—[r,—T1, <0

ie, in the new frame the 2 events occur at different space points at the same
instant of time.

o sfz = 0 implies lightlike separation. The events lie on the light cone with respect
to each other and can be connected only by light signals.

® The division of the separation of 2 events in space-time is a Lorentz invariant
one. 2 events within one separation in one coordinate system stay in the same
separation in all coordinates.

® Events in timelike domains can be causally related, but not in spacelike
domains.

find the coordinate

6d522€2di2—|d1'|2262dfz(l_ﬁz) = where the systemi1s = dt/EdT
: dr =0
instantaneously at rest
dz
> ds=cdT = dTZdt\/l—ﬁZ:W Lorentz invariant quantity
fy

® The time 7 is called the proper time, the time seen in the rest frame of a system.



® A certain proper time interval will be seen in the frame as a time interval

: dr " . . .
t,—t, = = T)dT < time dilatation
2~ I Y

A1=pr)

® A moving clock runs more slowly than a stationary clock.

T

® For equal time intervals in the clock's rest frame, the time intervals observed in
the other frame are greater by a factor of y>1.

® This result is verified daily in high-energy physics labs where beams of
particles of lifetimes ¢ 7, are transported before decay over distances much
longer than c 7.

® Time dilatation has also been verified with the comparison of the clock in an
airplane with the one on the ground.



D. Relativistic Doppler Shift
® Consider a plane wave

/o A k6:7<k0_18k> w/:

p=wt—kr=wt —k-r invariant = k”:fy(k”—ﬂko) <
k.= k,

® The frequency and wave number of any plane wave form a 4-vector.

® The invariance of phase is the invariance of the scalar product of 2 4-vectors.

@ For light wave

k|=k,, |k|=k, =

w=vw(l—pBcosbh)
sin 6 < relativistic Doppler shift

v (cos§— B)

® There exists a relativistic fransverse Doppler shift, observed with atoms in
motion and in a precise resonance-absorption Mossbauer experiment.

tan 0 =



Addition of Velocities, 4-Velocity

x1’

dx,=7,(dx,+8dx, . dx u
’ ,YV( 9 /8 /1) u-—=c / IBu/E_ x1
dx, =7, (dx;+8d x}) d x, c
dx,= dx. d x u
2 /2 u=—c—, IBME_
dx;= dx d x, c
u|/|+v 1 ul
= oW= , W=
1+IB.IBM/ ’Y 1+IB.IBu/ xa,
v 1
where B=8=—, B=|8|, y=——
c J1- 32
U2 _ "3 the azimuthal angles in x2’ 0 N
i, U, the 2 frames are equal
tan@—l usin 6 —l ﬂu/sine/ = ll=ll/+V for u/,v<<c
Y u cos@+v Y B,cosf +p3 Ve |
- ERY Nz = U= for u|lu ||v
(wevpP-(pxu) 0o 1+4 6,
- * = ifu=c¢c = u=c

1+6-B,

® The formula for the addition of velocities is verified with the Fizeau
experiments on the speed of light in moving liquids and the aberration of star
positions from the motion of the earth in orbit.



o(x) = 1-8'= 1+2/H/,3+Bﬂco 6 - 5—2ﬁ/,3 — B+ B, sin” 0

(1+8-8,)
_1-p g+ B (1-p)(1-8,)
(1+8-8,) (1+8-8,)

1 1 B.=1B.

= 7,=77,(1+B-B,) v, =7——, 7.,= = PuTlPu

J1-p V1-42 B.=IB

= TuY =7, (v, u+ B, c)
7u u, — 7u/uL

= time and space components of the 4-velocity U =(U,, U)

< Lorentz transformation of (v, c, v, u)

® The addition law for velocities is not a 4-vector transformation law because
time is not invariant under Lorentz transformations. The proper time 71is a

Lorentz invariant. Thus define a 4-velocity by differentiation of the 4-position
with respect to :

dx, dx, d¢

U,= = =7,C N
dr dt dr - U:(%,C,’Yuu)
dx dx dr

U =— =v,u

dr dth



Relativistic Momentum and Energy of a Particle
® For a particle with speed small compared to the speed of light

1
p=mu, E=E(O)+5mu2 (@)
@ Nonrelativistically, the rest energies can be ignored; it is only a constant.

