
  

Chapter 5Chapter 5 Magnetostatics, Faraday's Law, 
                 Quasistatic Fields

 The radical difference between magnetostatics and electrostatics: there are no there are no 
free magnetic chargesfree magnetic charges.

 The basic entity in magnetic studies is a magnetic dipolemagnetic dipole.

 The definition of the magnetic-flux density (or magnetic induction): N = μ × B

 The magnetic phenomena was clearly understood after the connection between 
currents and magnetic fields was established.

 Conservation of charge

a decrease in charge inside a small volume with time must correspond to a flow 
of charge out through the surface of the small volume.

 In magnetostatics, no change in the net charge density anywhere in space

⇒ ∇⋅J=0

∂ ρ

∂ t
+∇⋅J =0



  

 It is incorrect to think of the equation as the 
magnetic equivalent of the electric field of a
point charge and to identify I d ℓ as the analog of q. 

 The equation has meaning only as one element of a sum over a continuous set, 
the sum representing the magnetic induction of a current loop or circuit.

 One apparent way out of this difficulty is

 This expression is time dependent, and valid only 
for small velocities  and negligible accelerations.

 For the magnetic induction of the long straight wire

 The magnitude of the magnetic induction varies with R 
in the same way as the electric field due to a long line 
charge of uniform linear-charge density.

Biot & Savart Law 

B≡|B|=
μ0 I R

4 π
∫
−∞

∞
d ℓ

(R2
+ ℓ2)3/2

=
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2 π R
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d ℓ× r̂
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=10−7 N
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 Ampere's experiments were concerned 
with the force that one current-carrying 
wire experiences in the presence of another

symmetric in dℓ1 and dℓ2 and satisfies Newton's 3rd law.

 For 2 long, parallel, straight wires                           . The force is attractive

(repulsive) if the currents flow in the same (opposite) directions.

 If a current density is in an external magnetic-flux density, the total force and 

the total torque are 

d F= I 1 d ℓ1×B

⇒ F12=
μ0

4 π
I1 I 2 ∮ ∮ d ℓ1×(d ℓ2×r12)

r12
3

d ℓ1×(d ℓ2×r12)

r12
3 =−(d ℓ1⋅d ℓ2)

r 12

r12
3 +

d ℓ1⋅r12

r12
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⇒ F12=−
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4 π
I 1 I 2 ∮ ∮ r 12

r12
3

d ℓ1⋅d ℓ2−
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4 π
I 1 I 2 ∮ d ℓ2 ∮ ∇ 1

r12

⋅d ℓ1

F=∫ J (r )×B (r ) d3 x , N=∫ r×(J×B) d3 x

d F
d ℓ
=
μ0

2 π

I 1 I 2

d

r 12



  

Differential Equations of Magnetostatics and Ampere's Law 

B (r )=
μ0

4 π
∫ J (r )× �̂

�2 d3 x ⇐ (1) vs E= 1
4 π ϵ0

∫ ρ (r ) �̂
�2 d3 x 

⇒ B (r )=
μ0

4 π
∇×∫ J (r )

�
d3 x ⇒ ∇⋅B=0 vs ∇×E=0

⇒ ∇×B=
μ0

4 π
∇×∇×∫ J (r )

�
d3 x   ∇×(∇×A )=∇ (∇⋅A)−∇2 A

=
μ0

4 π
( ∇ ∫ J (r )⋅∇ 1

�
d3 x −∫ J (r ) ∇ 2 1

�
d3 x)

=−
μ0

4 π
∇ ∫ J (r )⋅∇  1

�
d3 x +μ0 J (r ) ⇐

∇
1
�
=−∇

 1
�

∇
2 1
�
=−4 π δ ( �⃗)

=μ0 J +
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4 π
∇ ∫ ∇


⋅J (r )
�

d3 x  ⇐ integration by parts

⇒ ∇×B=μ0 J ⇐ ∇⋅J=0 for steady-state
magnetic phenomena

vs ∇⋅E=
ρ

ϵ0

where �⃗≡r−r  , �=|⃗�|=|r−r | , �̂=
�⃗
�
=

r−r 

|r−r |



  

 Ampere's law can be used for calculation of 
the magnetic field in highly symmetric cases. 

∮
C

B⋅d ℓ⇐ ∫
S

∇×B⋅d a=μ0 ∫
S

J⋅d a=μ0 I ⇐ Stokes's theorem

⇒ ∮
C

B⋅d ℓ=μ0 I (Ampere's law )



  

[Problem 5.6]
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 The basic differential laws of magnetostatics

 If

 We can apply all the techniques for the electrostatic problems to it, but the 
boundary conditions are different from those in electrostatics and macroscopic 
magnetic properties are usually involved.

 The freedom of gauge transformations allows us to make ∇A have any 
convenient functional form we wish.

 It can be understood as:    

Vector Potential

⇒ ∇ (∇⋅A)−∇2 A⇐ ∇×∇×A ⇐ ∇×B=μ0 J ⇒ −∇ 2 A=μ0 J ⇐ ∇⋅A=0
gauge choice

⇒ A (r )=
μ0

4 π
∫ J (r )
|r−r |

d3 x  in unbounded space (2) ⇐ Ψ=const

[∇×B=μ0 J
∇ ⋅ B= 0

∇⋅A=0 Coulomb gauge ⇒ ∇
2Ψ=0 ⇐ ∇


⋅J=0

⇒ Ψ=const ⇐ No current source at infinity

∇⋅B=0 ⇒ B (r )=∇×A (r ) vector potential

⇒ A (r )=
μ0

4 π
∫ J (r )
|r−r |

d3 x+∇ Ψ (r ) ⇒ A  A+∇ Ψ gauge
transformation

J=0 ⇒ ∇×B=0 ⇒ B=−∇ ΦM
magnetic

scalar potential
⇒ ∇

2ΦM=0



  

 Cylindrical symmetry ⇒ observe in the x z plane

⇒ Equation (2) is symmetric about ϕ=0 

⇒ Jx does not contribute        

Vector Potential & Magnetic Induction 
for a Circular Current Loop 

⇒ Aϕ=
μ0 I

4 π
∫ sin θ cos ϕ

|r−r |
δ (cos θ)

δ (r −a)
r

r  2 d r d Ω

=
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4 π
∫
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2 π
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=
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) K (k )−2 E (k )

√a2
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⇐ elliptic
integrals

, k2
=

4 a r sin θ
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+ r2
+2 a r sin θ

⇒ Br=
1
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∂

∂ θ
(Aϕ sin θ) , Bθ=−

1
r
∂

∂ r
(r Aϕ) , Bϕ=0 ⇐ B=∇×A

E (ϕ , k )= ∫
0

ϕ
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 d ϕ

K (k )= ∫
0

π

2 d ϕ
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ϕ


J= Jϕ ϕ̂

= I
δ (r−a)

r 
δ ( θ− π

2
) ϕ̂



= I sin θ δ (cos θ)
δ (r −a)

r 
ϕ̂


=− Jϕ sin ϕ x̂ + Jϕ cos ϕ ŷ



  

