Chziptar 5 Magnetostatics, Faraday's Law,
Quasistatic Fields

® The radical difference between magnetostatics and electrostatics: there are no
free magnetic charges.

® The basic entity in magnetic studies is a magnetic dipole.
® The definition of the magnetic-flux density (or magnetic induction): N=u X B

® The magnetic phenomena was clearly understood after the connection between
currents and magnetic fields was established.

@ Conservation of charge a—'[; +V-J=0

a decrease in charge inside a small volume with time must correspond to a flow
of charge out through the surface of the small volume.

® In magnetostatics, no change in the net charge density anywhere in space



Biot & Savart Law
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® It is incorrect to think of the equation as the
magnetic equivalent of the electric field of a

point charge and to identify /d £ as the analog of g.
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® The equation has meaning only as one element of a sum over a continuous set,
the sum representing the magnetic induction of a current loop or circuit.
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® One apparent way out of this difficulty is B=k ¢ < Idl—qgv
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® This expression is time dependent, and valid only
for small velocities and negligible accelerations. B C_D

® For the magnetic induction of the long straight wire
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® The magnitude of the magnetic induction varies with R [ R P

in the same way as the electric field due to a long line
charge of uniform linear-charge density.
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® Ampere's experiments were concerned
with the force that one current-carrying
wire experiences in the presence of another
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symmetric in d£, and df, and satisfies Newton's 3™ law.
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(repulsive) if the currents flow in the same (opposite) directions.
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@ For 2 long, parallel, straight wires

® If a current density is in an external magnetic-flux density, the total force and

the total torque are FZ/J(r)XB(r)de, N:/rX(JXB)d?’x



Differential Equations of Magnetostatics and Ampere's Law
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Oj{ B-d£<:/ VXB-daZ,uO/ J-da=p,I < Stokes's theorem
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= ]{B-dﬁzuol (Ampere's law ) .
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® Ampere's law can be used for calculation of ——— -
the magnetic field in highly symmetric cases. >~ do
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A cylindrical conductor of radius @ has a hole of radius b bored parallel to, and
centered a distance d from, the cylinder axis (d + b < a). The current density is
uniform throughout the remaining metal of the cylinder and is parallel to the axis.
Use Ampere’s law and principle of linear superposition to find the magnitude and
the direction of the magnetic-flux density in the hole. [Problem 5.6]




Since the current density J = Jz is uniform, the current in the bored cylinder can be
considered as the one in a complete cylinder plus the current with the same uniform current
density along the negative z-axis in the hole cylinder, i.e., Jyoe = —J, as in the figure.
For the position r being in the hole, by Ampere’s law and the principle of superposition,
the magnetic-flux density B(r) within the hole is B = Beomplete + Bhole, Where

f Bcomplete -dl = [.L()/ J - da, % Bhole . df’ = /.L()/ (—J) . da,'.
C complete ! hole

Due to J being uniform and the cylindrical symmetry consideration,

Beomplete (L) = “—;Jm}} — %J(—yf‘c +ay),
Buowo(r') = B2 (= 1)r'¢' = 2I(y'% - 2'3") = S1Ilyk - (x - d)3].

Thus B = Beomplete + Bhole = @J dy, a constant field. To be general and free of coordinate

2
choice, B = %J x d.



Vector Potential
® The basic differential laws of magnetostatics

VXB=pu,lJ
V- -B=

oIf J=0 = VxB=0 > B=-V @&, magnetic — _ yv2g _
scalar potential

® We can apply all the techniques for the electrostatic problems to it, but the
boundary conditions are different from those in electrostatics and macroscopic
magnetic properties are usually involved.

°V.-B=0 = B( )—VXA( ) vector potential
r-r

transformation

® The freedom of gauge transformations allows us to make V - A have any
convenient functional form we wish.

= V(V'A)—VZACVXVXACVXBZNOJ N _VZA:,LLOJC V-A=0

gauge choice

= A(r):ﬁ/ J(r? d’ x’ in unbounded space (2) < W =const
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e It can be understood as: V-A =0 Coulomb gauge = V’¥=0 <« V' -J=0
= W=const < No current source at infinity
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Vector Potential & Magnetic Induction
for a Circular Current Loop
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@ These can be specialized into 3 regions, near the axis (0<<1), near the center of
the loop (r<a), and far from the loop (r>=>>a).

Mo cos 6 — -
b, ~ 2w (3) m=n It.a the magnetic fields far
r>a = " g = mc?gn? '“ < away from a circular
B,~ Ho M sin (4) PO current loop are dipole
4 53 moment

® Use a spherical harmonic expansion to point out similarities and differences

between the magnetostatic and electrostatic problems. Expand |r—r'|7,
¢

I Ym 9,0 Iy / / / / / / /
14\¢:'LLO R i )/el¢ < Y:" (0, ¢')6(cos@)(r'—a)r'?dr dQ

a tm 24+1 ri”

© Yl(e O) I’K T l'qs, .
:277,%1612 A 5:1Yi(_’0)<: e = only m=1 contributes
=1 24+1 p] 2 r_=min(a,r), r,=max (a,r)



2 7+1 [ 0, ¢ even
\/ P(0)=| ] 2p+1 (=1)"'T(n+3/2)

47 l(L+1)

A7 l(£+1) I'(n+1)I(3/2)

Yi(i,o):
2

, =2n+1

_ Mela & (—-1)'(2n—1)! rttt
= Aqb__ 4 Z_lo 2ﬂ(ﬂ+1)' 1"2n+2 P2n+1(C089>
] >
fas. (1) 1 e d A
B = 'u; a Z ( 1) (112n+ 1).. r;n+2 P2n+1(COS 0) = dx [\/ipe (x)]
' n=0 2 n' 4
> =0(£+1) P, (x)
- la* & (—1) I 2n
+MZ ( 1)" (2n+1)“2n+2 13 (L) P;n+1(COSH) < r<a
B,= 4 n=0 2 (n+].)' 2n+1 a a
o ’ " 2n
ol @ & (1) (2n+1)! 1(a 1
4 HZ::O 2”(n+1)! S\ P2n+1(0089) < r>a

1
r>a = Br:EB)) < only the n=0 term matters & Pi(COSH):—Sinﬁ
Bgz 4

r <a = onlythe n=0 term matters = a magnetic induction 'L;L in the z -axis
a



® Associated Legendre polynomials appear as well as Legendre polynomials. This
can be traced to the vector character of the current and vector potential, as

opposed to the scalar properties of charge and electrostatic potential.

@ Can also employ an expansion in cylindrical coordinates to attack this problem.