® In SR, the rest energy cannot be ignored; it is the total energy that matters.

® Wish to find expressions for the momentum & energy consistent with the
Lorentz transformation law of velocities and reducing to (@) nonrelativistically

=M(u)u M(0)=m / well-behaved monotonic

P= o .  om (@) = Mu),&(u): Vel

E=E&(u) 2 (0)—5 functions of the argument
u

® Consider the elastic collision of 2 identical particles
and require that conservation of momentum & energy

hold in all equivalent inertial frames U =v
/ r_ / ) ————— '—
p/“ +p/’? —P ¢ ¥ pf/’ in K < the center of mass frame Uy = =V
Ea + Eb — Ec + Ed
L M) v=Mv)v= M) v+ MOV g =v"

(v) + &) = €0) + 0

E(v) +
= £(v)=¢& (V") foridentical particles = v =v'=y = v =—vy

/



1 cpBsinf _cfB(1+cos®)

| th lbf K u - = ’ ucz /
n the a2 rame ( C)x ~ 1+52cos 0 ( ) 1+,32COSt9
VvV 2C,8 = . / /
YT 1eF (w)=—1cBsnl ) ocBllocost)
+ + X___ ;7 2 Z_ /
Ve ¢ Y 1—-8%cos6 ‘ 1—8%cos @
Mu,)u,+M(u,)u, M(u)Bsind  Ml(u,) Bsinb
=M(u)u, +M(u,)u, = 0= — the 1 part

€ (1) +€ (1)=& 1)+ € (1) 1+f cf 1= conf

1+52 0/ l/la: 2’8 %’
= M(u,) =27 M () ¢ 1+8°
1—pB"cos ¥ 1 1+ 32
1+52 / = Y= >, 2 2
= M<”“):1_52M<O) =6'=0 s V1l 1= "
1
= Mlu,)= — M(0)=~, M (0)=7,m
\/1—ua/c o, 7 u,’
. b o /{
——— . W - - -
X A)/ i
a ___mu \Ud ,
- p_%mu_\/l—uz/c2 -



ou’=i’—L+0(n’), uii=n+0(n’) = n=

C2 /82 0/2
7, 1-6°
= & (u,)+&£(0)=¢ (u)+E (u,)

e (u ) ( d&(u) ou )non+g(o)+(d5(ud) 0 u, )no’“”'

du> 0On du, 0N
d¢& d¢&
= 0=— 13 (Z“)+ (thd) < the Ist-order terms
Ya dua dud lu,=0
d€&(u
- ) _m s n (@) = &u)-&(0)=y, mc*—mc”

— ’ya:
du 2 2\/(1—u2/02)3
= the kinetic energy T(u)zé’(u)—é’(O)zmcz(fyu—l)

® £(0) cannot be determined from elastic scattering, but can be found from
inelastic processes in which one particle is transformed into another or others of

. 0 O_0 - .
different masses. K" — 7 7 in K-meson's rest frame + energy conservation

1

2
= TWZESK(O)—SW(O) > £(0)=mc® > E=ymc’= mc

\/1—uz/c2

Einstein mass-energy relation



2 ‘B ? / 2 / /
CB N Mi: 4C5 ’ 7d:1+52’ COS@Nl—H , sin 0 ~ 0
1-8 2

1+4° (1+6°)
2 C2 ﬁz SiIl2 6/ 2\ n/ 2 /2
U, =— ; el (1—B7)0° < up to the order of
v (1+B8%cos @) 4

o <1+IBZCOS 9/>2 4 1+182 cos 6’

i (15fg) (7)) = (455 ) (%)
2(1+5%) 2 ‘ 1+ 43 2

2
J— ’ ua ,
Nuft(l— 1 52)92):u§— g'°

u =

a

2(1+8 27,
2 2 2 2 ”2 2 12 2 C ﬂze/z 2 M
= U =U U Ut [f)/a(]-_ﬂ )_2]0 —U,7 3 2 — U, 3
a Y. 1-=0 ot
i _p(1—cosd) ¢’ B ‘9/4~0 T nzCzﬁZH/z
" (1-B%cos ') (1—ﬂ20039/)2 4 1— 3
) s C2 /82 Sin2 9/ C /B 0/2

x_vz(l—ﬁzcosﬁ/) 1-— ﬁ



® Another way to find £(0): the conservation equations are 4 equations assumed
to be valid in all equivalent inertial frames, thus are identified as relations among
4-vectors