∫
0

2 π cos ϕ d ϕ

√a2
+ r2
−2 a r sin θ cos ϕ

= ∫
−π

+π
−cos ψ d ψ

√a2
+r2
+2 a r sin θ cos ψ

⇐ ψ=ϕ−π

=2 ∫
0

π
−cos 2 φ d φ

√a2
+r2
+2 a r sin θ cos 2 φ

=4 ∫
0

π

2 (2 sin2
φ−1) d φ

√a2
+ r2
+2 a r sin θ (1−2 sin2

φ)
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≡a2
+ r2
+2 a r sin θ , k2

≡
4 a r sin θ

R2

⇒ ∫
0

π
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φ−1) d φ

√a2
+ r2
+2 a r sin θ (1−2 sin2

φ)
=

1
R
∫

0

π

2 2 sin2
φ−1

√1− k2 sin2
φ

d φ

=
1
R
( 2 ∫

0

π

2 sin2
φ

√1−k2 sin2
φ

d φ−K (k )) ⇐ K (k )= ∫
0

π

2 d φ

√1−k2 sin2
φ

=
1
R
( 2

k2 ∫
0

π

2 k2 sin2
φ−1

√1−k 2 sin2
φ

d φ+
2
k2 K (k)−K (k))

=
1
R
(2−k2

) K (k )−2 E (k )

k 2
⇐ E (k )= ∫

0

π

2 √1− k2 sin2
φ d φ



  

 These can be specialized into 3 regions, near the axis (θ≪1), near the center of 
the loop (r≪a), and far from the loop (r≫a).

 Use a spherical harmonic expansion to point out similarities and differences 
between the magnetostatic and electrostatic problems. Expand | r − r  |−1,   

r≫ a ⇒

Br≈
μ0 m

2 π
cos θ

r3
(3)

Bθ≈
μ0 m

4 π
sin θ

r3
(4)

⇐

m≡π I a2

magnetic
dipole

moment

⇐
the magnetic fields far
away from a circular
current loop are dipole

Aϕ=
μ0 I

a
ℜ∑
ℓ , m

Y ℓ
m
(θ , 0)

2 ℓ+1
∫ ei ϕ′ r<

ℓ

r>
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 m
(θ
 , ϕ) δ (cos θ) δ (r −a) r  2 d r d Ω
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ℓ=1

∞ Y ℓ
1
(θ , 0)

2 ℓ+1

r<
ℓ

r>
ℓ+1 Y ℓ

1( π
2

, 0 )⇐ ei ϕ′
⇒ only m=1  contributes

r<=min (a , r) , r>=max (a , r )

Aϕ (r , θ )=
μ0 I

4
a2 r sin θ

(a2
+ r2
)
3/2 ( 1+ 15

8
a2 r2 sin2

θ

(a2
+r2
)
2 +⋯)⇐  in powers of 

a2 r2 sin2
θ

(a2
+ r2
)

2

⇒

Br=
μ0 I

2
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(a2
+ r2
)
3/2 ( 1+
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4

a2 r2 sin2
θ

(a2
+r2
)
2 +⋯)

Bθ=−
μ0 I

4
a2 sin θ

(a2
+r2
)
5 /2 ( 2 a2

−r2
+
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−3 r2

)

8
a2 r2 sin2

θ

(a2
+ r2
)
2 +⋯)



  

Y ℓ
1( π

2
, 0 )=√ 2 ℓ+1

4 π ℓ (ℓ+1)
Pℓ

1
(0)= [

0 , ℓ even

√ 2 ℓ+1
4 π ℓ (ℓ+1)

(−1)n +1
Γ (n+3 /2)

Γ (n+1) Γ (3 /2)
, ℓ=2 n+1

⇒ Aϕ=−
μ0 I a

4
∑
n=0

∞ (−1)n (2 n−1)!!
2n
(n+1)!

r<
2 n+1

r>
2 n+2

P2 n +1
1
(cos θ)

⇒ [
Br=

μ0 I a

2 r
∑
n=0

∞ (−1)n (2 n+1)!!
2n n!

r<
2 n+1

r>
2 n+2 P2 n+1 (cos θ) ⇐

d
d x
[√1− x2 Pℓ

1
(x )]

= ℓ (ℓ+1) Pℓ ( x )

Bθ= [
+
μ0 I a2

4
∑
n=0

∞ (−1)n (2 n+1)!!
2n
(n+1)!

2 n+2
2 n+1

1
a3 ( r

a
)2 n

P2 n+1
1
(cos θ ) ⇐ r <a

−
μ0 I a2

4
∑
n=0

∞ (−1)n (2 n+1)!!
2n
(n+1)!

1
r3 ( a

r
)2 n

P2 n+1
1
(cos θ) ⇐ r >a

r≫ a ⇒
Br=(3)
Bθ=(4)

⇐ only the n=0  term matters & P1
1
(cos θ)=−sin θ

r≪ a ⇒ only the n=0  term matters ⇒ a magnetic induction 
μ0 I

2 a
 in the z -axis



  

 Associated Legendre polynomials appear as well as Legendre polynomials. This 
can be traced to the vector character of the current and vector potential, as 
opposed to the scalar properties of charge and electrostatic potential.

 Can also employ an expansion in cylindrical coordinates to attack this problem.

∫ ∇⋅v d τ=∮ v⋅d a ⇐ divergence theorem

Let v  v×c   where c  is a constant vector ⇒ ∇×c=0

∇⋅(u×w)=w⋅(∇×u )−u⋅(∇×w)

=∑
m

x̂ m
∂m⋅∑

i j k

ϵ
i j k x̂ i u j wk=∑

i j k

ϵ
i j k
∂i (u j wk )=∑

i j k

ϵ
i j k
(u j ∂i wk+wk ∂i u j )

=∑
m

wm x̂m
⋅∑

i j k
ϵ

i j k x̂ i ∂ j uk−∑
m

um x̂ m
⋅∑

i j k
ϵ

i j k x̂ i ∂ j w k

⇒
∫ ∇⋅(v×c ) d τ =∫ [c⋅(∇×v )−v⋅(∇×c )] d τ =c⋅∫ ∇×v d τ

∮ (v×c )⋅d a= c⋅∮ d a×v

⇒ ∫
V

∇×v d τ = ∮
S

d a×v=− ∮
S

v×d a ⇐ c  can be any constant.



  

[Problem 5.13]



  

θ

a



  

θ

ω=ω ẑ 

Alternative as in Ex 5.11 in Griffiths’s EM book

 The integration is easier if we let r lie on the z axis, so 

that ω is tilted at an angle θ. We orient the x axis so that 

                lies in the xz plane.