/ Vvdr= 7{ v-da < divergence theorem
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A sphere of radius a carries a uniform surface-charge distribution o. The sphere is
rotated about a diameter with constant angular velocity w. Find the vector potential
and magnetic-flux density both inside and outside the sphere.  [Problem 5.13]

The current density is J(x') = p(x')v = or'wsin85(r' —a) @' = acwsin@'5(r' —a)(— sin ¢'% +
cos ¢'y). Then the vector potential is
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where 7~ (s ) is the smaller (larger) of a and r, the spherical harmonic expansion of
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is used, and Y7 +1(0,90) = F4/ o sin fet®. And the magnetic-flux density is
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Alternative as in Ex 5.11 in Griffiths’s EM book )

@ The integration is easier if we let r lie on the 7 axis, so

that w is tilted at an angle 6. We orient the x axis so that
w=w1Z liesin the xz plane.
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Magnetic Fields of a Localized Current Distribution,
Magnetic Moment
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An arbitrary-shaped current loop can be divided into as many rectangular loops
as it takes. Since the integral on a rectangular loop vanishes, therefore the
integral with an arbitrary-shaped loop vanishes.



lowest
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® Far away from any localized current distribution the magnetic induction B is
that of a magnetic dipole of dipole moment m.

® If the current is confined to a plane
’ da dl
rxd# X
=da
2

mEé/erEZIXAreaﬁ =

regardless of the shape of the circuit. 0O

® For discrete charges
I
m:%ZQi(rixvi) < J:Zqz'vid(r_r/)

q,
; 2 M,

=2 Np="Lp g L1
oM~ T oM M, M

l
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1s the same



® The classical connection between angular momentum and magnetic moment
holds for orbital motion, but fails for the intrinsic moment.

® For electrons, the intrinsic moment is twice as large as the above. We speak of
the electron having a g factor of 2.

® There are 2 limits, one is that the sphere of radius R contains all of the current
and the other is that the current is completely external to the spherical volume.
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m  all the current density is inside the sphere

B (0) all the current density is outside the sphere




Force & Torque on and Energy of a Localized Current Distribution
in an External Magnetic Induction

OF:/J(r)XB(r)de < B(r)=B(0)+r-V B (0)+--
:i;CEijkﬁi(Bk(o)//%gy+/]j<Y>y.ka(O>d3y+"')
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= Il"]:(me)xB:V(m-B)—m ‘B > F=V(m'B) = U=—m"'B

® The force is the change rate of the total mechanical momentum, including the
"hidden mechanical momentum" associated with the EM momentum.

: d : : .
oF . . —massxr=V (m- B)+% 1; (E xm) in Newton's equation of motion
_|B|,.| £ | L L:lengthscaleover which B changes significantly
L cA X : wavelength of radiation at the typical frequencies of E

® A charged particle in a uniform magnetic induction moves circularly _L the field
and with constant velocity || the field, tracing out a helical path.

@ If the field is not uniform but has a small gradient, the motion of the particle
can be affected by the force on the equivalent magnetic moment.

® Charged particles will be repelled by regions of high flux density. This is the
basis of the "magnetic mirrors," important in the confinement of plasmas.
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0N=/r><(]><de~/r><(J><B) x < B,=B(0)

2/[ //_{B d’ x’ =>gf—r1n()=>/r-.]d3x20
/(xl.Jj+ijl.)d3x=O = 2/[r-BO]Jdgx:/[(Bo-r)J—(BO-J)r]de

= N=mxB(0)
® Interpret the force as the negative gradient of a potential energy = U=—m"-B
A dipole tends to orient itself parallel to the field to have lowest potential energy.

@ The potential energy is not the total energy of the magnetic moment in the
external field. Work is needed to keep the current, producing m, constant.

® The potential energy expression can be employed in the treatment of magnetic
effects on atom, as in the Zeeman effect or for the fine and hyperfine structure.

® The fine structure comes from differences in energy of an electron's intrinsic
magnetic moment in the magnetic field seen in its rest frame [chapter 11].

® The hyperfine interaction is that of the magnetic moment of the nucleus with
the magnetic field produced by the electron. y L
o €

HHFs:_IJ'N'B(O>:_I‘N'[Bdipole(O>+Borbit<o)] < Borbit(o):4ﬂ_ m, 3
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® The expectation values of the Hamiltonian in the various atomic (and nuclear
spin) states yield the hyperfine energy shifts.

® For spherically symmetric s states only the 2™ term of (6) has value:

TNy, (O ()

= AE=-—
4
® For /=0, the hyperfine energy comes entirely from the 1° term of (6) because
the wave functions for £#0 vanish at the origin.

@ L1, points in the opposite direction to the electron's spin because ¢ is negative.

® AFE between the singlet and triplet states of the 1s state of atomic hydrogen is
the source of the famous 21cm line in astrophysics.

® Comparing eqn (4.20) & (5.64), if the magnetic moments were caused by

4

s
magnetic charges, the coefficient K in AE would be replaced by — 3 !

® The astrophysical hyperfine line of hydrogen would be at 42cm wavelength,
and the singlet and triplet states would be reversed.



Macroscopic Equations, Boundary Conditions on B and H

® In macroscopic problems the current density is not a known function of
position. Only its average over a macroscopic volume is known or pertinent.

e(V-B,,=0) = V.B=0 = B=VxA
molecular
® Average macroscopic magnetization M (r) = Z N,(m,) < m,: magnetic

) : . . moment
® Suppose there is also a macroscopic current density

AA:'MO (J<r)+M(r/)><L2)AV/ < vs chapter 4
4 I r
= A:ﬂ (J(r )+M(r/)>< 1?"2) d3 x’ (7a) 0 integration by parts
47 r r + M is localized
/ />< / N
41 r r I

= J,=V XM <« effective current density from magnetization

= VXB=py,(J+V XM) < macroscopic equivalent VXB_.. =pu,J

iB—M N VxH=J Vs V- -D=p
Ho V -B=0 VXE=0

micro

= magnetic field H=



Bound Currents

® Let the magnetic dipole moment per unit volume is M in magnetized material.

Mo MM X Ir° o
° - m X V

4r 2  4r

® In the magnetized object, each volume element d’x’ carries a dipole moment
M d’x’, so the total vector potential is

A(r)::_O/M“z)deffx/ o ( ()><V )dx = V/iz%
s Ir

_ﬂ(/V/XN“ /V M (r x’) 2 da'=hdd
[ ) [T

=V><M, K,=Mxa =>V.Jg,=0 ™
Volume current surface current

ﬂ/ Jb(r/) 3 ﬁ Kb(r/)d /

d x + a
4 7

r 4 ) ¢ T
® Instead of integrating the contributions of all the infinitesimal dipoles, we first
determine the bound currents, and then find the field they produce.