P:<p0’p> = p:mU = pO:mUO:mfyC = ﬁ:mU

Z (Po)a_ Z (p0>b =A,

= E=cp,+£(0)—m ¢’ = inital final
0=, p,~ 2 p,=A
initial final
= A=(A,, A=0) = CAOZZ[Eb(O)—mbcz]— Z [£.(0)—m, c°]
E =L, final initial

From the 1°* postulate, (#) must be valid in all inertial frames. If A=0 in all
inertial frames, A,=0 from the Lorentz transformation = ¢£ (()) —m >

i o E ¢’
® The energy-momentum 4-vector p=| p,=—,p = U= T p
C

-2 2 2 2 2 . . 2 2 2
= p =p,—Pp =m ¢ < 1variant = E:C\/p +m~ ¢ < m: rest mass

The equation and the conservation equations form a powerful & elegant means of
treating relativistic kinematics in collision and decay processes.

—>2 —

- TT -2 2 2 2 2 2 .
ep=mU = p'=mc=m U = U =c" < constraint



® It is sometimes convenient to use the 2 components of p L the 7 axis and a
rapidity as kinematic variables.

p=p.+pz inK = p|/|=O inK' = p'=p,, EZQ:\/Pi"'mzCz
C
= p,, py=Qsinh§, EZQcoshf inK < (1) = Q:the tran.svefse mass
C C longitudinal
e AtrestinK' = pL:O = p:mcsinhg, EZmCZCOShg = C.OShngy
sinh £ =~ (3

® One convenience of p, & £ as kinematic variables is a Lorentz transformation in
the z direction shifts all rapidities by a constant amount, £~ &§—-Z7 .

® With these variables, the configuration of particles in a collision process viewed
in the laboratory frame differs only by a trivial shift of the origin of rapidity from
the same process viewed in the center of mass frame.



Mathematical Properties of the Space-I'ime of SR
® 3d rotations in classical & quantum mechanics can be discussed with the group

of transformations of the coordinates that leave the norm of a 3-vector invariant.

® In SR, Lorentz transformations of the 4d coordinates follow from the invariance
s°=x.—x{—x;—x; interval

We can rephrase the kinematics of special relativity as the consideration of the

group of all transformations that leave s° invariant—homogeneous Lorentz group.

® [nhomogeneous Lorentz group or Poincaré group: the group of transformations
i 1 2 2 2 2 2
that leave invariant (x,y)= (xo ~ )’0) — (x1 - y1> - (xz_ yz) - (xs - ys)

contains translations & reflections in space-time + transformations of the
homogeneous Lorentz group.

©® The mathematical equations of the laws of nature must be covariant, ie,
invariant in form, under the transformations of the Lorentz group = need to
study spacetime.

® The space-time continuum is defined in terms of a 4d space with coordinates.
Suppose that there is a well-defined transformation that yields new coordinates

X=X (X0, 2, X%, %) 1u=0,1,2,3

® A scalar (tensor of rank 0) is a single quantity whose value is not changed by
the transformation. The interval is a Lorentz scalar.



® Vectors (tensors of rank 1) have 2 kinds

0 X A/g:@xo A0+ax1 A1+8x2A2+8x3
C 0x o0 x 0 X 0 x o0 x
ox"  _9x’ ox' 0 x° ox°

BO+ /o Bl+ / o BZ+ / o
ox'° ox° 0 X o0 x 0 x

® Summation convention: a repeated index means a summation over all the range.

/
ox"“

. / 3
contravariant vector A — A

. /
covariant vector B, = B

3

® Contravariant vectors & covariant vectors correspond to the presence of 3
and its inverse in the rule of transformation. 0 x

® If the law of transformation is linear then the coordinates form the components
of a contravariant position vector.