 For  

∫
0

2 π

sin ϕ d ϕ= ∫
0

2 π

cos ϕ d ϕ=0

⇒ A (r )=−
μ0 σ ω a3 sin θ

2
∫

0

π
cos θ sin θ d θ

√a2
+ r2
−2 a r cos θ

ŷ

K=σ v , �=√a2
+ r2
−2 a r cos θ ⇐ r=r ẑ

v=ω×r =|
x̂ ŷ ẑ
ω sin θ 0 ω cos θ

a sin θ cos ϕ a sin θ sin ϕ a cos θ|
=a ω [ sin θ sin θ sin ϕ ẑ−cos θ sin θ sin ϕ x̂

+(cos θ sin θ cos ϕ−sin θ cos θ) ŷ ]

A (r )=
μ0

4 π
∫ K (r )

�
d a ⇐ d a=a2 sin θ d θ d ϕ

�



  

∫
−1

1 u d u

√a2
+r2
−2 a r u

=−
2

2 a r
∫
−1

1

u d √a2
+ r2
−2 a r u ⇐ u=cos θ

=−
u √a2

+r2
−2 a r u

a r |
−1

1

+
1

a r
∫
−1

1

√a2
+ r2
−2 a r u d u

=−
|a−r|+a+ r

a r
−

1
2 a2 r2

2
3
(a2
+r2
−2 a r u)

3
2 |
−1

1

 r≶=
min
max
(a , r )

=
(a+ r )3−|a−r|3

3 a2 r2 −
|a− r|+ a+r

a r
=

a3
+r3
−|a3

−r3
|

3 a2 r2 =
2
3

r<

r>
2

⇒ A (r )=−
μ0 σ ω a3 sin θ

2
2
3

r<

r>
2 ŷ

=
μ0 σ a3

ω

3

r<

r>
2

sin θ ϕ̂ ⇐ revert the coordinates ω∥ẑ , r=(r , θ , ϕ)

⇒ B=∇×A=

2
3
μ0 σ a ω uniform  inside   the spherical shell

1
3
μ0 σ a4 3 ( r̂⋅ω ) r̂−ω

r3 dipole  outside the spherical shell



  

Magnetic Fields of a Localized Current Distribution, 
Magnetic Moment

1
|r−r |

=
1
r
+

r⋅r 

r3
+⋯ ⇐ r≫ r

⇒ Ai (r )=
μ0

4 π
∫ J i (r


)

|r−r |
d3 x

=
μ0

4 π
( 1

r
∫ J i (r


) d3 x+

r
r3⋅∫ J i (r


) r  d3 x +⋯)  J  localized

∫ ∇⋅( f g J ) d3 x=∫ ( f J⋅∇ g+ g J⋅∇ f + f g ∇⋅J ) d3 x=0 (5)

⇒ [
∫ J i (r


) d3 x  =0 ⇐ f =1 , g= xi

 ,

∫ (x i
 J j+ x j

 J i) d
3 x=0 ⇐ f = xi

 , g= x j
 ,

∇

⋅J =0 divergenceless

⇒ r⋅∫ r  J i (r

) d3 x ≡∑

j

x j ∫ x j
 J i d3 x 

=−
1
2∑j

x j ∫ (x i
 J j− x j

 J i) d
3 x  ⇐ ∫ (x i

 J j+ x j
 J i) d

3 x=0

=−
1
2∑j , k

ϵi j k x j ∫ (r × J )k d3 x =− 1
2
( r×∫ r × J d3 x )

i

J (r)

r
r 



  

∫ (x J y+ y J x) d
3 x=∫ (x I y+ y I x) d ℓ= y1 I a+ x2 I b− y2 I a− x1 I b

=(x2− x1) I b−(y2− y1) I a= I a b− I a b=0

x2

y2

I

b

x1

y1

a

An arbitrary-shaped current loop can be divided into as many rectangular loops 
as it takes. Since the integral on a rectangular loop vanishes, therefore the 
integral with an arbitrary-shaped loop vanishes.



  

⇒ A (r )≈
μ0

4 π
m×r

r3

lowest
nonzero

term
⇐ m≡ 1

2
∫ r × J (r ) d3 x magnetic

moment

⇒ B (r )=∇×A=
μ0

4 π
3 r̂ ( r̂⋅m )−m

r3 ⇐ r̂≡
r
r
⇐

the form of the
field of a dipole

 Far away from any localized current distribution the magnetic induction B is 

that of a magnetic dipole of dipole moment m.

 If the current is confined to a plane,

regardless of the shape of the circuit.

 For discrete charges

m≡ I
2
∫ r×d ℓ= I×Area n̂ ⇐

r×d ℓ
2
=d a

m= 1
2∑i

qi (r i×v i) ⇐ J=∑
i

qi v i δ (r−r )

m=∑
i

qi

2 M i

L i ⇐ L i=M i (r i×v i)

=
q

2 M∑
i

L i=
q

2 M
L   if  

qi

M i

=
q
M

  is the same



  

 The classical connection between angular momentum and magnetic moment 
holds for orbital motion, but fails for the intrinsic moment.

 For electrons, the intrinsic moment is twice as large as the above. We speak of 
the electron having a g factor of 2.

 There are 2 limits, one is that the sphere of radius R contains all of the current 
and the other is that the current is completely external to the spherical volume.

∫
r <R

B (r ) d3 x= ∫
r <R

∇×A d3 x=R2 ∮
r=R

r̂×A d Ω

=−
μ0

4 π
R2 ∫ J (r ) d3 x ×∮ r̂ d Ω

|r−r |
r̂= sin θ (cos ϕ x̂ +sin ϕ ŷ )+ cos θ ẑ

=√2 π
3
[( x̂ + i ŷ ) Y 1

−1
(θ , ϕ)−( x̂− i ŷ ) Y 1

1
(θ , ϕ)+√2 Y 1

0
(θ , ϕ) ẑ ]

1
|r−r |

=∑
ℓ , m

4 π
2 ℓ+1

r<
ℓ

r>
ℓ+1

Y ℓ
 m
(θ , ϕ) Y ℓ

m
(θ
 , ϕ) ⇐ r≶=

min
max
(r  , R)

⇒ ∮
r=R

r̂ d Ω
|r−r |

=
4 π
3

r<

r>
2 r̂  ⇐ only the ℓ=1  terms survive



  

⇒ ∫
r <R

B (r ) d3 x=
μ0

3
∫ R2

r 
r<

r>
2 r × J (r ) d3 x

= [
μ0

3
∫ r × J (r ) d3 x  for r<R , r<= r , r>= R

μ0 R3

3
∫ r̂ 

r  2
× J (r ) d3 x  for r>R , r<= R , r>=r 

= [
2 μ0

3
m all the current density is inside the sphere

4 π R3

3
B (0) all the current density is outside the sphere

⇒ B (r )=
μ0

4 π
( 3 r̂ ( r̂⋅m )−m

r3
+

8 π
3

m δ (r ))

vs  E (r )= 1
4 π ϵ0

( 3 r̂ ( r̂⋅p)−p
r3

−
4 π
3

p δ (r ))



  

 The force is the change rate of the total mechanical momentum, including the 
"hidden mechanical momentum" associated with the EM momentum.

 A charged particle in a uniform magnetic induction moves circularly ⊥ the field 
and with constant velocity ∥ the field, tracing out a helical path.