® The vector potential of a single dipole mis A ( )

dt’

=> A(r)=
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Ho Ty (r) X8 Ho K,(r)xi

VXA=—= d° x'+— da
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T V r 47T S r

® M, out of paper




® The fundamental fields are E & B. The derived fields D & H are introduced for
convenience to take into account in an average way the contributions to p and J

of the atomic charges and currents.

® To complete the description of macroscopic magnetostatics, there must be a

constitutive relation between H and B.

B=yuH <« isotropic diamagnetic and paramagnetic substances, linear

B=F (H) < ferromagnetic substances, nonlinear : magnetic permeability

® The phenomenon of hysteresis implies that B is not a

single-valued function of H. In fact, F(H) depends on the
history of preparation of the material.

_dB
dH

@ For high-permeability substances,

e Assuming B|H = u(H)

p(H
Ho
high as 10°. Typical values of initial relative permeability

can be as

B

range from 10 to 10*

® For the boundary conditions at an interface

n-(B,-B, )=0 _ n:normal vector _

nx(H,—H,)=K K : surface current density

1L _ pl
B2_ 1
H,-H =K xn




B,=B;
O o o . . o || || r
For media satisfying linear relations B, B B, ©

Uz_ﬂl

o, >>p, = H,>H;

o lim 25w = H, x n
)

independent of the direction
of H, (except H, L n).

® The boundary condition on
H at the surface of a material
of very high permeability is
the same as for the electric field at the surface of a conductor.

® We may therefore use electrostatic potential theory for the magnetic field. The
surfaces of the high-permeability material are approximately "equipotentials,"”

and the lines of H are normal to these equipotentials.



Methods of Solving Boundary Value Problems in Magnetostatics
® The basic equations of magnetostatics\V-B=0, VxH=J, B=B[H]

A. Generally Applicable Method of the Vector Potential

®*V.-B=0 > B=VXA = VXH|VXA|]=J <« H=H|B]
B=pH = V(g 'VxA)=J = V(V-A)-V’A=uJ < p=const
V-A=0 (Coulomb gauge) = V°A=—uJ
® Parallels the treatment of uniform isotropic dielectric media. The boundary
conditions must be matched across the interface.

B. J=0; Magnetic Scalar Potential

©J=0 > VxH=0 > H=-V &, < ¢ Magneic  pg__vVg
scalar potential

B=BH|] = V- B[-V&,]=0 = V:(pV&,)]=0 « B=pH
Ve, =0 + the boundary conditions for H
VU, =0 « B=—V ¥, + the boundary conditions for B

® ®,, can also be use for closed loops of current. Then ®,, is proportional to the

solid angle subtended by the boundary of the loop at the observation point
[Problem 5.1]. Such a potential is evidently multiple-valued.

For p =const =



C. Hard Ferromagnets (M given and J=0)

@ "Hard" ferromagnets has a magnetization that is independent of applied fields
for moderate field strengths. Such materials can be treated as if they had a fixed,
specified magnetization.

(a) Scalar Potential

°VB=y,V-(H+M)=0 = V?®,=—p, < PM:—V°M

__V(I)M < J=0
= & (r)= 1 /,OM(I'/)d __L V M(r 43, 1f noboundary
) am r surface

(/MV—dx—j{ da - Mwellbehaved
47T & localized
= ¢ ( — — _v_
Ir
_V_,/M<r/)d3x/: m'r3 - mE/MdSX, > 0
T r 47r

® An arbitrary localized distribution of magnetization asymptotically has a dipole
field with strength given by the total magnetic moment of the distribution.

® If a "hard" ferromagnet has a volume and surface, we specify M inside the
volume and assume that it falls suddenly to O at the surface, and assign an
effective magnetic surface-charge density o,,=n-M



B (r) 1 -V /Md —/M.Vlde’:i MV =d*x

r r 47 J r
M M , A
1 %—da—— V d’x = M(r'¢V)=0, da'=nda
= r) 1/ d’ x’ —7{ —da <= p,=—V-M, o,=M-n
if M is uniform = & (r)= — da (7 b)

4 mJ g T
® (7) is generally applicable even for the limit of discontinuous distributions of
M. Never combine the surface integral of o,, with (7)!

(b) Vector Potential B=V XA = VXHZVX(ME—M) =0
0
= VZA——,uO = Coulombgauge + J,,=V XM
/ V><M Y
= A(r

@ If the dlstrlbutlon of M is dlscontmuous, a surface integral is needed.

fo [ VM) gt f M)

4n) s T

xda < (7a)

® If M is constant throughout the volume, only the surface integral survives.



Uniformly Magnetized Sphere
@ Consider Eq. (7b) of the previous section,

M=M,z = o,=n-M=r-M=M_,cosb

Mya® C
= &, (r,0)= 0 /COSH dQ <= py=

4 1

r _ .
:lMOaz—;cose ~ only the K'—l e p_=min ()
r. term survives - max
1 1 1 2
r<a = ®, =—M,rcos0=—M,z »> H =—-M, B =—u M
M 3 0 3 0 in 3 BILLO

1 0 0
sy o (I)M:_Moagcosz _m C082
3 s 41 7

e B, || M, while H,, is antiparallel

® For the sphere with uniform
M, the fields are not only dipole

asymptotically, but also close
to the sphere.

Y

Y

Ylyly

® For this geometry (and this only)
there are no higher multipoles.



® The lines of B are continuous closed paths, but those of H terminate on the
surface because there is an effective surface-charge density oy, .

eUse(7) = &, (r,0)= —4%M08—8Z/ar/2dr/ dTQ/
=—M, cos@i aierlM a r—cosH & only £=0
rJor, 3 r> term survives
® Use part C(b) = JMZV/XM:O
K,=MX1t'=M_,sin0 ¢'=M_,sin6 (—sin ¢ X+cos¢d'y) = M=M, 2

= A:ﬂ

K /A / A /
— dQ—ﬂ M%Slne (—sin¢g X+cos¢ y)d

Ho 2 U % /27T 1—1_<§' .’A‘)Yndﬂ/
r

1
o M g2 =< sm 0 ¢ ~ Wwith the expansion of -

g only the /=1, m==+1 terms survive
= B=V XA = give the same result

I’

® One can also try the r as Z method.