Ox'*ox" , ox’ 0x° o ox'“ 0x°

o= F*°, Gop=7a =5 Gs, H" 5= :
0x” 0x° X ox P 7 ox" ox'”

H” ;

® The inner or scalar product of 2 vectors is the product of the components of a
covariant and a contravariant vector B A B At = B* A

® The scalar product is an invariant or scalar under the transformation

— B fa
B/'A/:ax/aax BﬁAv_@x
ox“ 0x’ 0 x’

A'=6" B,A"=B-A




® The geometry of the space-time of SR is defined by the invariant interval

dS2:<dx0>2_(dx1)2_(dx2)2_(dX3)2:gaﬁdxadxﬂ S 8us=8pa: metric
tensor

® For the flat space-time of SR, the metric tensor is diagonal

oo=1, 811785=8=—1 = gaﬂ:gaﬁ < gmgvﬂzaaﬁ

ox,=g.sx", x*=g"x,, P =gF L, G, =g.,,G "

- —

= A°=(A°,A), A,=(A°,—-A) > B-A=B,A°=B’A°-B-A

a

o 0 _ ox” 0 _, differentiation wrt a contravariant component of the
ox'* o0x'“ox coordinate vector transforms as a covariant vector operator
0 0 o_ O 0
I aaE a— ()’V ’ 0 =-—= 0’_v
a X 5 X 8 Xa 6 X
0 A°

= 0,A"=0"A,=—=+V-A
O X

familiar in form from continuity of charge and current density, the Lorentz
condition on the scalar and vector potentials, etc.

2
® The 4d Laplacian operator is defined _ . 0" \72 _ A2 \72
to be the invariant contraction, H=0,0 o 12 \ 0o \



Matrix Representation of Lorentz Transformations, Infinitesimal

Generators 0
1
@ The contravariant coordinate vector can be written as ¥ =|* ,
X
® Matrix scalar products of 4-vectors (Zz , [;) =27 p e
n n E 0' | |
1 0 O O X
1 . .
0g = 0O—-1 O O N g2=]I4 = x=gi= x2 ~ Ccovariant coordinate
O 0-1 O —x vector
O 0O O0-1 — xS
= 4-b=(d,gb)=(gd,b)=d"gb <« scalar product
=A% = ¥ AgAiegi =% g% < invariant = A'gA=g (2)

X X
= det(A'g A)=detg (det A)’=detg = detA==1

det A= 1: proper Lorentz transformations , fzontlpuous with the.
= identity transformation

det A =— 1 :improper Lorentz transformations , sufficient but not necessary
® 2 examples of improper transformations,
A= g space inversion = det A=-1
A=-1I, space & time inversion = det A=+1



@ The No. of free parameters: 4 X 4 — 10 (No. of eqns ) =6 = 3 (rotation ) + 3 (boost )
T (2)

® Here we consider only proper Lorentz transformations.
n

_ — 1 L L _ . L  TrL .
eA=Im [ [[+— | =¢e = 1=det A=dete =e¢ = . € IR 1istraceless
n

n — oo
T ]LTg L

(2) = gATg=A" = g’=1 = A'=¢", gA"g=e"%, A '=¢
))=—gL = gL antisymmetric (gL),,=—(gL),,

= gl'g=-L > (g
OLOl ______ I_[f'_QZ___]_I_"_Q?. i 0 b ¢ 7
: . boosts
= L= Loi O Ly Ly e S = 6 fundamental matrices
Lopi=Ly, 0 Ly \boosts érotations.
IL'03 _IL’13 _Lzs 0
o; 0 | oo o ] ] 0; .0
S, = 00 0 S,= 001} S,= 0 =101« rotations
0:0 0 -1 0: 00O 0:1 00O
01 O —~100 0 00
= ' . ' . !
0:100 0:010 0:001
K,= 1 ,  K,= O , K,;= O < Dboosts
0: O 1: 0 0: O
0 _Oi _1§




