
  

Chapter 6Chapter 6 Maxwell Equations, Macroscopic 
                 Electromagnetism, Conservation Laws 

 4 equations:

 All but Faraday's law were derived from steady-state observations. Thus they 
are inconsistent.

 The faulty equation is Ampere's law. It is from
is valid for steady-state problems.

 The continuity equation

 It means that a changing electric field causes a magnetic field, even without a 
current. The term is of crucial importance for rapidly fluctuating fields.   

⇒ ∇×H= J +
∂ D
∂ t

⇐ J  J +
∂ D
∂ t

⇐
∂ D
∂ t

:  displacement current

Maxwell's Displacement Current; Maxwell Equations  

Coulomb's law ∇⋅D=ρ

Ampere's law (∇⋅J=0) ∇×H= J

Faraday's law ∇×E +
∂ B
∂ t

=0

Absence of free magnetic poles ∇⋅B=0

∇⋅J =0 ⇐ ∇⋅(∇×H= J )=0

∂ ρ

∂ t
+∇⋅J =0 ⇒ ∇⋅( J +

∂ D
∂ t
)=0 ⇐ ∇⋅D=ρ



  

 The Maxwell equationsThe Maxwell equations:

 When combined with the Lorentz force equation and Newton's 2nd  law of 
motion, these equations provide a complete description of the classical dynamics 
of interacting charged particles and EM fields: 

∇⋅D=ρ , ∇×H−
∂ D
∂ t

= J

∇⋅B=0 , ∇×E +
∂ B
∂ t

=0

m a ⇐ F=q (E +v×B) ⇒ ∫ (ρ E + J×B) d3 x



  

 It is often convenient to introduce potentials, obtaining a smaller number of 2nd-
order equations, while satisfying some of the Maxwell equations identically.

Reduced  4 1st-order Maxwell equations to 2 2nd-order equations.

uncouple the 2nd-order equations  

Vector and Scalar Potentials 

A  A 
=A +∇ Λ

Φ Φ
=Φ−

∂ Λ

∂ t

⇒
B

=B
E

=E
⇒ choose ∇⋅A+

1
c2

∂Φ
∂ t

=0 ⇐ Lorenz
condition

⇒ ∇
2Φ−

1
c2

∂
2Φ

∂ t2 =−
ρ
ϵ0

, ∇
2 A−

1
c2

∂
2 A
∂ t2 =−μ0 J

∇⋅B=0 ⇒ B=∇×A ⇒ ∇×( E +
∂ A
∂ t
)=0 ⇒ E=−∇ Φ−

∂ A
∂ t

D=ϵ0 E , ∇⋅D=ρ ⇒ ∇
2Φ+

∂

∂ t
∇⋅A=−

ρ

ϵ0

B=μ0 H , ∇×H= J +
∂ D
∂ t

⇒ ∇
2 A−

1
c2

∂
2 A
∂ t2 −∇ ( ∇⋅A +

1
c2

∂ Φ
∂ t
)=−μ0 J



  

 The transformation is called a gauge transformation, and the invariance of the 
fields under such transformations is called gauge invariance.

 All potentials in this restricted class are said to belong to the LorenzLorenz gauge.

 The Lorenz gauge is commonly used because
   (1) it leads to the wave eqs, which treat the potentials on equivalent footings;
   (2) a concept indep. of the coordinate system and so fits into special relativity.

Gauge Transformations, Lorenz Gauge, Coulomb Gauge

∇⋅A+
1
c2

∂ Φ
∂ t

=0 ⇒ A 
=A+∇ Λ

 , Φ
=Φ−

∂ Λ


∂ t
⇒ ∇⋅A 

+
1
c2

∂ Φ

∂ t
=0

⇒ ∇
2
Λ


−

1
c2

∂
2
Λ



∂ t2
=0 ⇐ restricted gauge transformation

∇⋅A+
1
c2

∂ Φ
∂ t

≠0 ⇒ A
=A+∇ Λ , Φ

=Φ−
∂ Λ

∂ t

⇒ ∇⋅A
+

1
c2

∂ Φ

∂ t
=0=∇⋅A +

1
c2

∂ Φ
∂ t

+∇
2
Λ−

1
c2

∂
2
Λ

∂ t2

⇒ ∇
2
Λ−

1
c2

∂
2
Λ

∂ t2 =−( ∇⋅A+
1
c2

∂ Φ
∂ t
) ⇐

the new potentials А  , Φ  will
satisfy the Lorenz condition and
the wave equations



  

  Coulomb, radiation, or transverse gauge

the source for the wave equation for A can be expressed entirely in terms of the 
transverse current.

⇒ Φ (r , t)= 1
4 π ϵ0

∫ ρ (r  , t)
|r−r 

|
d3 x instantaneous Coulomb potential (1)

⇒ ∇
2 A−

1
c2

∂
2 A
∂ t2

=−μ0 J +
1
c2

∇
∂ Φ
∂ t

⇒ ∇×∇
∂ Φ
∂ t

=0 ⇐ irrotational

J= J ℓ+ J t ⇐
∇× J ℓ=0 longitudinal, irrotational
∇ ⋅ J t =0 transverse, solenoidal

+
∇×(∇× J )
=∇ (∇⋅J )−∇

2 J

⇒
∇

2 J ℓ=+∇ (∇⋅J )
∇

2 J t =−∇×(∇× J )
+ ∇

2 1
|r−r 

|
=−4 π δ (r−r 

)

⇒

J ℓ=−
1

4 π
∇ ∫ ∇


⋅J (r  , t )
|r−r 

|
d3 x 

J t=
1

4 π
∇×∇×∫ J (r  , t)

|r−r 
|

d3 x

+
∂ ρ

∂ t
+∇⋅J=0

(1)

⇒
1
c2

∇
∂ Φ
∂ t

=μ0 J ℓ

⇒ ∇
2 A−

1
c2

∂
2 A
∂ t2 =−μ0 J t

∇⋅A=0 ⇒ ∇
2Φ=−

ρ

ϵ0
⇐ Poisson

equation



  

∇
2 A−

1
c2

∂
2 A
∂ t2 =−μ0 J +

1
c2 ∇

∂ Φ
∂ t

⇐ J = J ℓ+ J t ⇐
∇× J ℓ=0
∇ ⋅ J t=0

⇒ ∇⋅( ∇
2 A−

1
c2

∂
2 A
∂ t2 )=∇

2
(∇⋅A )−

1
c2

∂
2

∂ t2 (∇⋅A)=0

=∇⋅(−μ0 J +
1
c2 ∇

∂ Φ
∂ t
)=∇⋅(−μ0 J ℓ+

1
c2 ∇

∂ Φ
∂ t
)

⇒ μ0 J ℓ−
1
c2 ∇

∂ Φ
∂ t

=const ⇒ 0 ⇒ J ℓ= ϵ0

∂

∂ t
∇ Φ

⇒ ∇
2 A−

1
c2

∂
2 A
∂ t2 =−μ0 J t



  

 The radiation gauge stems from that transverse radiation fields are given by 
the vector potential alone, the Coulomb potential contributing only to the near 
fields. 

 This gauge is useful in quantum electrodynamics. A quantum-mechanical 
description of photons necessitates quantization of only the vector potential.

 The Coulomb or transverse gauge is often used with no source

 In the Coulomb gauge, the scalar potential "propagates" instantaneously, but 
the vector potential propagates in finite speed of propagation с.