 If the field is not uniform but has a small gradient, the motion of the particle 
can be affected by the force on the equivalent magnetic moment.

 Charged particles will be repelled by regions of high flux density. This is the 
basis of the "magnetic mirrors," important in the confinement of plasmas. 

Force & Torque on and Energy of a Localized Current Distribution 
in an External Magnetic Induction

F=∫ J (r )×B (r ) d3 x ⇐ B (r )=B (0)+ r⋅∇ B (0)+⋯

=∑
i j k
ϵi j k x̂ i( Bk (0) ∫ J j d3 y+∫ J j (y ) y⋅∇ Bk (0) d

3 y+⋯)
≈∑

i j k
ϵi j k x̂ i (m×∇) j Bk (0) ⇐ ∫ x i J j d3 x=−∫ x j J i d3 x

⇒ F≃(m×∇)×B=∇ (m⋅B)−m ∇⋅B ⇒ F=∇ (m⋅B) ⇒ U=−m⋅B

Feffective=mass× r̈=∇ (m⋅B)+ 1
c2

d
d t
(E×m )  in Newton's equation of motion

⇒ [ BL ]+ [
E

c λ ] ⇐ L : length scale over which В changes significantly
λ : wavelength of radiation at the typical frequencies of E



  

∫ x i J j d3 x=−∫ x j J i d3 x

⇒ ∫ J j y d3 y=∫ J j y− J y j

2
d3 y=∑

k ℓ
ϵℓ j k x̂ ℓ ∫ (y× J )k

2
d3 y=∑

k ℓ
ϵℓ j k mk x̂ ℓ

⇒ ∑
i j k
ϵi j k x̂i ∫ J j (y ) y⋅∇ Bk (0) d

3 y=∑
i j k ℓ
ϵi j k x̂ i ( ∫ J j yℓ d3 y ) ∂ℓ Bk (0)

= ∑
i j k ℓ n

ϵi j k x̂ i (ϵℓ j n mn ∂ℓ) Bk (0)=∑
i j k
ϵi j k x̂ i (m×∇) j Bk (0)=(m×∇)×B (0)

(m×∇)×B= ∑
i j k ℓ n

ϵi j k x̂ i ϵℓ j n mn ∂ℓ Bk ⇐ ∑
j
ϵ j i k ϵ j ℓ n=δi ℓ δk n−δ i n δ k ℓ

=∑
i k

x̂ i (mk ∂i Bk−mi ∂k Bk)=∑
i

m i⋅∇ Bi−m (∇⋅B )

=∇ (m⋅B)−m (∇⋅B) for m  is not a function of r  here .



  

     

 Interpret the force as the negative gradient of a potential energy
A dipole tends to orient itself parallel to the field to have lowest potential energy. 

 The potential energy is not the total energy of the magnetic moment in the 
external field. Work is needed to keep the current, producing m, constant. 

 The potential energy expression can be employed in the treatment of magnetic 
effects on atom, as in the Zeeman effect or for the fine and hyperfine structure. 

 The fine structure comes from differences in energy of an electron's intrinsic 
magnetic moment in the magnetic field seen in its rest frame [chapter 11].

 The hyperfine interaction is that of the magnetic moment of the nucleus with 
the magnetic field produced by the electron. 

N=∫ r ×(J×B) d3 x≈∫ r ×(J×B0) d
3 x ⇐ B0≡B (0)

=∫ [(r ⋅B0) J −(r ⋅J )B0] d
3 x  ⇒ g= f =r  in (5) ⇒ ∫ r⋅J d3 x=0

∫ (x i J j+ x j J i) d
3 x=0 ⇒ 2 ∫ [r⋅B0] J d3 x=∫ [(B0⋅r ) J−(B0⋅J ) r ] d3 x

⇒ N=m×B (0)

H HFS=−μN⋅B (0)=−μN⋅[Bdipole (0)+Borbit (0)] ⇐ Borbit (0)=
μ0

4 π
e

me

L
r3

since Borbital (0)∼
μ0 I

2 r
∼
μ0 2 π r2 I

4 π r3
∼
μ0

4 π
2 m
r3
∼
μ0

4 π
e

me

L
r3

⇒ U=−m⋅B



  

 The expectation values of the Hamiltonian in the various atomic (and nuclear 
spin) states yield the hyperfine energy shifts.

 For spherically symmetric s states only  the 2nd term of (6) has value:

 For ℓ≠0, the hyperfine energy comes entirely from the 1st term of (6) because 
the wave functions for ℓ≠0 vanish at the origin.

 μe points in the opposite direction to the electron's spin because e is negative.

 E between the singlet and triplet states of the 1s state of atomic hydrogen is 
the source of the famous 21cm line in astrophysics.

 Comparing eqn (4.20) & (5.64), if the magnetic moments were caused by

magnetic charges, the coefficient         in E would be replaced by            !

 The astrophysical hyperfine line of hydrogen would be at 42cm wavelength, 
and the singlet and triplet states would be reversed.

−
4 π
3

⇒ Δ E=−
μ0

4 π
8 π
3
|ψe (0)|

2
⟨μe⋅μN ⟩

8 π
3

⇒ H HFS=
μ0

4 π r3 μN⋅( μe−3 (μe⋅r̂ ) r̂−
e
m

L )− 2 μ0

3
μe⋅μN δ (r ) (6)



  

 In macroscopic problems the current density is not a known function of 
position. Only its average over a macroscopic volume is known or pertinent.

 Average macroscopic magnetization

 Suppose there is also a macroscopic current density

Macroscopic Equations, Boundary Conditions on В and H

M (r )=∑ N i ⟨m i ⟩ ⇐ m i :
molecular
magnetic
moment

Δ A=
μ0

4 π
( J (r )

�
+M (r )× �̂

�2 ) Δ V  ⇐ vs chapter 4

⇒ A=
μ0

4 π
∫ ( J (r )

�
+M (r )× �̂

�2
) d3 x  (7 a)  integration by parts

+ M  is localized

=
μ0

4 π
∫ J (r )+∇ ×M (r )

�
d3 x ⇐ M (r )× �̂

�2
=M×∇  1

�

⇒ J M≡∇×M ⇐ effective current density from magnetization

⇒ ∇×B=μ0 (J +∇×M ) ⇐ macroscopic equivalent ∇×Bmicro=μ0 J micro

⇒ magnetic field H≡ 1
μ0

B−M ⇒
∇×H= J
∇ ⋅ B=0

vs ∇ ⋅ D=ρ
∇×E=0

⟨∇⋅Bmicro=0⟩ ⇒ ∇⋅B=0 ⇒ B=∇×A



  

Bound CurrentsBound Currents
 Let the magnetic dipole moment per unit volume is M in magnetized material.

 The vector potential of a single dipole m is

 In the magnetized object, each volume element d3 x  carries a dipole moment     

  M d 3x , so the total vector potential is

 Instead of integrating the contributions of all the infinitesimal dipoles, we first 
determine the bound currents, and then find the field they produce.