S——¢ "g g6 o € =[0123]=1 p,v,o,-:from O to 3

l —— €5193 =1 1i,j,k, :from 1 to 3
e kn — m A A m ck km\ A A A

=> §,8,=¢,, "€,,"¢,®e,=(6"6,-6,,6")e,®e,=¢e e —4 I,

= [S,.S,]=S,8,-8,8,=(6"6,-6;67)e,®e,=—¢,,,,€" "€, 0¢€

_ — k _ k — — n__ n__

— €0, Sk_eij S, « €oijn€okm —CijnCim —5ik5jm_5im5jk
K,=e,®e,+e,®e,=(d;5 +5,6")e,®e,

— H M o gV Vv ¢co\ A _ 7! 7 A
= KIK].—(5051.0+50051.)(505j+505j)eu® V—(5 d, 0, +5005 5]) ®e,

=0,,€e,0€e,+e,®¢e,

> K, K,]=K,K,-K ,K,=(6/4"-5"5)e,®e,=—¢ "S,

S.K.=—%,,""(8,,0"+0,0,,)e,0¢€,=¢,,,"de,®e,=¢,,, e, 0€
. 7 7 v A A _ vV cu A A k A A
K,S,=—(650,,+d,,0")€,,, e,©0e,=—¢, "6se,0e,=—¢,, € ®¢€,
— (= poSV, = voep\ A A = p B\ A A k
= [S,.K,]=(g,,," d,+€, " 0y)e,®e,=¢€,; (81 oy+6;0h)e,® =€ K,



® The squares of these 6 matrices are all diagonal

0 0 0 0 0 0
s?=| O osi=| 1 ,s2=| 71 > §’=¢,@6é -1
1 _1 - O 3 _1 i i i 3
0O -1 0 -1 0 0
1 0 1 0 1 0
2 A A
K%: 1 , K;Z 0 , K§= 0 = Ki= AO®eA0
0 1 0 +e, ®e,
O O O O 0O 1
¢ (e.§)3:_e.§, (€/°K)3=e/-]ﬁ < €,€ € R areunit 3-vectors = any power

of one of the matrices can be expressed as a multiple of the matrix or its square.
[Problem 11.10]

oL=—wS—¢K = A=e 5 ¢
For w=0, £é=¢¢é, = L=—¢K, + K =K,

cosh & —sinh ¢ O O.

= A=¢"=I-K,sinh £+K>(cosh ¢ —1)=|7sibh& coshg 0 0} q)
0 0 10
0 0 0 1




(e/-K)z—e 'e”é ®e. +e0®e0, (e/-]I_é)Bze/-]I_é = |e]=1

K —¢&K K ' 2 1w \n ' 2 o \n
ctkoex PR L3 CeRpe Y ek
o . €2m—1 L= €2m
I-(¢ ]IQ;(z;n—l)!Jr(’S K) le(Zm)!

I-(& )sinh§+(é-]l_§) (cosh ¢ —1)

Let £=¢e, » £ K=K,, (£&K\’=¢,0¢+¢,86,

e K, sinh ¢ +K?%(cosh £ —1)




‘1 0o o o]

eFor £=0, w=w ég o A= 0 cc.)s w sinw O - clockwize rot.atlon
O —sinw cosw O around 7z -axis
0 0 0 1

O Ao (B)=¢ K= PE T = g=Branh B

g —7 B — b, —7 B
2
B0 B, B
=B (y=1)—+1 (y=1)—3= (v=1)—
/B IB /B -/ _ -
= /81 /82 ; /82 /83 " X = A‘boost (ﬂ) X
— B, ﬁMl)ﬁz (v—UEfﬂ H~1)§2 =(0
/81 53 Bz /83 BS
—vB; (v—1) (v-1) (y—1)—+1
| 5 g g
® The 6 matrices are a representation of the infinitesimal generators of the
Lorentz group. They satisfy the following commutation relations,
S,, S, ] =¢€,;;, S, commutation relations for angular momentum ‘A B]
— B
. <: )
S,.K,|]=¢,;,K, K transforms as a vector under rotations —AB_BA
K,,K.]=—¢,,S, boosts do not in general commute

® The commutation relations, with the minus sign in the last one, specify the
algebraic structure of the Lorentz group to be SL(2,C) or O(3,1).