 It is the fields, not the potentials, that matter. Another is that the transverse 
current extends over all space, even if J is localized.

ρ=0 , J=0 ⇒ Φ=0 , ∇
2 A−

1
c2

∂
2 A
∂ t2 =0 ⇒ E=−

∂ A
∂ t

, B=∇×A



  

 Form of the wave equation:

 The Helmholtz wave equation is an elliptic partial differential equation similar 
to the Poisson equation to which it reduces for k=0.

 The Green function satisfies 
  the inhomogeneous equation

 If there are no boundary surfaces, the Green function depend only on               ,
and             , and must in fact be spherically symmetric.  

Green Functions for the Wave Equation 

Fourier
transform

Ψ (r , t)=
1

2 π
∫

−∞

+∞

Ψ (r , ω) e− i ω t d ω

f (r , t)= 1
2 π
∫

−∞

+∞

f (r , ω) e− i ω t d ω

⇒

Ψ (r , ω)= ∫
−∞

+∞

Ψ (r , t ) ei ω t d t

f (r , ω)= ∫
−∞

+∞

f (r , t ) ei ω t d t

⇒ (∇
2
+ k2

)Ψ (r , ω)=−4 π f (r , ω) ⇐ inhomogeneous
Helmholtz wave equation

k= ω

c

⇒
1
�

d2

d �2 (�G k)+ k2 G k=−4 π δ (�⃗) ⇒
d2

d �2 (�G k)+ k2
(�Gk )=0  for �≠0

⇒ � Gk ( �⃗)= A ei k �
+B e− i k �

∇
2Ψ−

1
c2

∂
2Ψ

∂ t2 =−4 π f (r , t ) ⇐ f : source
function

�=|�⃗|

(∇
2
+ k 2

)G k (r , r 
)=−4 π δ (r−r 

)

�⃗=r−r 



  

 The delta function has influence only at � 0. In that limit the equation reduces 
to the Poisson equation, since k � ≪ 1

 The 1st term represents a diverging spherical wave propagating from the origin, 
while the 2nd represents a converging spherical wave. The choice of A and B 
depends on the boundary conditions in time.

 To understand their different time behaviors, construct the corresponding time-
dependent Green functions

( ∇ x
2
−

1
c2

∂
2

∂ t2 )G±
(r , t ; r  , t)=−4 π δ (r−r 

) δ (t− t) ⇒
�⃗=r−r 

�=|r−r 
|

⇒ (∇
2
+ k2

)G±
(r , ω ; r  , t )=−4 π δ ( �⃗) ei ω t ′

⇒ G±
(r , ω ; r  , t)=G±

(�) ei ω t ′
=

e± i k �

�
ei ω t ′ , let τ ≡ t− t

⇒ G±
(� , τ )=

1
2 π
∫

−∞

∞ e± i k �

�
e−i ω τ d ω=

1
�

δ ( τ ∓
�
c
)   for  k= ω

c
 nondispersive

⇒ G±
(r , t ; r  , t )=

δ (t−(t∓� /c ))
�

=
δ (τ ∓� / c)

�
⇐

G :   retarded Green function
G – : advanced Green function

⇒ lim
k � 0

G k (�)=
1
�

⇒ G k (�)= A G k

(�)+B Gk

–
(�) ⇐ Gk

±
=

e± i k �

�
, A+B=1



  

 The retarded Green function has a causal behavior: an effect observed at the 
point r at time t is caused by the action of a source a distance away at an earlier 

or retarded time                       . Similar with the advanced Green function.

 G+ guarantees at remotely early times before the source has been activated, 
there is no contribution from the integral. G− assures that no signal from the 
source exists after the source shuts off.

 

Ψ±
(r , t)=∬ G±

(r , t ; r  , t) f (r  , t ) d3 x d t + homogeneous solution

t −∞ ⇒ ( ∇
2
−

1
c2

∂
2

∂ t2 )Ψin (r , t)=0

⇒ Ψ (r , t)=Ψin (r , t )+∬ G
(r , t ; r  , t) f (r  , t) d3 x  d t

t ∞ ⇒ ( ∇
2
−

1
c2

∂
2

∂ t2
)Ψout (r , t )=0

⇒ Ψ (r , t)=Ψout (r , t )+∬ G –
(r , t ; r  , t) f (r  , t) d3 x d t 

Usually Ψin=0 ⇒ Ψ (r , t )=∫ f (r  , t r)

�
d3 x 

⇐
evaluated at the retarded

time tr = t − �
c

, �=|r−r 
|

t= tr= t− �
c



  

Green's 2nd identiy Green theorem

∫
V

(ϕ ∇
2

ψ−ψ ∇
2

ϕ) d3 x= ∮
S

( ϕ
∂ ψ

∂ n
−ψ

∂ ϕ

∂ n
) d a

Let ψ Ψ
ϕ  G

⇒ ∫
V

(G ∇
2Ψ−Ψ ∇

2 G) d3 x 
= ∮

S

( G
∂Ψ
∂ n−Ψ

∂ G
∂ n ) d a

⇒ ∫ [G (∇
2Ψ+ k2Ψ)−Ψ (∇

2 G+ k2 G)] d3 x

= ∮
r 
∞

( G
∂Ψ
∂ n −Ψ

∂ G
∂ n ) d a

 0

⇒ Ψ (r )⇐ ∫ Ψ (r 
) δ (r−r 

) d3 x 
=∫ G (r , r 

) f (r 
) d3 x 

where ∇ 2Ψ+ k2Ψ=−4 π f , ∇
2 G+ k2 G=−4 π δ

One can extend the argument to the space-time domain.



  

[Problem 6.3a]



  



  

 Use the retarded solution for the wave equations with

 From the 2 equations the E & B fields can be computed, but it is often useful to 
have retarded integral solutions for the fields in terms of the sources.

                                          : ∇ in the retarded bracket is a spatial gradient in r 
with tr fixed; ∇ outside the retarded bracket is a spatial gradient in r with r and 

t fixed.

Retarded Solutions for the Fields: 
Jefimenko's Generalizations of the Coulomb and Biot-Savart Laws; 
Heaviside-Feynman Expressions for Fields of Point Charge

∇
2 E−

1
c2

∂
2 E
∂ t2 =

1
ϵ0
( ∇ ρ+

1
c2

∂ J
∂ t
) , ∇

2 B−
1
c2

∂
2 B
∂ t2 =−μ0 ∇× J

⇒

E (r , t)=−
1

4 π ϵ0

∫ 1
�
( ∇


ρ+

1
c2

∂ J
∂ t 
)

t = t r

d3 x

B (r , t)=
μ0

4 π
∫ (∇


× J )t=t r

�
d3 x

⇐ tr= t r (t , �)

Φ (r , t )=
1

4 π ϵ0

∫ ρ (r  , t r)

�
d3 x  , A (r , t)=

μ0

4 π
∫ J (r  , t r)

�
d3 x

∇
 f (t= t r)≠(∇

 f )t= tr

t r= t− �
c



  

f (r  , t r)= f ( r  , t−
� (t r)

c
)=∫ f (r  , t) δ ( t− t+

� (t)
c
) d t  �̂= �⃗

�

⇒

∇

ρ (t = tr )=(∇


ρ)t= tr

+
∂ ρ

∂ t r

∇
 tr=(∇


ρ)t=t r

+
∂ ρ

∂ tr

�̂
c

⇐ ∇
 tr=

�̂
c

∇

× J (t= tr )=(∇


× J )t= tr

+∇
 t r×

∂ J
∂ tr

=(∇

× J )t = tr

−
∂ J
∂ t r

×
�̂
c

⇒

(∇

ρ)tr

�
=

∇

ρ (tr )