Using a scalar potential (7) as the alternative 1:

4] :_LV./Md?’x/

/—d3 /_M/dgx/_M/ sme dr'd6’dé _ choose r=rz
\/ r — 2 rr cos temporarily

2
r
— — for r<a with
2 M ¢ / / / / a / /
=27 /r(r+r—|r—r|)dr=27rM 3
0

r

V /—d x = & (r, H)Z%Z, @Out(r,ﬁ)—ﬂa—zcose
3 3 r

3

Vo, = Hm:—lM, H = Ma—3(20056’1‘+sm6’6’)
3 3 r
3

B=y (H+M) = Bm:%qu, Boutzuo%a—g(Zcosé’f'+sm90)
r



Using a scalar potential (7b) as the alternative 2: ¢, =— ]{ — d a
Use the similar trick like the one with vector potentlal.

Choose r=rz, put Minthe x z-plane = M=Msin 0 X+ M cos0 z
And r'=sin 0 cos ¢ X+sin 0’ sin ¢’ y+cos 8’z

= ¢,=M-r'=M (sinfsin 0 cos ¢ +cosf cos§’)

]{—da _M]{smesme cgys/gb +cosfcos O

— ——a"sing' d6 d¢
\/r+a —2arcosf

/ . / / 2 M
=27 Ma’cos 6 20055 sin6 d 9 - = d (a’+r°—|a’—r’|) cos 6
oVri+a’—2arcosf 3r
re
_4nM 0059 < r_=min(r,a) M
r’
e d (r,@)zgrcosezﬁz
= &, =——cosf =
3 r M a’
® (r,0)= — — cos 6
3 7

= H=-V ¢,, B:N0<H+M)




Using a scalar potential as the alternative 3:

H=-V&®, « VXH=J,=0 < no free current
V:®,=0 « V-H=V-M=0 « M=M12
D
= @in(rﬂ):ZCﬂﬁPe(COw), (Pout(r’0>:ZTé1P£(COSH>
£=0 (=0 r

Boun.d.ary (1) @, (a)=®,,(a), (2) B, ,(a)=B,, ,(a) = B:MO(H"'M)
conditions: | |

D D /+1
=(1) szazgil (2)N0(C1+M):_2U0a_31’ po £ Cp=— 20 D, for £#1
= Clz%, Dlz%ag C,=D,=0 for £#1
3
= @in(r,ﬁ)—ﬂz, Qout(r,ﬁ)zﬂa—zcosﬁ
3 3 r
1 1 a° - ~
» H,=—-_-M, H,=_ —[3(r-M)r—M]
3 3 r
0 g



Magnetized Sphere in an External Field; Permanent Magnets

® Consider in the space B =B, + 2 1, M

(8) « inside the permanent

H = 1 B, 1 M magneitzed sphere
Ho 3

® Consider a paramagnetic or diamagnetic sphere of permeability i, M comes
from the external field 2 1 1 3 _
7
B,=uH, > By+——°M=p( —B-—-M) > Mm=— "o g
Fo 3 Fo pu+2 p,
analogous to the polarization of a dielectric sphere in a uniform electric field.

B,=u,H, =

® For a ferromagnetic substance, the above argument fails because the existence

of permanent magnets contradicts this result. B

® The nonlinear constitutive relation and the phenomenon

of hysteresis allow the creation of permanent magnets. \

(8) = B, +2u,H, =3B, < line with slope —2 d \

® Increase B till saturation then decrease it to O. > \ \ poH
B,=0 gives M \

® The slope of the lines range from O for a flat disc to —oo
for a long needle-like object. Thus a larger internal
magnetic induction can be obtained with a rod geometry
than with the other shapes.




Magnetic Shielding, Spherical Shell of Permeable Material in a
Uniform Field

® Cosider B,=u,H, in an empty space. A permeable body is placed in the region.

@ For high permeability, the field lines should tend to be normal to the body’s
surface. If the body is hollow, the field in the cavity should be smaller than the

external field, vanishing in the limit u—o0, ie, magnetic shielding.

e J=0 = H:—V(I)M = B:/”LH = V-H=0 = V2(I)M:O

V-B=0 > >
r>b = (I)M:—HOFCOS(9+Z (jfl P,(cos ) B
r > >
a<r<b = @M:Z(ﬁﬂu%)m(cosﬂ) ~
B >

r<a = CI)M:Z)\KI’KPK(COSG)

—
—

0P oP od 0P
v 2w S0 s 22 H,&B e
R 00 ,—p 00 | 00 00 - 3 t
a (I)M a (I)M a (I)M a (I)M continuous a

HOW(bJ:#—(b-), p

- (@) =p s (a)  r=ak&r=b

or



oy — b?’ﬂl— Y, = b3H0 )
20(1+/,Lrb3/81_2ﬂr’)’1 :_b3H0 &= lu’rE_

; __ 2%
61351 + 71_"3)‘1_ 0 all £ # 1 terms vanish
poa py=2p,v,—a A= 0

o 2p ) 1) —d ) Hy ~9u, H,
1 3 ’ 1 3
a a
(2ur+1)(ur+2)—2g(ur—1)2 (2ur+1)(ur+2>—2ﬁ(ur—1)2

® The potential outside the spherical shell corresponds to a uniform field H, plus

a dipole field with dipole moment «;, oriented parallel to H,. Inside the cavity,
there is a uniform magnetic field parallel

to H,, equal to —\,.

a1—>b3HO
ouU>u, = 3
’ — A 912 3 Hoocl
2p,(b°—a’) H

® with 1,~10° to 10° a shield causes a

great reduction in the field inside it, even
with a relatively thin shell.

g = —3(2p+1)b° H, - —3(p—1)a’b’ H,
1 N 2+ 1) (u,+2) - 24 (g, — 1)

b* (2 p,+1) (1, +2) =24 (p,—1)"



Example: A Magnetic Sphere in a Uniform External Magnetic Field.
Consider a sphere of radius R, made of a linear magnetic material

of permeability u,, embedded in a medium of permeability w,.
The sphere is placed in a magnetic field H, which is initially
uniform and pointing along the z direction.

Current=0 = H=-V & <« VXxH=J,=0, B=pH

= ®(r—oow)=—H,z=—H,rcosf, choose <I>(r:O):O

= (I)in:ZCEI’KPE(COSH), ® .