A (r )=
μ0

4 π
∫ M (r )× �̂

�2
d3 x=

μ0

4 π
∫ (M (r )×∇  1

�
) d3 x  ⇐ ∇

 1
�
=

�̂

�2

=
μ0

4 π
( ∫ ∇ ×M (r )

�
d3 x−∫ ∇ ×M (r )

�
d3 x )  d a = n̂ d a

=
μ0

4 π
( ∫ ∇


×M (r )
�

d3 x+∮ M (r )
�
×d a )

J M≡∇×M , K M≡M× n̂ ⇒ ∇⋅J M=0
volume current surface current

⇒ A (r )=
μ0

4 π
∫
V

J b (r

)

�
d3 x+

μ0

4 π
∮
S

K b (r

)

�
d a

�⃗

A (r )=
μ0

4 π
m× �̂
�2
=
μ0

4 π
m×∇  1

�



  

n̂J M
n̂

K M K M

⇒ B (r )=∇×A=
μ0

4 π
∫
V

J M (r

)× �̂

�2 d3 x +
μ0

4 π
∮
S

K M (r

)× �̂

�2 d a



  

 The fundamental fields are E & B. The derived fields D & H are introduced for 

convenience to take into account in an average way the contributions to ρ and J 
of the atomic charges and currents.

 To complete the description of macroscopic magnetostatics, there must be a 
constitutive relation between H and B.

 The phenomenon of hysteresishysteresis implies that B is not a 

single-valued function of H. In fact, F(H) depends on the 
history of preparation of the material.

 Assuming B ∥ H 

 For high-permeability substances,             can be as 

high as 106. Typical values of initial relative permeability 
range from 10 to 104. 

 For the boundary conditions at an interface   

B=μ H ⇐ isotropic diamagnetic and paramagnetic substances, linear
B=F (H ) ⇐ ferromagnetic substances, nonlinear μ : magnetic permeability

n̂ ⋅ (B2−B1 )=0
n̂×(H 2−H1)=K

⇐
n̂ : normal vector
K : surface current density

⇒
B2

=B1



H2
∥
−H1

∥
=K × n̂

μ (H )
μ0

⇒ μ (H )≡
d B
d H



  

 For media satisfying linearlinear relations

independent of the direction 
of H1 (except            ).

 The boundary condition on 
H at the surface of a material 
of very high permeability is 
the same as for the electric field at the surface of a conductor.

 We may therefore use electrostatic potential theory for the magnetic field. The 
surfaces of the high-permeability material are approximately "equipotentials," 
and the lines of H are normal to these equipotentials. 

lim
μ1

μ2
∞ ⇒ H2 ∝ n̂

B2

=B1



B2
∥

μ2
=

B1
∥

μ1

or μ2 H 2

=μ1 H 1



H2
∥
=H1

∥

H1⊥ n̂

μ1≫ μ2 ⇒ H 2

≫ H 1





  

 The basic equations of magnetostatics

A. Generally Applicable Method of the Vector PotentialA. Generally Applicable Method of the Vector Potential

 Parallels the treatment of uniform isotropic dielectric media. The boundary 
conditions must be matched across the interface.

B. B. JJ=0=0; Magnetic Scalar Potential; Magnetic Scalar Potential

 M can also be use for closed loops of current. Then M is proportional to the 
solid angle subtended by the boundary of the loop at the observation point 
[Problem 5.1]. Such a potential is evidently multiple-valued.

Methods of Solving Boundary Value Problems in Magnetostatics

∇⋅B=0 ⇒ B=∇×A ⇒ ∇×H [∇ ×A ]= J ⇐ H=H [B ]
B=μ H ⇒ ∇×(μ

−1
∇×A)= J ⇒ ∇ (∇⋅A)−∇2 A=μ J ⇐ μ=const

∇⋅A=0 (Coulomb gauge ) ⇒ ∇
2 A=−μ J

∇⋅B=0 , ∇×H= J , B=B [H ]

J=0 ⇒ ∇×H=0 ⇒ H=−∇ ΦM ⇐ ΦM : magnetic
scalar potential

vs E=−∇ Φ

B=B [H ] ⇒ ∇⋅B [−∇ ΦM ]=0 ⇒ ∇⋅(μ ∇ ΦM )=0 ⇐ B=μ H

For μ=const ⇒ ∇
2ΦM=0 + the boundary conditions for H
∇

2ΨM=0 ⇐ B=−∇ ΨM + the boundary conditions for B



  

. Hard Ferromagnets (С. Hard Ferromagnets (С M given and  given and J=0))
 "Hard" ferromagnets has a magnetization that is independent of applied fields 

for moderate field strengths. Such materials can be treated as if they had a fixed, 
specified magnetization.

(a) Scalar Potential(a) Scalar Potential

 An arbitrary localized distribution of magnetization asymptotically has a dipole 
field with strength given by the total magnetic moment of the distribution.

 If a "hard" ferromagnet has a volume and surface, we specify M inside the 
volume and assume that it falls suddenly to 0 at the surface, and assign an 
effective magnetic surface-charge density

∇⋅B=μ0 ∇⋅(H +M )=0 ⇒ ∇
2ΦM=−ρM ⇐

ρM=−∇⋅M
H =−∇ ΦM ⇐ J=0

⇒ ΦM (r )=
1

4 π
∫ ρM (r


)

�
d3 x=− 1

4 π
∫ ∇


⋅M (r )
�

d3 x if no boundary
surface

=
1

4 π
( ∫ M⋅∇  1

�
d3 x − ∮

r ′ ∞

M
�
⋅d a ) ⇐ M well behaved

& localized

⇒ ΦM (r )=−
1

4 π
∇⋅∫ M (x)

�
d3 x  (7) ⇐ ∇

 1
�
=−∇

1
�

≈−
1

4 π
∇

1
r
⋅∫ M (r ) d3 x=

m⋅r
4 π r3

⇐ m≡∫ M d3 x , r≫ 0

σM= n̂⋅M



  

Φ (r )=− 1
4 π
∇⋅∫ M

�
d3 x= 1

4 π
∫ M⋅∇  1

�
d3 x = 1

4 π
∫
V

M⋅∇  1
�

d3 x 

=
1

4 π
∮
S

M
�
⋅d a − 1

4 π
∫
V

∇

⋅M
�

d3 x ⇐ M (r ∉V )=0 , d a= n̂ d a

⇒ Φ (r )= 1
4 π
∫
V

ρM

�
d3 x+ 1

4 π
∮
S

σM

�
d a ⇐ ρM=−∇⋅M , σM=M⋅n̂

if M  is uniform ⇒ Φ (r )= 1
4 π
∮
S

M
�
⋅d a (7 b)

 (7) is generally applicable even for the limit of discontinuous distributions of 
M. Never combine the surface integral of σM with (7)!

(b) Vector Potential(b) Vector Potential

 If the distribution of M is discontinuous, a surface integral is needed.

 If M is constant throughout the volume, only the surface integral survives.