Thomas Precession

® In general the result of successive Lorentz transformations depends on the
order in which they are performed.

® The commutation relations imply that successive Lorentz transformations are
equivalent to a single Lorentz transformation + a 3d rotation=Thomas precession

® Uhlenbeck & Goudsmit introduced the idea of electron spin and showed that, if

the electron had a g factor of 2, the anomalous Zeeman effect could be explained,
as well as the existence of multiplet splittings.

® The observed fine structure intervals were only half the theoretical values.

® Thomas showed that the origin of the discrepancy was a relativistic kinematic
effect which gave both the anomalous Zeeman effect and the correct fine

structure splittings with g=2.

® The Thomas precession also gives a qualitative explanation for a spin-orbit
interaction in atomic nuclei and shows why the doublets are "inverted" in nuclei.

® The Uhlenbeck-Goudsmit hypothesis was that an electron possesses a spin

angular momentum ( + h along any axis) and a magnetic moment

L
8¢ S < g:Z = ,LLL:e—
2 m

u_2mc



® Suppose that an electron moves with a velocity in external fields E and B. Then
the equation of motion for its angular momentum in its rest frame

ds : /
4 =N=pxB'=2ux(B-BXE) (b) « B'~B-BXE
|rest
cE=_¢ de = &(r): average . L=rXmv . orbital angular
dr potential energy —cmr X8 momentum

/ / ge g S‘L d@
U=—u-B=—u(B-—BXE)=-— s-B+
- H® “< B ) 2mc 2mic? r dr

The interaction energy gives the anomalous Zeeman effect correctly, but has a
spin-orbit interaction twice too large.

® The error comes from the incorrectness of (b) for the electron spin.

A | dQ dQ angular
@ If the coordinate system rotates a7 =47 +w; XQ <= w; ! velocity of
| | nonrot |rest rotation
S € / /
= — =sx | =2 B-—w,| = U=U+s w,
dr | nonrot 2mc

® The origin of the Thomas precession frequency is the acceleration experienced
by the electron as it moves under the action of external forces.

® The electron's rest frame: a co-moving sequence of inertial frames whose
successive origins move at each instant with the velocity of the electron.



lkl

/
"

y =

=A, . (B)X = cB=v(t) — |y . the velocity of the rest
=A, . (B+6B)% = c(B+6B)=v(t+61) " frame wrt the lab frame
?C”:AT}/ < A‘ A‘boost(lB-l_(SlB) boost(lB)
B + B
:Aboost (,8"‘5 IB> boost (_ ﬂ) o8
. 8 :
v vB8 00
A, (—B)= v8 v 00| _ Let ,8 afongthelaxis (x -axis)
O 0 10 § B lies on the 1-2 plane (xy -plane)
O 0 01
y(1+y°B88,) —v(B+7°68,) —vé8, O
—1
~y(B+7°58,) v(1+4°858,) =68, 0
Aboost(IB+5IB): 1
-3 8, Tk 10
0 0 0 1




1 _72551 _7552 0
N ”Tgléﬁz 0
= =
T
—1
—y 38, —VTMZ 10
0) 0] 1

0
= AT:I[_('Y_1)BX56—IB’§_(725:3|+75,3¢)'K

:AbOOSt(A ’8>R(AQ):R(AQ)Ab005t(A B) to the 1st order
2
Aboost(AlB):I[_A,BK A'B_’y 5’3||+75/BJ_

~ . e avdB_
R(AQ)=I-AQ-S AQ=(y-1)8X ; 7+1ﬂ><5ﬂ

® Thus the pure Lorentz boost to the frame with velocity c(8+03) is equivalent to
a boost to a frame moving with velocity ¢, followed by an infinitesimal Lorentz
transformation consisting of a boost with velocity cA3 and a rotation A.

where

® Consider the rest-frame coordinates at r+4¢ that are given from those at 7 by

./

A :A'boost(A IB>3€/:]:R(_AS2>A'boost(lB+518)5(‘->

The rest system of coordinates x” is rotated by —A{2 to the boosted lab axes x”.