P,(cos 9)
(= ol”

Boundary 1 (b (R) (bout<R)’ (2> Bin r(R):B

conions: BB ) g HtH

— D1 —
. Cl_ F—HO, Cg— R2£ for /#1 <
D,
N1C1:_N2(2F+Ho)’ N1£C£:_N2<£+1)Rzg pfor £#1 < (2)
3 _
> C=——t2 gy p=t1F2py R C,=D,=0 for £#1
pet2 Pt 2y
3 —Uy R’ . .
= Bin: Mluz HO’ Bout:lu’Z(HO-l- Ml ’UIZ 3 [S(r.HO>r_HO]
pq+2 pat2p, r



Effect of a Circular Hole in a Perfectly Conducting Plane with an
Asymptotically Uniform Tangential Magnetic Field on One Side

Z
® At the interface between conductor & nonconductor, fields with harmonic

time dependence penetrate a distance of the order of
0

2

§ =+ —=— into the conductor. o: conductivit;III 0
U wo
® Define magnetostatic problems with perfect,
conductors as the limit of varying fields as.
w—0, provided at the same time that
wo—0o0, Then the magnetic field can
exist outside and up to the surface.
of the conductor, but not inside

X

B, =0, nxH=K vs E=0, D, =0 < o: surface-charge density

No currents except on the surface z =0

©
= H=-V &, = V’®,=0 « V-B=0
_ (1) 20 (1) - the symmetry
R @M(r): H0y+<I>(1), for z>0 _ (xl & Hd areoddin z _ properties of
0O —& ', for z<0 H, & ® " areevenin z  the added fields

- V= /OOA<k>ek|z Jl<kp)sin¢dk - only <:(3.106) cylindrically symmetric
0 m=1 &, (r-w)=&,(y=psing)



JX+Jy

—
A e
X
|r r|
== ST VAt dL Lt} AX1 WRN
) [(x—x+(y—y )+ s 4
Ko J zxX—J zy ! 2
— y Y+ (y =) =T, (x—X)]2
47'(' Y .X)]Z 3
[(X—x) (y y)z 2]3/2 d
H'Y (1) HY (1) =— _
x B - H.(2)= HY(z), HV(")=—H"(z
HY ()= +HY (7 ) , (27)
(= +HY (7 )=-0. 0" (1)
Z z = ¢ (Z+>:+(I)<1)<Z_)
( N
_V 3 ):BU: 1 3r(rm)—m
L s 34 3 37 7
=+ 3 H, for z=0




¢, continuous across z=0 for 0<p<a

- 03, - bound?lry Q.0 =P .
P =0 at z=0 for a<p<w conditions B, =0
H
/ (kp)d k= 0P for 0<p<a
2 < dual integral eqns
/ J, (kp)dk=0 for a<p<o
zr(n+1) , * ,
)= J dy= for 0<x<l1
g(y) T (nel/2) Ja(y) _ /O gy)J,(yx)dy=x" for O<ux
= L (n+1) \/gjnﬂ/z(y) /yg(y)]n(yx)dy:O for 1<x<ow
(n+1/2) y 0
2 H, a’
=> Alk)= jilka) < g:2A<kz>, n=1, x:£, y=ka
H,a a
2H,a" [~ 2H,a’
= 3! (r)="——" /OJg(ka)e‘k'ZJl<kp>sin¢dk = @V (o) » T 00 2

37 r
the potential of a dipole aligned in the y direction, the direction of H,

® At large distances the circular hole is equivalent to a magnetic dipole with
8 g’

=0



/Oojl(ka)ek|Z|J1(kp)dk:\/zza/w J3/2<kkaz)\‘/]>1(kp)dk

p [“F X’ dx p ( .1 4a a\/Rz—az)
—2 - Sin — —

J1 — x2 R R’

where R =

\/(a+p>2+zz+\/(a — p)2+Z2
2
6.752 of Table of Integrals, Series, and Products, Gradshteyn & Ryzhik (2007)

(1) 2H,a" " ~kl
= & (r)= - smgb/ jilka)e " J, (kp)dk
0
H, . .14 a a’
= — — — — 4] ——
7T,osmgb(sm R RZ)



>
-
® In the opening éH n & for z=0, 0<p<a
. o P S1n
R s

® Comparing the magnetic problem with the similar electrostatic problem shows
the roles of tangential and normal components of fields have been interchanged.

® The dipoles point is parallel to the asymptotic fields, but the magnetic moment
is 2 times larger than the electrostatic moment for the same field strengths.

® For arbitrarily shaped holes the far field in the electrostatic case is that of a

dipole 1 the plane, but the magnetic case has its effective dipole in the plane, the
direction of the magnetic dipole depends on both the field direction and the
orientation of the hole.

Selected problems: 3, 7, 14, 20, 21, 26, 27, 30



Numerical Methods for 2D Magnetic Fields

® Magnetic fields in the presence of highly permeable materials can be evaluated
numerically in 2d by the relaxation method or by the finite element method.

® Consider the boundary conditions for the field components at the smooth
interface of a highly permeable medium and a nonpermeable one.

® The boundary conditions are that the tangential component of H and the normal
component of B are continuous across the interface, if no surface currents.

® For a given external field B, in the nonpermeable region, the components of B
(& H) in the highly permeable medium are more closely parallel to the interface.

) 'uz | U >> Lo u=Hq
_ 5l2 2
B[ =B, +=; By HoH, B,
(0) _ p(
0 }MOH_L _B_L
2 12
B By . B woH) Y \ HoH l\A
ofd)| Y \ Lo

N | | _ (o) B|(|o) I uH® = p© B =y H

2/1_2/1 2,“’3 H I

energy density
® These 2 relations are useful in

learning the appropriate boundary
conditions of exterior and interior

problems in the limit Lol :

Ko %




® The most familiar static magnetic fields are those around a permanent magnet
of high permeability excited by remote current-carrying windings.

|
B B |
cﬂ_mo = B|(|)—O = | ‘ + H B|(|2>—ﬁn1te or 0) — b
Ho 2,“ Z,U 2,u Ho K

the "external" magnetic field at the surface is L the interface.

2
eJ=0 = VXH:O = H:—VCI)M = V (I)M_O
®, =const at boundary < B|| =0
® Consider a 2d “interior” problems, with Steady current in the 3™ direction 1n a
uniform, highly permeable conducting medium. The current produces a magnetic
induction both inside and outside the medium.

® The boundary conditions assure that B is || the

surface just inside aslui—mo = MHL:,UO H(Lo
0
OJ:]Z(x,y)ﬁ:>A:AZ2:>VZAZ:_MJZ
0A, 0A,
= Bx: , B.=— , Bz:O

Oy g 0 x
e If the internal field is || the boundary
> BL=B=VXA=(n0d,+£5+20.)XA.
0A, . 6A A 0A

Y, an gg _odonc




® The vector potential is constant along the boundary curve. We can infer that in
the interior region the magnetic field lines are || the contours of constant A_.

e B=V XA = the density of force lines is the derivative of A_ | the surfaces of

constant value; the spacing of contours of constant shows the intensity and the
direction of the field.