⇒ ∇
2 A=−μ0 J M ⇐ Coulomb gauge + J M=∇×M

⇒ A (r )=
μ0

4 π
∫
V

∇

×M (r )
�

d3 x 

B=∇×A ⇒ ∇×H=∇×( B
μ0
−M )=0

⇒ A (r )=
μ0

4 π
∫
V

∇

×M (r )
�

d3 x +
μ0

4 π
∮
S

M (r )
�
×d a ⇐ (7 a)



  

 Consider Eq. (7b) of the previous section,

 Bin ∥ M, while H in is antiparallel.

 For the sphere with uniform 
M, the fields are not only dipole 
asymptotically, but also close 
to the sphere.

 For this geometry (and this only) 
there are no higher multipoles.

Uniformly Magnetized Sphere

M=M0 ẑ ⇒ σM= n̂⋅M= r̂⋅M=M0 cos θ

⇒ ΦM (r , θ)=
M0 a2

4 π
∫ cos θ

�
d Ω ⇐ ρM=0

=
1
3

M0 a2 r<

r>
2 cos θ ⇐ only the ℓ=1

term survives
⇐ r≶=

min
max
(a , r )

r <a ⇒ ΦM=
1
3

M0 r cos θ= 1
3

M 0 z ⇒ H in=−
1
3

M , B in=
2
3
μ0 M

r >a ⇒ ΦM=
1
3

M0 a3 cos θ

r2 =
m

4 π
cos θ

r2 ⇒ m= 4 π a3

3
M

HB



  

 The lines of В are continuous closed paths, but those of H terminate on the 

surface because there is an effective surface-charge density σM .

 Use (7)

 Use part C(b)

 One can also try the r as z method.

⇒ ΦM (r , θ)=− 1
4 π

M0
∂

∂ z
∫

0

a

r  2 d r ∫ d Ω

�

=−M 0 cos θ
∂

∂ r
∫

0

a r  2

r>

d r=
1
3

M0 a2 r<

r>
2 cos θ ⇐ only ℓ=0

term survives

K M=M× r̂ =M0 sin θ ϕ̂=M0 sin θ (−sin ϕ x̂ + cos ϕ ŷ ) ⇐ M=M 0 ẑ

⇒ A=
μ0

4 π
∮
S

K M

�
a2 d Ω=

μ0

4 π
a2 M0 ∮ sin θ

�
(− sin ϕ x̂ + cos ϕ ŷ ) d Ω

=
μ0

4 π
a2 M0 ∮ √2 π

3

( ŷ− i x̂ ) Y 1 ,−1−(ŷ + i x̂ ) Y 11

�
d Ω

=
μ0

3
M 0 a2 r<

r>
2 sin θ ϕ̂ ⇐

with the expansion of 1
�

only the ℓ=1, m=±1  terms survive
⇒ B=∇×A ⇒ give the same result

⇒ J M=∇

×M=0



  

Using a scalar potential (7) as the alternative 1:

ΦM=−
1

4 π
∇⋅∫ M

�
d3 x

∫ M
�

d3 x=M ∫ d3 x

�
=M ∫ r  2 sin θ d r d θ d ϕ

√r2
+ r 2−2 r r  cos θ

⇐
choose r= r ẑ
temporarily

=
2 π M

r
∫

0

a

r  (r + r−|r−r |) d r =2 π M [
a2
−

r2

3
  for r <a  with ∫

0

r

+ ∫
r

a

2 a3

3 r
 for r >a ⇒ r > r

ΦM=−
1

4 π
∇⋅∫ M

�
d3 x ⇒ Φin (r , θ )=

M
3

z , Φout (r , θ)=
M
3

a3

r2 cos θ

H=−∇ ΦM ⇒ H in=−
1
3

M , Hout=
M
3

a3

r3 (2 cos θ r̂ +sin θ θ̂)

B=μ0 (H +M ) ⇒ B in=
2
3
μ0 M , Bout=μ0

M
3

a3

r3 (2 cos θ r̂ +sin θ θ̂)



  

Using a scalar potential (7b) as the alternative 2:

Use the similar trick like the one with vector potential:

Choose r=r ẑ ,   put M in the x z -plane ⇒ M=M sin θ x̂ +M cos θ ẑ
And r̂ =sin θ cos ϕ x̂ +sin θ sin ϕ ŷ + cos θ ẑ
⇒ σM=M⋅r̂ =M (sin θ sin θ cos ϕ+ cos θ cos θ)

⇒ ∮ σM

�
d a=M ∮ sin θ sin θ cos ϕ+ cos θ cos θ

√r2
+ a2
−2 a r cos θ

a2 sin θ d θ d ϕ

=2 π M a2 cos θ ∫
0

π cos θ sin θ d θ

√r2
+a2
−2 a r cos θ

=
2 π M

3 r2 (a
3
+ r3
−|a3

−r3
|) cos θ

=
4 π M

3

r<
3

r2
cos θ ⇐ r<=min (r , a)

⇒ ΦM=
M
3

r<
3

r2 cos θ ⇒
Φin (r , θ )=

M
3

r cos θ=
M
3

z

Φout (r , θ)=
M
3

a3

r2 cos θ

⇒ H=−∇ ΦM , B=μ0 (H +M )

M

θ

ΦM=
1

4 π
∮
S

σM

�
d a

�



  

Using a scalar potential as the alternative 3:

H=−∇ ΦM ⇐ ∇×H= J f =0 ⇐ no free current

∇
2ΦM=0 ⇐ ∇⋅H=∇⋅M=0 ⇐ M=M ẑ

⇒ Φin (r , θ )=∑
ℓ=0

C ℓ r ℓ Pℓ (cos θ) , Φout (r , θ )=∑
ℓ=0

Dℓ
r ℓ+1

Pℓ (cos θ)

Boundary
conditions:

(1) Φin (a)=Φout (a) , (2) B in , r (a)=Bout , r (a) ⇐ B=μ0 (H +M )

⇒ (1) C ℓ=
Dℓ

a2 ℓ+1
(2) μ0 (C1+M )=−2 μ0

D1

a3
, μ0 ℓ C ℓ=−μ0

ℓ+1
a2 ℓ+1

Dℓ  for ℓ≠1

⇒ C1=
M
3

, D1=
M
3

a3 , C ℓ=Dℓ=0  for ℓ≠1

⇒ Φin (r , θ )=
M
3

z , Φout (r , θ)=
M
3

a3

r2 cos θ

⇒ H in=−
1
3

M , Hout=
1
3

a3

r3 [3 ( r̂⋅M ) r̂−M ]

⇒ B in=
2
3
μ0 M , Bout=

μ0

3
a3

r3 [3 ( r̂⋅M ) r̂−M ]



  

 Consider in the space

 Consider a paramagnetic or diamagnetic sphere of permeability μ, M comes 
from the external field

analogous to the polarization of a dielectric sphere in a uniform electric field.

 For a ferromagnetic substance, the above argument fails because the existence 
of permanent magnets contradicts this result.

 The nonlinear constitutive relation and the phenomenon 
of hysteresis allow the creation of permanent magnets.