�
−

∂ ρ (tr )

∂ t r

�̂
c �

=∇


ρ (tr )

�
−
�̂

�2 ρ (tr )−
∂ ρ (tr )

∂ t r

�̂
c �

(∇

× J )tr

�
=

∇

× J (tr )

�
+
∂ J (tr )

∂ tr

×
�̂

c �
=∇


×

J (tr )

�
−
�̂

�2 × J (t r)+
∂ J (tr )

∂ t r

×
�̂

c �

⇒

E (r , t )=
1

4 π ϵ0

∫ ( ρ (r  , t r)
�̂

�2 +
∂ ρ (r  , t r)

∂ t r

�̂
c �

−
1

c2 �

∂ J (r  , t r)

∂ tr

) d3 x

B (r , t)=
μ0

4 π
∫ ( J (r  , t r)×

�̂

�2 +
∂ J (r  , t r)

∂ tr

×
�̂

c �
) d3 x 

Jefimenko's generalizations of the Coulomb and Biot-Savart laws

⇒ E (r )= 1
4 π ϵ0

∫ ρ (r 
)
�̂

�2
d3 x  , B (r )=

μ0

4 π
∫ J (r 

)×
�̂

�2
d3 x 

for ρ , J  are time-independent



  

∂

∂ t r

f (r  , tr )=
∂

∂ t
f (r  , tr ) ⇐ t r= t− �

c
⇐ �=|r−r 

|

ρ (r  , tr )=q δ (r 
− �⃗ (t r)) , J (r  , tr )=ρ v (tr ) for a point charge ⇐ v=

d �⃗

d t r

⇒

E=
q

4 π ϵ0

( �̂

�2
(1− �̂⋅β)

+
1
c

∂

∂ t
�̂−β

� (1− �̂⋅β)
)

B=
μ0 q c

4 π
( β× �̂

�2
(1− �̂⋅β)

+
1
c

∂

∂ t
β× �̂

� (1− �̂⋅β)
)

(2) ⇐ Heaviside-Feynman
expressions

where 1− �̂⋅β  is
the retardation factor

, β≡
v
c

, δ ( t− t−
� (t)

c
)= δ (t− t)

1− �̂⋅β

 Because                  , the fields are functions of r and t, with

 The sets are equivalent. [Problem 6.2]

r 
 �⃗ (t r) t r= t−

|r− �⃗ (tr)|

c
d t
d tr

=
d

d t r

( tr +
� (t r)

c
)=1− �̂⋅β ⇒

d tr

d t
=

1
1− �̂⋅β

⇐ �⃗=r− �⃗ (tr ) now

⇒ (2) ⇒

E=
q

4 π ϵ0

( �̂

�2
+
�
c

∂

∂ t
�̂

�2
+

1
c2

∂
2 �̂

∂ t2
) ⇐ Feynman's

expression

B=
μ0 q

4 π
( c β× �̂

�2
(1− �̂⋅β)2

+
1
�

∂

∂ t
β× �̂

1− �̂⋅β
) ⇐ Heaviside's

expression



  

 Present a serious derivation of them from a microscopic starting point. 

 The derivation remains within a classical framework.

 For dimensions large compared to 10−14 m, the nuclei and electrons can be 
treated as point systems,

no corresponding fields d and h because all the charges are included in η and j.

 The microscopic EM fields produced by these charges vary extremely rapidly. 
The spatial variations occur over distances <10−10 m, and the temporal 
fluctuations occur from 10−13 s for nuclear vibrations to 10−17 s for electronic 
orbital motion.

 All the microscopic fluctuations are averaged out, giving smooth and slowly 
varying macroscopic quantities, to appear in the macroscopic Maxwell equations.

 Only a spatial averaging is necessary because in a characteristic length there 
are still many charges, but the associated characteristic time is about the range 
of atomic & molecular motions, not appropriate to average out in time.  

Derivation of the Equations of Macroscopic Electromagnetism 

∇⋅b=0 , ∇×e +
∂ b
∂ t

=0

∇⋅e= η
ϵ0

, ∇×b− 1
c2

∂ e
∂ t

=μ0 j
⇐ microscopic Maxwell equations



  

 The spatial average of a function F (r, t) with respect to a test function f (r)

 A test function only needs to have general continuity & smoothness properties 
that permit a rapidly converging expansion over distances of atomic dimensions.

 The space & time differentiation commute with the averaging operation.

E (r , t)=⟨e (r , t )⟩ , B (r , t)=⟨b (r , t)⟩

⇒

⟨∇⋅b ⟩=0  ∇⋅B=0

⟨∇×e +
∂ b
∂ t ⟩=0  ∇×E +

∂ B
∂ t

=0

homogeneous

+

ϵ0 ∇⋅E=⟨η (r , t)⟩

∇ ×
B
μ0

− ϵ0

∂ E
∂ t

=⟨ j (r , t)⟩

inhomogeneous

⟨F (r , t )⟩=∫ f (r 
) F (r−r  , t) d3 x

⇒ 2  examples
(isotropic)

f (r )= 3Θ (R−r )
4 π R3

f (r )= e
−

r2

R2

π
3 /2 R3

∇ ⟨F (r , t)⟩=∫ f (r 
) ∇ F (r−r  , t ) d3 x

=⟨∇ F ⟩ ,
∂

∂ t
⟨F (r , t)⟩=⟨

∂ F
∂ t

⟩



  

 D and H are introduced by the extraction from η and j of certain contributions  
identified with the bulk properties of the medium.

 Consider a medium made up of molecules composed of nuclei and electrons 
and, in addition, "free" charges not localized around any particular molecule:       

η free= ∑
j (free)

q j δ (r−r j ) , ηbound= ∑
n (molecues)

ηn (r , t ) ⇐ ηn (r , t )=∑
j (n)

q j δ (r−r j)

⇒ η (r , t )=∑ q j δ (r−r j (t ))=η free+η bound

⇒ ⟨ηn (r , t )⟩=∫ f (r 
) ηn (r−r  , t ) d3 x 

=∑
j (n)

q j ∫ f (r 
) δ (r−r 

−r j n−r n) d3 x 

=∑
j (n)

q j f (r−r j n−r n)

where r j n :  order of atom dim

=∑
j (n)

q j ( f (r−r n)−r j n⋅∇ f (r−r n)

+
1
2
∑
α β

(r j n)α (r j n)β

∂
2 f

∂ xα ∂ xβ

(r−r n)+⋯)



  

⇒
molecular
multipole
moments

: [
molecular charge qn=∑

j (n)
q j

molecular dipole moment p n=∑
j (n)

q j r j n

molecular quadrupole moment: Qn

=3∑

j (n)
q j r j n  r j n

⇒ ⟨ηn (r , t )⟩=qn f (r−r n)−p n⋅∇ f (r−r n)+
1
6
∑
α β

(Qn

)α β

∂
2 f

∂ xα ∂ xβ

(r−r n)+⋯

=⟨qn δ (r−r n)⟩−∇⋅⟨p n δ (r−r n)⟩+
1
6
∑
α β

∂
2

∂ xα ∂ xβ

⟨(Qn

)α β δ (r−r n)⟩ +⋯

 We can view the molecule as a collection of point multipoles.