® The constant value of A, on the contour must be specified to solve the Poisson
equation numerically.

® The vector potential is arbitrary to the addition of the gradient of a scalar
= A=A+Vx = A=A (x,y)-A, & x=—A4A,z2
> V?Al=—uJ.inR + A.=0on C

® The value of A, on C is not physically meaningful and is not needed.

® Powerful numerical codes exist to solve more realistic magnetic field problems

where the permeable materials have large, but not infinite, values of Mﬁ
0



The figure represents a transmission line consisting of two, parallel perfect conduc-
tors of arbitrary, but constant, cross section. Current flows down one conductor and
returns via the other.

Problem 5.29

Show that the product of the inductance per unit length L and the capacitance
per unit length C is

LC = ue

where u and e are the permeability and the permittivity of the medium surrounding
the conductors. (See the discussion about magnetic fields near perfect conductors
at the beginning of Section 5.13.)



For perfect conductors, the free charges inside them are pushed to their surfaces. And
these surface charges flow to form the surface current. Let the two wires are parallel to
the z-axis. Assume the surface charge density and the surface current density on (%) wire
are o4 (p',¢') and K* = K¥2 = o4v1z. Then / o (p', ¢r)da’ -I—/ a_(p',¢")da = 0

Sy S_
because of the electrical neutrality. Due to their symmetry along the z-axis, it can be

simplified as j{ o (p,endl + j{ a_(p',¢"Ydl' =0, where Sy = C4 x Z. Similarly, the
Cy _
charge conservtion demands

f oy () 61l + f o V_ ()l = v, f o1 (0, )l v f o (o, §')de’ = 0,
on on

here v4 has to be the same everwhere in S for the stationary state. Thus v = v_ = v by
combining the both conditions.

The scalar electrical potential and the magnetic vector potential with the charge and current
distributions are

_ o (p',9!) . —(r,¢)
(D(paqb)_ﬁ(ﬁ:‘_ |I'—I"| da+£_ |I'—I‘"| CL)

NP [ oyve(p, @) v-(p,9) 4
A(p,p) = Az = 1 (\£+ P da -|—j£ |r—r’| a)

! !
:&i % O--I-(paqb’)daf_l_f —( 7¢) _EIJ,’U(I’Z
47 s, lr —r'| g |r—r|




Thus A, = epv®. Then

0P 10P -
E=-V®=- —’“-l———)
(80 p 09
18AZA 8Azf~ 18(I> 0P -
B = A= - - —¢ = —
V X 8(35 qb qwu( (‘% 810)

The electric and magnetic energies per unit length are

W, 231 € 9P\ 100 sy
We = 22/“ 27 (6p)+(p6¢ @

Z
W 1 €2 pv? 0P 10d
w = W Bdia — /(_) +( ) Co,
dp p 09

7 2uZ 27
QQ L 2
thus w,, = euv*w,. Conventionaly, W, = 50 and W,, = 2 . So w,, = LC Q2 . This

I

leads to LC = ep since v = —.

Q



Faraday's Law of Induction

@ Faraday (1831) observed a transient induced current in a circuit if
(a) the steady current in an adjacent circuit is turned on or off,
(b) the adjacent circuit with a steady current is moved relative to the 1° circuit,
(c) a permanent magnet is thrust into or out of the circuit.

® Faraday attributed the transient current to a changing magnetic flux. The
changing flux induces an electric field around the circuit, the line integral of

which is called the electromotive force (EMF). The EMF causes a current.

<I>=/ B-da & é”:]{ E-d¢
s c

do
= g:—i < by Faraday
® The induced EMF around the circuit is
proportional to the time rate of change of
magnetic flux linking the circuit.

® The sign is specified by Lenz's law, stating
that the induced current is in the direction
to oppose the change of flux through the circuit.

® Before special relativity, physical laws are considered invariant under Galilean
transformations. Physical phenomena are the same when viewed by 2 observers
moving with a constant velocity relative to one another, provided the coordinates

are related by the Galilean transformation, ¥ =r-vi¢, ¢ = 1.



® The same current is induced in a secondary circuit whether it is moved while
the primary circuit through which current is flowing is stationary or it is held

fixed while the primary circuit is moved in the same relative manner.

/ d
cy{ E -dé=- P / B-da = The EMF is proportional to the total time
C S

derivative of the flux—the flux can be changed by changing the magnetic
induction or by changing the shape/orientation/position of the circuit.

® The circuit C can be thought of as any closed path in space, not necessarily an

electric circuit. Then the equation becomes a relation between the EM fields.
Vv

® If the circuit is moving with a velocity, the total time derivative
must take into account this motion.

® The flux through the circuit may change because
(a) the flux changes with time at a point, or
(b) the translation of the circuit changes the location of the boundary.

d 0 dB 0B
— . — . B
dzt 8t+vv - dt az+(v V)

OB
—+V>< BXxv)+ V/ﬁv < v isnot a field.

_ _/ B. da—/ —da+7{ Bxv-do  (non-moving )+ (moving)
c

for the magnetic flux change



= ]{(E—VXB /—da

® Think of the circuit and surface as instantaneously at a certain position in space

in the laboratory 7{ E-dé=— /—da = E'=E+vXxB

® A charged particle co-moving with in a circuit experiences a force g E’. When
viewed from the laboratory, the charge experiences the Lorentz force gv X B.

/ d /
= y{ E -d£:——/ B-da < E =E+vXB
c dr J s
E’ is in the rest frame of circuit, the time derivative is a fotal time derivative.

® In the same frame,

]{Edl— /—da = /S(VXE+%—?)-da:O

= VXE+ E =0 = V XE=0 forelectrostatics



Energy in the Magnetic Field

® The creation of a steady-state configuration of currents and associated magnetic
fields involves an initial transient period during which the currents and fields are
brought from O to the final values.

@ If the magnetic flux through a circuit changes, an electromotive force is induced
around it. To keep the current constant, the sources of current must do work.
d W do
——=—]&=—— = W=I[6D
dt d?