 Increase B 0 till saturation then decrease it to 0.

 The slope of the lines range from 0 for a flat disc to − 
for a long needle-like object. Thus a larger internal 
magnetic induction can be obtained with a rod geometry 
than with the other shapes.     

Magnetized Sphere in an External Field; Permanent Magnets

B in=μ H in ⇒ B0+
2 μ0

3
M=μ( 1

μ0
B0−

1
3

M ) ⇒ M= 3
μ0

μ−μ0

μ+2 μ0

B0

B0=0 gives M

B0=μ0 H0 ⇒
B in=B0+

2 μ0

3
M

H in=
1
μ0

B0−
1
3

M
(8) ⇐ inside the permanent

magneitzed sphere

(8) ⇒ B in+2 μ0 H in=3 B0 ⇐ line with slope −2



  

 Cosider B0=μ0 H0 in an empty space. A permeable body is placed in the region. 

 For high permeability, the field lines should tend to be normal to the body’s 
surface. If the body is hollow, the field in the cavity should be smaller than the 
external field, vanishing in the limit μ∞, ie, magnetic shielding.

 

Magnetic Shielding, Spherical Shell of Permeable Material in a 
Uniform Field

J=0 ⇒ H=−∇ ΦM ⇒ [B=μ H
∇⋅B=0

⇒ ∇⋅H=0 ⇒ ∇
2ΦM=0

r >b ⇒ ΦM=−H 0 r cos θ +∑
αℓ

r ℓ+1 Pℓ (cos θ)

a<r <b ⇒ ΦM=∑( β ℓ r ℓ+
γ ℓ

r ℓ+1 ) Pℓ (cos θ )

r <a ⇒ ΦM=∑λℓ r ℓ Pℓ (cos θ)

⇒

∂ ΦM

∂ θ ∣r= b
=

∂ ΦM

∂ θ ∣r=b–
,

∂ΦM

∂ θ
(a)=

∂ ΦM

∂ θ
(a–)

μ0

∂ ΦM

∂ r
(b)=μ

∂ ΦM

∂ r
(b–) , μ

∂ ΦM

∂ r
(a)=μ0

∂ΦM

∂ r
(a–)

⇐
H θ & Br are
continuous at
r=a & r=b

B0



  

⇒

α1− b3
β1− γ1 = b3 H 0

2 α1+μr b3
β1−2 μr γ1 =−b3 H 0

a3
β1 + γ1−a3

λ1= 0

μr a3
β1−2 μr γ1−a3

λ1= 0

⇐
μr≡

μ

μ0

all ℓ≠1 terms vanish

⇒ α1=
(2 μr +1) (μr−1) (b3

−a3
)H 0

(2 μr +1) (μr+2)−2
a3

b3
(μr−1)2

, λ1=
−9 μr H 0

(2 μr+1) (μr+2)−2
a3

b3
(μr−1)2

 The potential outside the spherical shell corresponds to a uniform field H 0 plus 

a dipole field with dipole moment α1 oriented parallel to H 0. Inside the cavity, 
there is a uniform magnetic field parallel 
to H 0, equal to −λ1.

 with μr~103 to 106, a shield causes a 
great reduction in the field inside it, even 
with a relatively thin shell.

μ≫ μ0 ⇒

α1 b3 H 0

−λ1
9 b3

2 μr (b
3
− a3
)

H 0∝
1
μ

β1=
−3 (2 μr+1) b3 H 0

b3
(2 μr+1) (μr+2)−2 a3

(μr−1)2
, γ1=

−3 (μr−1) a3 b3 H 0

b3
(2 μr+1) (μr+2)−2 a3

(μr−1)2



  

Example: A Magnetic Sphere in a Uniform External Magnetic Field.
Consider a sphere of radius R, made of a linear magnetic material 
of permeability μ1, embedded in a medium of permeability μ2. 

The sphere is placed in a magnetic field H 0 which is initially 

uniform and pointing along the z direction.

Current=0 ⇒ H=−∇ Φ ⇐ ∇×H= J f=0 , B=μ H
⇒ Φ (r ∞)=−H 0 z=−H 0 r cos θ , choose Φ (r=0)=0

⇒ Φin=∑ C ℓ r ℓ Pℓ (cos θ ) , Φout=−H 0 r cos θ+∑
ℓ=0

Dℓ
r ℓ+1

Pℓ (cos θ)

Boundary
conditions:

(1) Φin (R)=Φout (R) , (2) Bin , r (R)=Bout , r (R )

⇒

C1=
D1

R3
−H 0 , C ℓ=

Dℓ
R2 ℓ+1

 for ℓ≠1 ⇐ (1)

μ1 C1=−μ2 (2
D1

R3 +H 0) , μ1 ℓ C ℓ=−μ2 (ℓ+1)
Dℓ

R2 ℓ+1  for ℓ≠1 ⇐ (2)

⇒ C1=−
3 μ2

μ1+2 μ2

H 0 , D1=
μ1−μ2

μ1+2 μ2

H 0 R3 , C ℓ=Dℓ=0  for ℓ≠1

⇒ B in=
3 μ1 μ2

μ1+2 μ2

H0 , Bout=μ2( H0+
μ1−μ2

μ1+2 μ2

R3

r3 [3 ( r̂⋅H0) r̂−H 0])



  

 At the interface between conductor & nonconductor,        fields with harmonic 
time dependence penetrate a distance of the order of 

                   into the conductor. σ: conductivity

 Define magnetostatic problems with perfect 
conductors as the limit of varying fields as 
ω0, provided at the same time that 
ωσ. Then the magnetic field can 
exist outside and up to the surface 
of the conductor, but not inside.

 

Effect of a Circular Hole in a Perfectly Conducting Plane with an 
Asymptotically Uniform Tangential Magnetic Field on One Side

B=0 , n̂×H∥=K vs E∥=0 , D=σ ⇐ σ :  surface-charge density

No currents except on the surface z=0
⇒ H=−∇ ΦM ⇒ ∇

2ΦM=0 ⇐ ∇⋅B=0

⇒ ΦM (r )= [−H 0 y+Φ(1) ,  for z>0

0 – Φ(1) ,  for z<0
⇐ [H x

(1)  & H y
(1)  are odd in z

H z
(1)  & Φ(1)  are even in z

⇐
the symmetry
properties of

the added fields

⇒ Φ(1)= ∫
0

∞

A (k ) e−k |z| J 1 (k ρ) sin ϕ d k ⇐ only
m=1

⇐ (3.106)  cylindrically symmetric
ΦM (r∞)=ΦM (y=ρ sin ϕ)

δ=√ 2
μ ω σ



  

J (r )= J (z=0)= J x x̂ + J y ŷ

⇒ B(1) (r )=
μ0

4 π
∫ J (r )×

r−r 

|r−r |3
d3 x

=
μ0

4 π
∫ (J x x̂ + J y ŷ )×

(x− x ) x̂ +( y− y) ŷ + z ẑ
[(x− x )2+(y− y)2+ z2

]
3/2 d3 x 

=
μ0

4 π
∫ J y z x̂− J x z ŷ +[J x (y− y)− J y (x− x )] ẑ

[(x− x )2+(y− y)2+ z2
]
3/2 d3 x 

H (1) ∝ B(1) ⇒ H x
(1)
(z)=−H x

(1)
(z–) , H y

(1)
(z)=−H y

(1)
(z–)