 The details of the molecular charge distribution is replaced in its effect by a 
sum of multipoles for macroscopic phenomena.

 Fourier transforms is an alternative approach to the spatial averaging

g (r , t)=
1

(2 π )
3 ∫ ~g (k , t ) ei k⋅r d3 k and ~g (k , t )=∫ g (r , t ) e− i k⋅r d3 x

⇒ convolution
(faltung)

f ∗F≡ ∫
0

∞

f ( y) F ( x− y) d y ⇒

ℱ [ f ∗F ]=ℱ [ f ] ℱ [F ]

ℱ [ f F ]=
ℱ [ f ]∗ℱ [F ]

2 π



  

⇒ ⟨F (r , t )⟩=∫
~f (k )~F (k , t)

(2 π)
3 ei k⋅r d3 k ⇒ ℱ [⟨F (r , t)⟩]=~f (k )~F (k , t )

⇒

∫ f (r ) d3 x=1 ⇒
~f (0)=1=∫ f (r ) e− i 0⋅r d3 x

f =
e− r2

/R2

√π
3 R3

  Gaussian test function ⇒
~f (k )=ℱ [ f (r )]=e

−
k2 R2

4

 The Fourier transform of the averaged quantity contains only low wave numbers

up to                          , the inverse of the length scale of the averaging volume.

                                                          gives a true representation of the 
                                                            long-wavelength aspects of F(x, t).

k max=O ( 1
R
)

~f (k ≪ k max) 1 ⇒ ℱ [F (x , t)]

ℱ [⟨η n (r , t )⟩]=~f (k )~ηn (k , t) ⇐ ~ηn (k , t )=∫ ηn (r
 , t ) e− i k⋅(r ′−r n) d3 x



  

 The support for the product is confined to comparatively small wave numbers

 The Fourier transform has the advantage of giving a complementary view of the 
averaging as a cutoff in wave number space.

 

⇒ ~ηn (k , t )=~ηn (0 , t )+ k⋅∇ k
~η n (0 , t)+⋯

=∫ η n (r
 , t ) [1− i k⋅(r 

−r n)+⋯] e−i 0⋅(r ′−r n) d3 x

⇒ ~ηn (k , t )≈qn− i k⋅p n+quadrupole & higher

⇒ ⟨ηn (r , t )⟩=
1

(2 π)
3 ∫ ~f (k ) [qn− i k⋅p n+⋯] ei k⋅(r− rn) d3 k

=qn f (r−r n)−pn⋅∇ f (r−r n)+⋯=⟨qn δ (r−r n)⟩−∇⋅⟨pn δ (r−r n)⟩ +⋯

⟨η (r , t)⟩=ρ (r , t )−∇⋅P (r , t )+∇⋅[∇⋅Q
(r , t )]+⋯

where

ρ (r , t)=⟨ ∑
j (free)

q j δ (r−r j)+ ∑
n (molecules)

qn δ (r−r n)⟩ ⇐ macroscopic
charge density

P (r , t)=⟨ ∑
n (molecules)

pn δ (r−r n)⟩ ⇐ macroscopic polarization

Q
(r , t)=

1
6
⟨ ∑

n (molecules)
Qn


δ (r−r n)⟩ ⇐ macroscopic

quadrupole density
⇒ ∇⋅(ϵ0 E +P−∇⋅Q

)+⋯=ρ ⇐ ϵ0 ∇⋅E=⟨η (r , t)⟩
⇒ D=ϵ0 E +P−∇⋅Q

+⋯ ⇐ macroscopic displacement vector



  

j (r , t )=∑ q j v j δ (r−r j (t))= j free+ j bound ⇒ j free= ∑
j ( free)

q j v j δ (r−r j)

j bound= ∑
n (molecues)

j n (r , t) ⇐ j n (r , t )=∑
j (n)

q j v j δ (r−r j )  v j≡
d r j

d t

⇒ ⟨ j n (r , t)⟩=∑
j (n)

q j (v j n+ vn) f (r−r n−r j n) ⇐ v n≡
d r n

d t
, v j n≡

d r j n

d t
 The final result for the averaged microscopic current density is 

⟨ j (r , t )⟩= J (r , t )+
∂

∂ t
[D (r , t)− ϵ0 E (r , t )]+∇×M (r , t )

+∑
β

∂

∂ xβ

⟨ ∑
n (molecules)

[p n (v n)β−(p n)β vn ] δ (r−r n)⟩

−
1
6
∑
α β γ

∂
2

∂ x β ∂ xγ

⟨ ∑
n (molecules)

[ x̂α (Qn

)α β (v n)γ−(Qn


)γ β v n] δ (r−r n)⟩ +⋯

where

J (r , t)=⟨ ∑
j ( free)

q j v j δ (r−r j)+ ∑
n (molecules)

qn v n δ (r−r n)⟩ ⇐ macroscopic
current density

M (r , t )=⟨ ∑
n (molecules)

m n δ (r−r n)⟩ ⇐ macroscopic
magnetization

where m n=∑
j (n)

q j

2
r j n×v j n ⇐ molecular

magnetic moment



  

   

 Except the 1st term of RHS, the other terms are small since vs are small.

 But if the medium as a whole 
   has a translational velocity v

 For a medium in motion the electric polarization (and quadrupole density) enter 
the effective magnetization.

 

∇×H−
∂ D
∂ t

= J , 1
μ0

∇×B− ϵ0

∂ E
∂ t

=⟨ j ⟩

⇒
B
μ0

−H=M +⟨ ∑
n (molecules)

pn×vn δ (r−r n)⟩

−
1
6
∇⋅⟨ ∑

n (molecules)
Qn


×v n δ (r−r n)⟩+⋯

vn=v ⇒
B
μ0

−H=M +(D−ϵ0 E )×v

Q≡∫ (3 r  r− r2 I ) d3 x traceless molecular quadrupole moment

⇒ Qn

=Qn+ e r n

2 I ⇐ e r n
2
=∑

j (n)
q j x j n

2

⇒ Q
=Q +

1
6
⟨ ∑

n (molecule )
e r n

2 I δ (r−r n)⟩ ⇐ macroscopic quadrupole density

⇒ ρ  ρ free+⟨ ∑
n (molecule)

qn δ (r−r n)⟩ +
1
6
∇

2
⟨ ∑

n (molecule)
e r n

2
δ (r−r n)⟩ ( )



  

 The traceless quadrupole density replaces the quadrupole density and the 
charge density is augmented by an additional term.

 The trace of the tensor Q is exhibited with the charge density because it is an 

ℓ=0 contribution in terms of the multipole expansion.

 The molecular charge & mean square radius terms represent the first 2 terms 
in an expansion of the ℓ=0 molecular multipole as we go beyond the static limit.  

F (k2
)≡∫ ρ (r ) ⟨ei k⋅r

⟩ℓ=0 part d3 x=∫ ρ (r ) d3 x−
k2

6
∫ r2

ρ (r ) d3 x+⋯

=∫ ρ (r )
sin k r

k r
d3 x

⇒ k − i ∇ ⇒ ( )



  

 For a single charge the rate of doing work by external EM fields is q vE. The 

magnetic field does no workdoes no work, since the magnetic force is ⊥ v.