A6W)=J Ao / B-da
S

:JAO'/ VXiA-da
S

:JAJ]{ SA-dg < Stokess
C

theorem

= 5W:/5A-Jd3x e Jd&’x=JAodt
2/5A-V><Hd3x < VXH=J Ampere'slaw < V-J=0
/H -VXx§A+V- H%A x V- (PxQ)=Q-VXP-P-VxQ

/ HoBd x 1 localized field



2 2 diamagnetic

= W:%/]-Ad?’x < AoxJ

® The change in energy when an object of u, is placed in a magnetic field with
fixed current sources can be treated in analogy with the electrostatics [Sec. 4.7].

B-H,-HB - -
W=/ ° 0d3x=/ & “‘)H-Hod?’x:l/ P fog.g d°x
v, 2 y 2 2J v Mok

1

W:%/ M-B,d°x « B=p,(H+M)=p, H vs WE:—%/ P-E, d’x
V, 1%

1

® This sign difference comes from the work done by the sources against the emf.

® The magnetic problem with fixed currents is analogous to the electrostatic
problem with fixed potentials on the surfaces that determine the fields.

® For a small displacement the work done against the induced emf 's is twice as
large as, and of the opposite sign to, the potential-energy change of the body.

® The force acting on the body nga—W vs F=—VU < U=—m-B

0 £ |J = const
® W is the total energy required to produce the configuration, whereas U

includes only the work to establish the permanent magnetic moment in the field,
not the work to create the magnetic moment and to keep it permanent.



Energy and Self- and Mutual Inductances
A. Coefficients of Self- and Mutual Inductance

oW:l/]-Ade:ﬂ//J(|ll:);i/<|r)d3xd3 /J|r r|

Z / / | | d3 x, FE X/j - ?broken into sums of .sepe.lrate
r—r,.

e integrals over each circuit
N _ My J(rz)-’<rz/) a3 x d° &/
S e 3wy, < A T
_E - [ ] z ] = )
i=1 i=1, j>i 3 7 13
M, = / / d”x.d’ x,
/ 7rI I, r.—r’ | !

® To establish the connection between the current density and the flux linkage

Jd&x=J dadt = /Jd%czljf d e

C

S MU:L/ J(ri)-Ai.d?’xi:LI,.y{ Ai.-dﬁzl/ VXA, -da
Iilj C, ! Iilj C, ! Ij S, :

_ 1 _ 4 — magnetic flux from circuit j
_I_/ Bij'da i IjMij—(Pij— e : e .o
: linked within circuit i




® For self-inductance, the physical argument is the same.

® For current in a medium of pu#u,, it is the best to use (7c) for magnetic energy.

_ d o d/ d/I.
o fF= —=—1 — — M. . l
dr dr Z




Diameter = 2a
B. Estimation of Self-Inductance for Simple Circuits

! e e Y
= L=— / —d°x
I/ 12

® If the current density is uniform, from {\
symmetry and Ampere's law the magnetic \\
induction is azimuthal

Circumference = C

) I . j'_f"j"'.,'..,‘_:r'\.::_v e
B=B,¢ = B,= Po” Pe p.=""(a,p)

2ma Ps ~  max
® Assume the wire and the medium are nonpermeable
dL; p
L =L(p=a)= #O/dﬁ d¢ 8n
8

’LLO ’U,O pmax pmaXZO(\/Z)

pmax dLout
=L(py>a)=5—"In /df =_——1n < C
27 a d /¢ 2T a :0(—2 )
T

L.,

® At distances large compared to \/ Z the falloff of the magnetic induction as % is
m _
Fo ) e m=0 (IA)
magnetic moment of the loop

replaced by a dipole field |B|=0 ( p
Tr



4 7 C 4 1
- I A 1
.L_Lin+Lout+LdipoleN4_ﬂ_C(ln?-l_g) <= £N1’ C>>1
4 comments:
(1) g = 4 = 1 — H
Ho = M 2 2.4
64 . . .
(2) {=——7~0.373 for a thin wire bent into a circle [Problem 5.32]
Te

(3) High frequency can get rid of the interior contribution because the current
will be confined to near the surface of the wire.

(4) 1 turn — N turns = LN:N2 L,

stot_dLl_I_dLZ_lu“O ( npmax pmax) d

Exercise

= = +1+41 =—
d¢ df  d¢ 8nx a, R A

—Ho ( %+ In di2 ) = ¢ :% compare with Problem 5.26

T va, d,



Example: Determine the mutual inductance between a
conducting triangular loop and a very long straight wire.

Apply Ampere's law and write the expression for B,, caused
by a current I, in the long straight wire:

I,
%BZ'dezuolz = Bzzluo ¢ = (1)1:/B2°da1

2mTr

The equation of the sloped line of the triangle is

ZZ[(d+b)—r]tan%:\@(d+b—r) > da,=zdr¢

] ] d+b .
= <I>1:/MO 2Zdr=\/§'u0 2/ d+b Ldr

2mr 2w J r

_\/g,uolz
27

3
= M:Mu:f“0 ((d+b)ln d;b—b)

((a’+b)ln d;b —b) =M, 1,

2T



a
Example: Find the self-inductance of a toroidal coil .
with rectangular cross section (inner radius a, outer P >
radius b, height /), that carries a total of N turns. -
) o .. . po N 1 ds
® The magnetic field inside the toroid is B = 5 AXis
TS
NI ["ds NIh_ p
el <I>Smgle:/B-da='uO h/ :'LLO In —
2T . S 2T a
= 2b -
® The total flux is N times this,
N*h ~ 22—
so the self-inductance J — Ho ¥ 7 In b
2T a

Complete winding
contains N turns

.



i

Example: Find the magnetic energy stored in a section of length £.

® According to Ampere’s law, only the field between the cylinders is nonzero,

pol . 1 Bol \° w I
= ¢ = energy density w= =—
27s 2p, \27s 87" s
It ’4q ‘e p
> W= /WdT / 27r€sds-'u0 / S _Fo In —
87°s” 4 .S 4 a
ol b : L
W = E LI’ = L= 5 In — external inductance of a coaxial line
T a

® This method of calculating self-inductance is especially useful when the current
is not confined to a single path, but spreads over some surface or volume, so that
different parts of the current enclose different amounts of flux. [Problem 5.27]



Quasi-Static Magnetic Fields in Conductors; Eddy Currents;
Magnetic Diffusion
@ Quasi-static: the finite speed of light can be neglected and fields are treated

1
as if they propagated instantaneously, ¢ —o = ——0
C

@ It is the regime where the system is small compared with the EM wavelength.
It permits neglect of the contribution of the Maxwell displacement current to
Ampere's law. And the magnetic fields dominate.