® For the proper time rate of change of a physical vector in the rest frame, the
precession of the rest-frame with respect to the lab makes the vector have a total
time rate of change with respect to the lab axes

d d d :
d? | nonrot d? |rest T drT |rest dt—0 ot v+ 1

® The Thomas precession is purely kinematical. If a component of acceleration
exists | v, then there is a Thomas precession, independent of other effects.

® For electrons in atoms the acceleration is caused by a screened Coulomb field

: ~dod 1 rXv d® 1 Ldo
ma=mcpB =eE=—T— = w,~— —
dr 202 m dr 2mictr dr
/ — s-L
= U=U+sw,=— 8° s B+-°2 212 °2
2mc 2mccc r dr

® With g=2 the spin-orbit interaction is reduced by Y2 (Thomas factor).

® In atomic nuclei one can treat the nucleons as moving separately in a short-
range, spherically symmetric, attractive, potential well ®,. Then each nucleon

will experience o N N 1 s-L do®, EM forces are
Uy=U+s w, =8 w,=— . <= .
2Mc® r dr comparatively weak
® Since ® and ®, are attractive, the signs of the spin-orbit energies are opposite.

This means that in nuclei the single particle levels form "inverted" doublets.




Invariance of Electric Charge; Covariance of Electrodynamics

® The invariance of form or covariance of the Maxwell & Lorentz force equations

implies that the various quantities p, J, E, B in these equations transform in well-
defined ways under Lorentz transformations.

P _ (E+pxB) » P4 (y E+uxB) « P=(ro.R)=m(U,.0)
d1r dr C ch:E (energy)

D - — d
To form j—p:f(p, U,E,B) = dpoin-E the change rate of energy
T T ¢

® Experiments support the invariance of electric charge under Lorentz
transformations, or the indep. of the observed charge of a particle on its speed.

OThecontinuityequation%+v-,]:0 = 0,J'=0 « 7:(0,0,])
!

® /% is a legitimate 4-vector follows from the invariance of electric charge

Sg=pd’>x=p'd°x < invariance of electric charee
q—p P g

. a(x/o R~ x/?’) \ \ ) o 4d volume

d X — a( 0’ 1’ 2’3> d x:detAd x:d X:dx d X Celementisa
X, x ,x0,x

[ _orentz invariant

= ¢ p transforms like x°



1 azA 2 _47'('
car VAT o n PUSE LT
< =0,2+V-A=0 > c = A=(d,A)
1 0°® ) C )
— Z—V ®=47p 0,A"=0
¢ Ot
1 0A 1 0 .1 1,0
- _ E=——0A—-0.®=—(0A -0 A
E c 8t ¢:> X C t“tx X ( )<: a“:(ao’_v>
B=V xA B.= 0,A,—0 A=—(0"A"-0" A"

® Define 2"-rank antisymmetric field-strength tensor
F*"=0" A”— 0" A* = F,,=g..8.,F°=0,A,—0,A,

0 —E, —E, —E, 0 E, E, E,
_|E, 0 -B, B, _|-E. 0-B, B,
E, B, 0 —B, —E, B, 0 -B,
E,-B, B, 0 —~E, -B, B, O

dual field - strength tensor

0 -B, —B, —B,

+1, [0123] & even

a o tation
0i_ 1 apyo B. 0 E —E S pettits
F == K, =" ¢ Y —1, odd permutation
2 B —E. 0 E
y z x , others

B, E,—E, O

0

afyo

Eaﬁ,y(,:—E

pseudotensor



V-E=47mp

0,F"=12J" « OF
c V B_l 47TJ
N c Ot C
V:-B=0
0. 7%"=0 = = 0 F, +0,F. +0.F_ ,=0
VXE+18—B: By By Y B
C A
N dpa:mdUazﬁ]FaﬂUﬂ covariant Lorentz _, Q d_U g]FU
dr dr C force law dr d C

A O -D,—-D, —D,
For Macroscopic 6, G” (R e g*f=|D: 0O —H, H,
Maxwell equations ¢ D, H 0 —H,

D,—-H, H_ 0

0,.7°=0

e With D, H, P, M as macroscopic averages of atomic properties in the rest frame
of the medium, the electrodynamics of macroscopic matter in motion is specified.