 The total rate of doing work by the fields in a finite volume is

 It represents a conversion of EM energy into mechanical or thermal energy. It 
must be balanced by a corresponding rate of decrease of energy in the EM field.

 Since only its divergence appears in the conservation law, the Poynting vector 
seems arbitrary to the extent that the curl of any vector field can be added to it. 
Relativistic considerations show that it is unique.

Poynting's Theorem and Conservation of Energy & Momentum for 
a System of Charged Particles and Electromagnetic Fields 

∫
V

J⋅E d3 x= ∫
V

( E⋅∇×H−E⋅
∂ D
∂ t
) d3 x ⇐ Ampere-

Maxwell law
 Faraday's

law

=− ∫
V

( ∇⋅(E×H )+E⋅
∂ D
∂ t

+H⋅
∂ B
∂ t
) d3 x ⇐

∇⋅(E×H )=H⋅∇×E
−E⋅∇×H

⇒ −∫
V

J⋅E d3 x= ∫
V

( ∂ u
∂ t

+∇⋅(E×H )) d3 x ⇐
(1)  the medium is linear

u≡ 1
2
(E⋅D +B⋅H )

⇒
∂ u
∂ t

+∇⋅S=− J⋅E Poynting theorem ⇐ S≡E×H Poynting vector

∫
V

J⋅E d3 x



  

 The time rate of change of EM energy in a volume, plus the energy flowing out 
through the boundary surfaces of the volume per unit time, is equal to the 
negative of the total work done by the fields on the sources within the volume.

 The EM force on a charged particle F=q (E +v×B)

⇒
d Pmech

d t
= ∫

V

(ρ E + J×B) d3 x + ρ= ϵ0 ∇⋅E , J=
∇×B

μ0
−ϵ0

∂ E
∂ t

⇒ ρ E + J×B= ϵ0( (∇⋅E ) E +B×
∂ E
∂ t

−c2 B×(∇×B))
=ϵ0( E (∇⋅E ) + c2 B (∇⋅B)−E×(∇×E )−c2 B×(∇×B)−

∂

∂ t
(E×B))

⇒ F total=
d Pmech

d t
+

d P field

d t
⇐ P field≡ ϵ0 ∫

V

E×B d3 x= ϵ0 μ0 ∫
V

E×H d3 x

= ϵ0 ∫
V

[E (∇⋅E )+ c2 B (∇⋅B)−E×(∇×E )−c2 B×(∇×B )] d3 x

d E mech

d t
= ∫

V

J⋅E d3 x , Efield= ∫
V

u d3 x=
ϵ0

2
∫
V

(E 2
+ c2 B2

) d3 x

⇒
d E
d t

=
d Emech

d t
+

d E field

d t
=−∮

S

S⋅d a Poynting's  theorem



  

 The density of EM momentum

g is the EM momentum associated with the fields.

                                        is the αth component of the flow of momentum across 

the surface into the volume, ie, it is the force transmitted across the surface to 
act on the combined system of particles and fields inside the volume.

 The conservation of angular momentum of the system of particles & fields can 
be treated in the same way as we have handled energy & linear momentum.

g≡
E×H

c2
= ϵ0 μ0 E×H=

S
c2

[E ∇⋅E−E×(∇×E )]1=E 1( ∂ E1

∂ x1

+
∂ E2

∂ x2

+
∂ E3

∂ x3

)−E2( ∂ E 2

∂ x1

−
∂ E1

∂ x2

)

+E 3( ∂ E1

∂ x3

−
∂ E3

∂ x1

)= ∂ E 1
2

∂ x1

+
∂

∂ x2

(E1 E2)+
∂

∂ x3

(E1 E 3)−
1
2
∂ E2

∂ x1

⇒ E (∇⋅E )−E×(∇×E )=∑
α β

x̂α ∂

∂ xβ

( E α Eβ−
E2

2
δα β )

⇒ T≡ϵ0( E⊗E + c2 B⊗B−
E2

+ c2 B2

2
I )  E2

=E 1
2
+E2

2
+E3

2

 Maxwell stress tensor

⇒ F total=
d

d t
(Pmech+P field)= ∫

V

∇⋅T d3 x= ∮
S

T⋅d a ⇐ conservation of
linear momentum

(T⋅d a )α=∑ Tα β d aβ



  

Example: Consider that a coaxial cable, of radii a (inner) & b (outer), is inserted 
between a source of constant emf and some load, a steady current I flows down 

the cable. If the emf provides a constant potential difference V, it will supply 
power to the cable of magnitude VI. Calculate the rate at which energy passes 
down the cable.

 In practice, the conductors of the cable will have a finite resistance, so that 
energy will also be dissipated as heat in them.

E=
V

ln (b /a)
ŝ
s

, B=
μ0 I

2 π s
ϕ̂ , a≤ s≤b ⇒ S=

E×B
μ0

=
V I

2 π ln (b /a)
ẑ
s2

⇒ ∫
S

S⋅d a= ∫
0

2 π

d ϕ ∫
a

b V I
2 π ln (b /a)

s d s
s2

=V I



  

Example: Determine the net force on the “northern” hemisphere of a uniformly 
charged solid sphere of radius R and charge Q.

 The boundary surface consists of 2 parts—a hemispherical bowl at radius R, 

and a circular disk at           .

 For the bowl, 

θ=
π

2
d a=R2 sin θ d ϕ d θ r̂ , E=

Q
4 π ϵ0 R2

r̂

r̂=sin θ cos ϕ x̂ + sin θ sin ϕ ŷ + cos θ ẑ

⇒

Tz x=ϵ0 E z E x=ϵ0( Q
4 π ϵ0 R2 )

2

sin θ cos θ cos ϕ

Tz y= ϵ0 E z E y= ϵ0( Q
4 π ϵ0 R2 )

2

sin θ cos θ sin ϕ

Tz z=
ϵ0

2
(E z

2
−E x

2
−E y

2
)=

ϵ0

2
( Q

4 π ϵ0 R2 )
2

(cos2
θ−sin2

θ)

⇒ (T⋅d a )z=Tz x d a x+T z y d a y+Tz z d a z=
ϵ0

2
( Q

4 π ϵ0 R
)2

sin θ cos θ d ϕ d θ

⇒ F bowl=
ϵ0

2
( Q

4 π ϵ0 R
)2

2 π ∫
0

π /2

sin θ cos θ d θ=
1

4 π ϵ0

Q2

8 R2



  

 For the equatorial disk, inside the sphere,

 In applying the conservation formula, any volume that encloses all of the 

charge in question (and no other charge) will do the job.

 In this case we could use the whole region z>0. Then the boundary surface 
consists of the entire xy plane (+ a hemisphere at r=∞ ⇒ E=0 ⇒ Fbowl=0 there).