OB
= VxH=J, V-B=0, VXE+E=O, J=cE Ohm'slaw

= E:—%—?—V{) < B=VXA
0 A
=-— = =0 <« p—»0 > V:E=0 = V-A=const=0
VxB=pJ=poE « B=pH >VxVxA=V (VA)-VA=—po 22
= V'A=puo or diffusion equation = V E—,uaat for at_O
0B 0
= VZBZMJE, VZJ:'MJG—{ for o =const



® The diffusion equation allows us to estimate the time for decay of an initial
configuration of fields with typical spatial variation.

aco(3). Aeo(2)
I.2 Ot T

_ 2 _ 1 _1
> 7=0(pol®) = L_O(W) = v=-

® For a copper sphere of radius 1cm, the decay time of some initial B field inside
~5-10 ms; for the molten iron core of the earth ~ 10° years.




A. Skin Depth, Eddy Currents, Induction Heating

H., = H, cos wt
x x =20 Ho

® Boundary conditions

[—a1 — -
Hz:O+_Hz:0' + HZZO__I_IxX
L _ pl _ o
B _,=B,_ =H,coswtXx
® The linearity of the diffusion

equation implies that there is
only an x-component throughout

the half-space, H (z>0,t).

—iwt d . i kz .
H (z,t)=h(z)e ™" = ( z“/”w)h(z):() > h(z)=ets  tmal
dz solution
1+ |
= k2:i,uaw = k:iTl = 0= ,uaiw skindepth
® For copper at room temperature l —1.68%X10°°0'm = §=6.52%10 %/Vrm
o
® For seawater § =240/J/vrm <« szi
™

.HX(Z,t):ae%ei<%w)+ﬁe%ei(%+m) = =0 < Hx(z—mo,t):ﬁnit?
a=H, « H_(0",t)=H,e '

= Hx(z>0,t)=HOe_Ecos(%—wt) < only the real part counts



® The magnetic field falls off exponentially in z, with a spatial oscillation of the
same scale, being confined mainly to a depth less than the skin depth.

1 dH, _i-1, 5 (5+) _ VxH=J
o dz ) =c E

® Only a y-component of E: E =

- Ey:M—MHOB_JCOS(i—wt+3—ﬂ-) . takingthe _ 1 _pwo
V2 0 4 real part od 2
E E : :
N y — Yy — ( w_5 ) <1 < quasi-static  _, B dominates
cb, cpH, C assumption

= Jy(Z>O>=0E :QH e_‘scos(i—wt+%)
= Ky(t)E/ Jy(z,t)dz:—HOcoswt < effective surface (Eddy) current
0

® For very small skin depth, the volume current flow in the region within O (0) of
the surface acts as a surface current to reduce the magnetic field to 0 for z > ¢.

7!

-2 =
@ The time-averaged power input per unit volume P . . =(J-E)= o w H 3 e °

® The heating of the conducting medium to a depth of the order of the skin depth
is the basis of induction furnaces and of microwave cookers.



B. Diffusion of Magnetic Fields in Conducting Media
® Consider 2 infinite uniform current sheets, parallel to each other and located a

distance 2a apart, at z=—a and z=+a. For <0

H,x for |z|<a

H = J=1§ < J,=H,[8(z+a)~0(z~a)]
O otherwize
@ For J(r=0)=0, A & H decay according V2 H = O H
to the diffusion equation: —H9 Ot

® Use a Laplace transform to separate the space & time dependences

o0 2
Hx(z,t)=/ e "' h(z,p)dp = (ddz’sz)ﬁ(z,p):() = K'=pop
0 <

© Kt
symmetric about z=0 = hoccoskz = Hx(z,t)Z/ e " h(k)coskzdk

0

Hx(z,0+)=/ h(k)coskzdk=H,[O®(z+a)—0O(z—a)] < O :step function
0

- 5[ hKEtdk=n,0(ra) -6 (:=a)) = h(-k)=h() P

symmetry

H ’ —ikz 2Ho . ..
= h(k):—/ e dz= P sin k a < Fourier integral = kK=ka
—a 7"'



2 H 2 :
= HX<Z,f>O>: O/ e_'iwsmmcosﬂdh; & Y=
0 0 K a
©)=-2(-8)=2 [ & <
Error function Z(£)=—Z2(—¢)=—= | e " dx=sgn(§
N
= E(é‘—>oo)—>1—e_€2 1— L + = (¢l < 1)
- V€ 2 ¢? CT
H, a+z ) ( a—7z
= H =—|E2 + =
2 (Za\/l/t 2a\vt
2 1.2_
s -1 _
~ 0 4va’t 1+21/Clt +... ':
TUt 12v1¢t ol
H -0 as vt—0, |z|>a %506
H
H, ~ ° for 1/t>>ﬂ < t— o %
TVUi a
Z2 0.2
H=H_ _ at vi~ 5
’ 2a

)

1

2
woa

00
/e
0

2

characteristic
decay rate

2
X

T4 Sin X

d x




SIn K COS — = — + S1n
a a a

H © Kty .
> H =" ¢ (sinm<a+z)+sinm<a Z)>dh:
a a

H, [~ _. in k i
_ 0/ e—mur(SIH +dk++smk‘dk_) - kizn(lig)
0 k. k_ a

K Z 1<Sinﬁ;(a+z) .K,(a—Z))

Es
o K K2
H ——7 §j
= (e L P L L ) e ¢.= 9%
n 0 k., k_ 2a\/;
= = H _ 2
—H, (&,)+ (f_): 0 E( a+z )+E( a—7z ) v 2y = K
2 2 2a\vt 2avvt 4 ¢*
Define I(a)Z/ e_xzcosaxdx = [(0):/ e‘xzdx:ﬁ — .Gauss
0 0 2 integral

d/ * — . c —x°
N —:—/ xXe smaxdx:%/ sinaxde
0

0

o0 0 o0
2. a 2 a
— e dsinax |=—— e cosaxdx=——1
0 0 2 J 2

= dl:—%da = I(a)Z/ e_xzcosazdeZX/%e_Z = 1(0)2\/7
0

N

2 2

Feynman Technique



= 4 Oo
= — = —

d§ & J o

__ 2

&

_4 [
= — e

T™J o

> 8in X X de ” . p°
dx « p=— = =
X 2 ¢ d¢

p2 _pzsmxdx:_/ pe_pzsin(ng)d
& 0

sin(2§p)de_p2 < de_p2=—2pe_p2dp

— /we_pzdsin(Zﬁp))

Cos(2§p)dp \/%e N dEZ\/%e_g/zdﬁ/

(o):/£ ER r/ g = f_/ge—xzdx
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