Transformation of EM Fields

éF/aﬂ_ ax/a ax/ﬂ 7o E/1:E1’ B/1:Bl
o v o — A A
dx’ Ox E,=v(E,—fBB;), By=7(B,+BE,
/ T / /
o F=AFA E.,=~v(E,+8B,), B,=v(B,—BE,)

/ 7 e 2
_ E=7(E+B8XxB)-(y-1)(B-E)B _ v _71-1
/ 2 s 2
B'=y(B-BXE)-(y-1)(8B)B v+l B
® E and B have no independent existence. A purely electric or magnetic field in
one coordinate system will appear as a mixture of both fields in another frame.

® A purely electrostatic field in one coordinate system cannot be transformed into
a purely magnetostatic field in another.

® One should properly speak of the EM field F, rather than E or B separately.
olf B=0ink - E=7E-(y=1)(BE)B _, B_gxE K

B=+vBXE
® For a moving point charge, the coordinates of the observer P are
ct ct'=vy(ct—Bx,)=vyct
x,=0 . x;=Bct R i’/:\/bz"‘(ﬂCf/)z
1 nK = 1 nK =

xX,=b x,=b :\/192+fy2ﬁ2c2t2
x,=0 x,=0



. . x2 x2’

gvt
_ 7
> E=| 4p | & B'=0
e
0
E/1 x1’
= E= ,),E/2 vt /q X1
O *3 x3’
_ gqyvt I 0
<b2+’)/2 V2 t2>3/2 0 0 0
— v q b & B= 0 = 0 |= 7561 b
<b2+fy(j Vv t2)3/2 Y p Ez_ ﬂ Ez_ (b2+'yz 2 t2)3/2
Xr
kK]l = =1 = B=g v ;— Ampere-Biot-Savart expression
C r

B-1 = v>1 = B,—E,, E(t=0)=vE (r=0)

2 , nonrelativistic

time inte.rval for th.e A t:(0.77)i < E,(A t):lEz max:l E,(0)= ’Yqz
fields being appreciable YV 2 2 2b



® As v increases, the peak fields increase, E;= 3B;
but their duration decreases inversely.

® The time integral of the fields
times v is indep. of velocity. 8<

E,dt=——
/_OO 2 vb

® For 5—1 the observer at P
sees nearly equal transverse ‘3’*’0}/

and mutually | E & B. -

-

0 vt ——> + o
® In practice the observer will see only the transverse fields < / E . dtr=0

_ E1 Vi Qf' P 1A A
o —=—— = E— , B=BXE < =cos (r-v
SR 1 gran wg,z B W (F-V)
® E is radial, but not 1sotroplc
E($=0.7)x ., E(p=T)x
v 2

® The compression of the lines of
force in the transverse direction i
a consequence of the FitzGerald-
Lorentz contraction.




: b vt ~ b .
rP=v 1’ +b®, sinyp=—, F=cosyX+sinyyy=——X+—Yy
r r r
> b

- r/2:72"2f2+b2=72r2+<1—72>b2=72r2(1+1 2 z)
NS or

:72r2(1_182sin2¢) N r/3:73r3<1_528in2¢>3/2

yq(-viX+by)  vyq(-vix+by)

= E=E x+E,y= / =
1 2 . 3 73 r3(1_I82 SiIlz ¢)3/2

_Xl§+2§
r r _ qr

2r2(1 _I32 sin? w)?,/z o 72 r2<1 _ﬁz sin? ¢>3/2

—4q



Note on Notation and Units in Relativistic Kinematics

® In doing relativistic kinematics, it is customary to suppress all factors of ¢ by
suitable choice of units.

® Adopt the convention that all momenta, energies, and masses are measured in
energy units, while velocities are measured in units of the velocity of light

cp p
E E E2=p2+m2
2 = =
mc m
v=2
v V L
C

® As energy units, the electron volt (eV), the megaelectron volt (MeV), and the
gigaelectron volt (GeV) are convenient

1eV=1.602x10 "“erg=1.602x 10" joule
o (I) ab=a,b*=a,by,—ab (1) P=p+g = P'=p'+q"

Selected problem: 3, 10, 14, 19, 23, 28
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