 We now have the outer portion of the plane (r>R),

θ=
π

2
⇒ d a=− r d ϕ d r ẑ ⇒ E=

Q
4 π ϵ0 R3

r= Q r
4 π ϵ0 R3

(cos ϕ x̂ +sin ϕ ŷ )

⇒ Tz z=−
ϵ0

2
( Q

4 π ϵ0 R3
)2

r2
⇒ (T⋅d a )z=

ϵ0

2
( Q

4 π ϵ0 R3
)2

r3 d r d ϕ

⇒ F disk=
ϵ0

2
( Q

4 π ϵ0 R3
)2

2 π ∫
0

R

r3 d r = 1
4 π ϵ0

Q2

16 R2
⇒ F =

1
4 π ϵ0

3 Q2

16 R2

repulsive

r=r r̂

T z z=−
ϵ0

2
( Q

4 π ϵ0

)2 1
r4 ⇒ (T⋅d a )z=

ϵ0

2
( Q

4 π ϵ0

)2 1
r3 d r d ϕ

⇒ F r >R=
ϵ0

2
( Q

4 π ϵ0

)2

2 π ∫
R

∞ d r

r3 =
1

4 π ϵ0

Q2

8 R2 ⇒ F=
1

4 π ϵ0

3 Q2

16 R2
the
same

d a=− r d ϕ d r ẑ



  

 Poynting's theorem was derived with linear media with no dispersion or losses, 
with ϵ and μ real and frequency independent. Actual materials exhibit dispersion 
and losses.

Poynting's Theorem in Linear Dispersive Media with Losses

E (r , t)= ∫
−∞

+∞

E (r , ω) e−i ω t d ω

D (r , t )= ∫
−∞

+∞

D (r , ω) e−i ω t d ω

with the
linearity

D (r , ω)=ϵ (ω) E (r , ω)

B (r , ω)=μ (ω)H (r , ω)

reality
of field

⇒
E (r ,−ω)=E 

(r , ω)

D (r ,−ω)=D 
(r , ω)

, ϵ (−ω)= ϵ

(ω) ⇐ E⋅

∂ D
∂ t

≠
∂

∂ t
E⋅D

2

for E 
(r , t )= ∫

−∞

+∞

E 
(r , ω) ei ω t d ω= ∫

−∞

+∞

E (r ,−ω) e−i (−ω) t d (−ω)

= ∫
−∞

+∞

E (r , ω

) e− i ω

′
t d ω


=E (r , t ) ⇐ ω


≡−ω , D  is similar.

⇒ E⋅
∂ D
∂ t

=∬ E*
(ω


)⋅E (ω) [− i ω ϵ (ω)] e−i (ω−ω

′
) t d ω

 d ω  ω

↔−ω

=
1
2
∬ E*

(ω

)⋅E (ω) [ i ω


ϵ

*
(ω


)− i ω ϵ (ω)] e− i (ω−ω

′
) t d ω

 d ω

Assume E  is dominated by frequency around ω

≈ω ⇒ ω


=ω+ δ ω



  

ϵ=ℜ [ϵ]+ i ℑ [ϵ ] , ϵ

=ℜ [ϵ]− i ℑ [ϵ] ⇒ 2 ℜ [ϵ]= ϵ+ ϵ

 , 2 i ℑ [ϵ ]=ϵ−ϵ


⇒ i ω

ϵ

(ω


)− i ω ϵ (ω)= i [(ω+ δ ω) ϵ


(ω+ δ ω)− i ω ϵ (ω)]

= i ω [ϵ

(ω)− ϵ (ω)]+ i δ ω ϵ


(ω)+ i ω δ ω

d ϵ


d ω
+⋯

=2 ω ℑ [ϵ]+ i δ ω
d

d ω
(ω ϵ


)+⋯

=2 ω ℑ [ϵ (ω)]− i (ω−ω

)

d
d ω

[ω ϵ

(ω)]+⋯

⇒ E⋅
∂ D
∂ t

≈∬ E 
(ω


)⋅E (ω) ω ℑ [ϵ (ω)] e− i (ω−ω

′
) t d ω

 d ω

+
1
2

∂

∂ t
∬ E 

(ω

)⋅E (ω)

d
d ω

[ω ϵ

(ω)] e− i (ω−ω

′
) t d ω

 d ω (# )

⇒ H⋅
∂ B
∂ t

≈∬ H 
(ω


)⋅H (ω) ω ℑ [μ (ω)] e− i (ω−ω

′
) t d ω

 d ω

+
1
2

∂

∂ t
∬ H 

(ω

)⋅H (ω)

d
d ω

[ω μ

(ω)] e− i (ω−ω

′
) t d ω

 d ω (@)

 If ϵ and μ are real and frequency independent we go back the the last section.



  

E⋅
∂ D
∂ t

=∬ E*
(ω


)⋅E (ω) ω (ℑ [ϵ (ω)]− i ℜ [ϵ (ω)]) e−i (ω−ω

′
) t d ω

 d ω

∫ E*
(ω


) ei ω

′ t d ω

=∫ E (ϕ) e− i ϕ t d ϕ

∫ E (ω) [− i ω ϵ (ω)] e− i ω t d ω=∫ E (ω) [− i ω ϵ

(−ω)] e−i ω t d ω

=∫ E (−ϕ

) i ϕ


ϵ

(ϕ


) ei ϕ

 t d ϕ

=∫ E 

(ϕ

) i ϕ


ϵ

(ϕ


) ei ϕ

 t d ϕ


⇒ ∬ E*
(ω


)⋅E (ω) [− i ω ϵ (ω)] e− i (ω−ω

′
) t d ω

 d ω

=∬ E (ϕ)⋅E 
(ϕ


) i ϕ


ϵ

(ϕ


) e− i (ϕ−ϕ

′
) t d ϕ

 d ϕ ⇒ ϕ , ϕ

 ω , ω



⇒ ∬ E*
(ω


)⋅E (ω) (− i ω ℜ [ϵ (ω)]) e− i (ω−ω

′
) t d ω

 d ω

=
i
2
∬ E*

(ω

)⋅E (ω) [ω


ϵ

(ω


)−ω ϵ


(ω)] e− i (ω−ω

′
) t d ω

 d ω

=
1
2

∂

∂ t
∬ E 

(ω

)⋅E (ω)

d
d ω

[ω ϵ

(ω)] e− i (ω−ω

′
) t d ω

 d ω

since ω

ϵ

(ω


)−ω ϵ


(ω)=(ω+ δ ω) ϵ


(ω+ δ ω)−ω ϵ


(ω)≈ δ ω

d ω ϵ


d ω



  

 The 1st terms in (#) & (@) evidently represent the conversion of electrical 
energy into heat, while the 2nd terms must be an effective energy density.

 Poynting's theorem in these circumstances reads

 The 1st term in RHS describes the explicit ohmic losses, while the next terms 
represent the absorptive dissipation in the medium, not counting conduction loss.

 It shows in realistic situations where, as energy flow out of the locality, there 
may be losses from heating of the medium, leading to a slow decay of the energy.

Let E=
~E (t ) cos (ω0 t +α)

H=
~H (t ) cos (ω0 t+β )

,  and  
~E (t)
~H (t )

slowly varies relative to 
1
ω0

⇒ ⟨E⋅
∂ D
∂ t

+H⋅
∂ B
∂ t

⟩=ω0( ℑ [ϵ (ω0)] ⟨E
2
(r , t )⟩+ℑ [μ (ω0)] ⟨H

2
(r , t)⟩)+ ∂ ueff

∂ t

where ueff=
1
2
ℜ [ d ω ϵ

d ω
(ω0)] ⟨E2

(r , t )⟩+ 1
2
ℜ [ d ω μ

d ω
(ω0)] ⟨H2

(r , t )⟩

∂ ueff

∂ t
+∇⋅S=− J⋅E−ω0( ℑ [ϵ (ω0)] ⟨E

2
(r , t)⟩ +ℑ [μ (ω0)] ⟨H

2
(r , t )⟩ )



  

 Assume that all fields and sources have a time dependence e− i ω t 

 For time averages of products, the convention is to take ½ of the real part of 
the product of one complex quantity with the complex conjugate of the other.

 For harmonic fields the Maxwell equations

 The time-averaged rate of work done by the fields      

Poynting's Theorem for Harmonic Fields; Field Definitions of 
Impedance and Admittance

∫
V

J 
⋅E d3 x= ∫

V

E⋅(∇×H 
− i ω D 

) d3 x ⇐
∇⋅(E×H 

)=H 
⋅∇×E

−E⋅∇×H 

= ∫
V

[i ω (B⋅H 
−E⋅D 

)−∇⋅(E×H 
)] d3 x ⇐ ∇×E= i ω B

E (r , t)=ℜ [E (r ) e−i ω t
]≡

E (r ) e−i ω t
+E 

(r ) ei ω t

2

⇒ J (r , t)⋅E (r , t )=
J (r ) e− i ω t

+ J 
(r ) ei ω t

2
⋅
E (r ) e− i ω t

+E
(r ) ei ω t

2

=
1
2
ℜ [ J 

(r )⋅E (r )+ J (r )⋅E (r ) e−2 i ω t
]

∇⋅B=0 , ∇×E− i ω B=0
∇⋅D=ρ , ∇×H + i ω D= J

⟨
d W
d t

⟩=ℜ [ ∫
V

J 
⋅E
2

d3 x ]



  

S≡
E×H 

2
, we=

E⋅D 

4
electric

energy density
, wm=

B⋅H 

4
magnetic

energy density

⇒
1
2
∫
V

J 
⋅E d3 x+2 i ω ∫

V

(we−wm) d3 x+ ∮
S

S⋅d a=0 Poynting
theorem

 The real part of the equation gives the conservation of energy for the time-
averaged quantities and the imaginary part relates to the reactive or stored 
energy and its alternating flow.

with lossless dielectrics and perfect conductors, the steady-state, time-averaged 
rate of doing work on the sources by the fields is equal to the average flow of 
power into the volume through the boundary surface.

 The complex power input

 If S−Si is taken to ∞, the surface integral is real and represents escaping 
radiation.

 At low frequencies the radiation is generally negligible. No distinction need be 
made between Si and S.

If ∫
V

(we−wm) d3 x  is real ⇒
1
2
∫
V

ℜ [ J 
⋅E ] d3 x=−∮

S

ℜ [S⋅d a ]

1
2

I i
 V i=−∮

S i

S⋅d a= 1
2
∫
V

J *
⋅E d3 x+2 i ω ∫

V

(we−wm) d3 x+ ∮
S−S i

S⋅d a



  

 The input impedance 

 Assume the power flow out through S is real

                              is the "radiation resistance," important at high frequencies.

 At low frequencies, ohmic losses are the only appreciable source of dissipation.

here σ is the real conductivity, the energy densities are also real essentially.

Z =R− i X ⇒ V i= Z I i ⇒
1
2

I i
 V i=

|I i|
2

2
(R− i X )

⇒

R=
1

|I i|
2 ( ℜ [ ∫

V

J *
⋅E d3 x ]+ 2 ∮

S−S i

S⋅d a +4 ω ℑ [ ∫
V

(wm−we) d3 x ])
X =

1
|I i|

2
( 4 ω ℜ [ ∫

V

(wm−we) d3 x ]−ℑ [ ∫
V

J *
⋅E d3 x ])

2
|I i|

2 ∮
S−S i

S⋅d a

⇒ R≃
1

|I i|
2 ∫

V

σ|E|2 d3 x , X≃
4 ω

|I i|
2 ∫

V

(wm−we) d3 x



  

V =
Q
C

 The different frequency dependences of the low-frequency reactance for 

inductances (X=ω L) and capacitances (                   ) can be traced to the 

definition of L in terms of current and voltage (                  ) and of C in terms of 

charge and voltage (            ). 

X =−
1

ω C
V = L

d I
d t



  

A. RotationsA. Rotations 
 A rotation in 3d is a linear transformation of the coordinates of a point and the 

sum of the coordinates' squares remains invariant  ― orthogonal transformation. 

 Scalars are invariant under rotations and so are 
tensors of rank 0.

                                    are called 2nd-rank tensors or, 

commonly, tensors, like Maxwell stress tensor.

 The active view of rotation—the coordinate axes are 
considered fixed and the physical system is imagined 
to undergo a rotation.

 The electrostatic potential is a scalar under rotations.   

Transformation Properties of Electromagnetic Fields and Sources 
Under Rotations, Spatial Reflections, and Time Reversal

xα

=∑

β

aα β xβ  vector ⇒ ∑
α

aα β aα γ =δ β γ ⇐ r  2
=r 2

⇒
a−1

= aT

a2
=1 ⇐ a≡det a

⇒
a=+1 : proper rotation, obtainable from the original configuration

by a sequence of infinitesimal steps
a=−1 : improper rotation, a reflection plus a rotation

Bα β


=∑

γ , δ

aα γ aβ δ Bγ δ



  

 If a physical quantity is a function of coordinates and when the physical system 
is rotated, the quantity is unchanged, then it is a scalar function under rotations.

 If a set of  physical quantities transform under rotation of the system according 
to                                     then they form the components of a vector.

 The gradient of a scalar transforms as a vector, the divergence of a vector is a 
scalar, and the Laplacian operator is a scalar.

Under proper rotations, the cross product transforms as a vector.

r i  r i

⇒ ϕ


(r 

)=ϕ (r )

V α


(r 

)=∑
β

aα β V β (r )

A=B×C ⇒ Aα=∑
β γ

ϵα β γ Bβ C γ ⇒ Aα


=a ∑

β

aα β Aβ ⇐ a≡det‖aα β‖



  

B. Spatial Reflection or InversionB. Spatial Reflection or Inversion 

 Spatial reflection in a plane is to change the signs of the ⊥ components of the 
vectors of all points and to leaving the components ‖ to the plane unchanged.

 Space inversion corresponds to reflection of all 3 components of every vector 
through the origin,

 Spatial inversion or reflection is a discrete transformation that cannot in 
general be accomplished by proper rotations.

 Polar vectorsPolar vectors:

 Axial or pseudovectorsAxial or pseudovectors:

 Speak of scalars or pseudoscalars, depending on whether the quantities do not 
or do change sign under spatial inversion.

 The triple scalar product a⋅(bc) is a pseudoscalar if a, b, с are  polar vectors.

 If a tensor of rank N transforms under spatial inversion with a factor (−1)N, it is 

a tensor, while if the factor is (−1)N+1 it is a pseudotensor of rank N.       

a=−1 ⇒ aα β=−δα β  for inversion operation

For xy  plane: r=(x , y , z)  r 
=(x , y ,− z)

r  r 
=−r

V α


(r 

)=∑
β

aα β V β (r )   &  r  r 
=−r ⇒ V  V

=−V

Aα


=a ∑

β

aα β Aβ   &  r  r 
=−r ⇒ A  A

=A



  

C. Time ReversalC. Time Reversal

 The basic laws of physics are invariant to the sense of direction of time.

 Under the time reversal transformation, the related physical quantities 
transform consistently so that the form of the equation is the same as before.

 If an initial configuration of a system evolves into a final configuration, a 
possible state of motion of the system is that the time-reversed final 
configuration will evolve over the reversed path to the time-reversed initial 
configuration.    

t  t=− t ⇒
d p
d t

=−∇ U (r )  invariant ⇐ r  r 
=r , p  p

=−p



  

Physical Quantity Symbol Rotation
(rank of tensor)

Space Inversion
(name)

Time
Reversal

Coordinate r 1 Odd(vector) Even
Velocity v 1 Odd(vector) Odd
Momentum p 1 Odd(vector) Odd
Angular Momentum L=r×p 1 Even(pseudovector) Odd
Force F 1 Odd(vector) Even
Torque N=r×F 1 Even(pseudovector) Even
Kinetic energy p2

/2 m 0 Even(scalar) Even
Potential energy U (r ) 0 Even(scalar) Even
Charge density ρ 0 Even(scalar) Even
Current density J 1 Odd(vector) Odd
Electric field
Polarization
Displacement

E
P
D

1 Odd(vector) Even

Magnetic induction
Magnetization
Magnetic field

B
M
H

1 Even(pseudovector) Odd

Poynting vector S=E×H 1 Odd(vector) Odd
Maxwell stress tensor T 2 Even(tensor) Even



  

D. Electromagnetic QuantitiesD. Electromagnetic Quantities 
 The forms of the equations governing EM phenomena are invariant under 

rotations, space inversion, and time reversal.

 Electric charge is invariant under Galilean & Lorentz transformations and is a 
scalar under rotations. Thus people assume that charge is also a scalar under 
spatial inversion & time reversal.

 The transformation properties of fields like E & В depend on the convention 
chosen for the charge.

 Charge density is a scalar. And E is a polar vector, even under time reversal.

 The Ampere-Maxwell equation                                       polar vector, odd under 
time reversal on both sides.

 Consider the  structure of a constitutive relation specifying the polarization P, 

assuming 1st order in E,

                                                                                       odd time derivatives of E

                                                                              0 or even time derivatives of E   

∇×E : pseudovector, even under time reversal ⇐ ∇×E +
∂ B
∂ t

=0 Faraday's law

⇒ B : pseudovector, odd under time reversal
1
μ0

∇×B−ϵ0

∂ E
∂ t

= J

B0
2 : (B0⋅B0) E , (E⋅B0) B0 , (B0⋅B0)

∂ E
∂ t

, ⋯

B0 : E×B0 ,
∂ E
∂ t

×B0 ,
∂

2 E
∂ t2 ×B0 ,⋯



  

 Up to 2nd-order of B0 

odd  time derivatives of E for the terms linear in B0 

even time derivatives of E for the 0th and 2nd powers of B0. 

 At low frequencies, the response of all material systems is via electric force

more realistic.

 At optical frequencies this equation permits an understanding of the gyrotropic 
behavior of waves in an isotropic medium in a constant magnetic field.

 In certain circumstances the constraints of space-time symmetries must be 
relaxed in constitutive relations. The optical rotatory power of chiral molecules

has the constitutive relations,

 The terms involve pseudoscalar quantities ξ and ξ that reflect the underlying 
lack of parity symmetry for chiral substances.  

P= ϵ0 χ0 E + ξ
∂ B
∂ t

 and μ0 M=χ0
 B+ ξ

 ∂ E
∂ t

⇒
P
ϵ0
=χ0 E +χ1

∂ E
∂ t

×B0+χ2 (B0⋅B0) E +χ3 (E⋅B0) B0+⋯

⇒
P
ϵ0
=χ0 E +χ1

∂ E
∂ t

×B0+χ2

(B0⋅B0)

∂
2 E
∂ t2 +χ3

 ( ∂
2 E
∂ t 2 ⋅B0) B0+⋯



  

On the Question of Magnetic Monopoles 

[Z0 ρe

ρm ]=[ cos ξ sin ξ

−sin ξ cos ξ ] [Z0 ρe


ρm
 ] , [Z0 J e

Jm ]= [ cos ξ sin ξ

−sin ξ cos ξ ] [Z0 J e


J m
 ]

 No experimental evidence for the existence of magnetic charges or monopoles.

 Dirac's argument is that the existence of magnetic monopole would offer an 
explanation of the discrete nature of electric charge.

 If there exist magnetic charge & current densities, then Maxwell equations 

become

 Duality transformationDuality transformation:

 For a real/pseudoscalar angle ξ, the transformation leaves quadratic forms like 
EH, (E⋅D+B⋅H), and the components of the Maxwell stress tensor invariant.

 Apply to 
the sources

⇒ the generalized Maxwell equations are invariant

∇⋅D 
=ρe

 , ∇×H 
=

∂ D 

∂ t
+ J e

 , ∇⋅B
=ρm

 , −∇×E
=
∂ B

∂ t
+ Jm



[ E
Z0 H ]= [ cos ξ sin ξ

−sin ξ cos ξ ] [ E 

Z0 H
] , [Z 0 D

B ]= [ cos ξ sin ξ

−sin ξ cos ξ ] [
Z 0 D



B] ⇐

impedance

Z 0=√
μ0

ϵ0

∇⋅D=ρe , ∇×H=
∂ D
∂ t

+ J e

∇⋅B=ρm , −∇×E=
∂ B
∂ t

+ Jm

⇐

∂ ρe

∂ t
+ ∇⋅J e=0

∂ ρm

∂ t
+∇⋅J m=0



  

 The invariance of the EM equations under duality transformations shows that it 
is only a convention to think of electric charge instead of magnetic charge.

 If all particles have the same ratio of magnetic to electric charge, one can make 

a duality transformation so that ρm=0, Jm=0, so we have the usual the Maxwell 
equations.

 If we choose the electric and magnetic charges of an electron qe=−e, qm=0, it is 

known that for a proton, qe=+e and |qm(nucleon)|<210−24 Z0 e. 

 The conclusion is that the particles of ordinary matter possess only electric 
charge or they all have the same ratio of magnetic to electric charge.

 ρm is a pseudoscalar density, odd under time reversal, and 

  Jm is a pseudovector density, even under time reversal.
 
 Since the symmetries of ρm under spatial inversion & time reversal are opposite 

to those of ρe, then a particle with both electric & magnetic charges that space 
inversion and time reversal are no longer valid symmetries of the laws of physics.
 
 The present evidence is that the symmetry violation is extremely small and 

associated with the weak interactions.



  

 Considering the quantum mechanics of an electron near a magnetic monopole, 
Dirac showed that consistency required the quantization condition,

 The discrete nature of electric charge thus follows from the existence of a 
monopole. The magnitude of e is determined in terms of the magnetic charge g.

 With the known value of the fine structure constant, we can also infer the 
existence of magnetic monopoles with the magnetic "fine structure" constant 

 The coupling strength is enormous, making their extraction from matter with 
dc magnetic fields and their subsequent detection very simple in principle.

Selected problems: 1, 4, 9, 10, 14, 21  

g2

4 π μ0 ℏ c
=

n2

4

4 π ϵ0 ℏ c

e2 =
137
4

n2
⇐ Dirac monopoles

e g
4 π ℏ

=
α g
Z0 e

=
n
2

, n=0 ,±1,±2,⋯ ⇐

g : magnetic charge

α=
e2

4 π ϵ0 ℏ c
≈

1
137

fine structure
constant


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