H z
(1)
(z)= +H z

(1)
(z–)=−∂zΦ

(1)
⇒ Φ(1) (z)=+Φ(1) (z–)

−∇ ΦM
(1)
⇐ H (1)

=
B(1)

μ0
=

1
4 π

3 r̂ ( r̂⋅m)−m
r3

⇐ ΦM
(1)
=±Φ(1)

2 H 0 a3

3 π
y
r3

⇒ m=± 8 a3

3
H0  for z ≷ 0



  

⇒

ΦM continuous across z=0 for 0≤ρ<a
∂ ΦM

∂ z
=0 at z=0 for a<ρ<∞

⇐ boundary
conditions

Φ
∣z=0=Φ∣z=0–

B=0

⇒
∫

0

∞

A (k ) J 1 (k ρ) d k=
H 0 ρ

2
for 0≤ρ< a

∫
0

∞

k A (k ) J 1 (k ρ) d k=0 for a<ρ<∞
⇐ dual integral eqns

g ( y)=
2 Γ (n+1)
√π Γ (n+1 /2)

j n (y)

=
Γ (n+1)
Γ (n+1 /2) √2

y
J n+1 /2 ( y)

⇐

∫
0

∞

g (y ) J n (y x ) d y= xn for 0≤ x<1

∫
0

∞

y g (y) J n ( y x ) d y=0 for 1< x<∞

⇒ A (k )=
2 H 0 a2

π
j1 (k a) ⇐ g=

2 A (k )

H 0 a2 , n=1 , x=
ρ

a
, y= k a

⇒ Φ(1) (r)=
2 H 0 a2

π
∫

0

∞

j1 (k a) e−k |z| J 1 (k ρ) sin ϕ d k ⇒ Φ(1) (∞)
2 H 0 a3

3 π
y

r3

the potential of a dipole aligned in the у direction, the direction of H 0

 At large distances the circular hole is equivalent to a magnetic dipole with

m=± 8 a3

3
H 0  for z ≷ 0



  

∫
0

∞

j1 (k a) e−k |z| J 1 (k ρ) d k=√
π

2 a
∫

0

∞ J 3 /2 (k a) J 1 (k ρ)

ek |z|
√k

d k

=
ρ

a2
∫

0

a / R x2 d x

√1− x2
=
ρ

2 a2
( sin−1 a

R
−

a √R2
−a2

R2
)

where R= √(a+ρ)
2
+ z2
+√(a−ρ)2+ z2

2
6.752 of Table of Integrals, Series, and Products, Gradshteyn & Ryzhik (2007)

⇒ Φ(1) (r)=
2 H 0 a2

π
sin ϕ ∫

0

∞

j1 (k a) e−k |z| J1 (k ρ) d k

=
H 0

π
ρ sin ϕ ( sin−1 a

R
−

a
R √1− a2

R2
)

⇒ H(1) (z ≷ 0)≡∓∇ Φ(1) ⇒ H=Θ (z)H0+H
(1)



  

 In the opening

 Comparing the magnetic problem with the similar electrostatic problem shows 
the roles of tangential and normal components of fields have been interchanged.

 The dipoles point is parallel to the asymptotic fields, but the magnetic moment 
is 2 times larger than the electrostatic moment for the same field strengths.

 For arbitrarily shaped holes the far field in the electrostatic case is that of a 
dipole  the plane, but the magnetic case has its effective dipole in the plane, the 
direction of the magnetic dipole depends on both the field direction and the 
orientation of the hole.

Selected problems: 3, 7, 14, 20, 21, 26, 27, 30

m

H0 H0

m–

[
H∥ =

1
2

H 0

H z (ρ , 0)=
2 H 0

π
ρ sin ϕ

√a2
−ρ

2

   for z=0 , 0≤ρ< a



  

 Magnetic fields in the presence of highly permeable materials can be evaluated 
numerically in 2d by the relaxation method or by the finite element method.

 Consider the boundary conditions for the field components at the smooth 
interface of a highly permeable medium and a nonpermeable one.

 The boundary conditions are that the tangential component of H and the normal 

component of B are continuous across the interface, if no surface currents.

 For a given external field B(0) in the nonpermeable region, the components of B 

(& H) in the highly permeable medium are more closely parallel to the interface.

 These 2 relations are useful in 
learning the appropriate boundary
conditions of exterior and interior 

problems in the limit              .

Numerical Methods for 2D Magnetic Fields

|B|
2
=B

(0)
 2
+
μ

2

μ0
2 B

(0)
∥2

⇒
|B|2

2 μ
=

B
(0)
 2

2 μ
+
μ

2 μ0
2

B
(0)
∥2

energy density

μ
μ0
∞



  

 The most familiar static magnetic fields are those around a permanent magnet 
of high permeability excited by remote current-carrying windings.

the "external" magnetic field at the surface is ⊥ the interface.

 Consider a 2d “interior” problems, with steady current in the 3rd direction in a 
uniform, highly permeable conducting medium. The current produces a magnetic 
induction both inside and outside the medium.

 The boundary conditions assure that В is ∥ the 

surface just inside as                                            .

 If the internal field is ∥ the boundary 

J=0 ⇒ ∇×H=0 ⇒ H=−∇ ΦM ⇒
∇

2ΦM=0
ΦM=const at boundary ⇐ B

(0)
∥
=0

⇒ B∥ ℓ̂⇐ B=∇×A=(n̂ ∂+ ℓ̂ ∂∥+ ẑ ∂z)× Az ẑ

=
∂ Az

∂ ℓ
n̂−
∂ Az

∂ n
ℓ̂ ⇒

∂ Az

∂ ℓ
=0  on C

J= J z ( x , y) ẑ ⇒ A= Az ẑ ⇒ ∇2 Az=−μ J z

⇒ Bx=
∂ Az

∂ y
, By=−

∂ Az

∂ x
, B z=0

μ
μ0
∞ ⇒ B

(0)
∥
=0 ⇐

|B|
2

2 μ
=

B
(0)
 2

2 μ
+
μ

2 μ0
2

B
(0)
∥2
=finite, or

B
(0)
∥

μ0
=

B∥

μ

n̂

μ
μ0
∞ ⇒ μ H

=μ0 H
(0)




  

 The vector potential is constant along the boundary curve. We can infer that in 
the interior region the magnetic field lines are ∥ the contours of constant Az.

 B=∇×A ⇒ the density of  force lines is the derivative of Az  the surfaces of 
constant value; the spacing of contours of constant shows the intensity and the 
direction of the field.

 The constant value of Az on the contour must be specified to solve the Poisson 
equation numerically.

 The vector potential is arbitrary to the addition of the gradient of a scalar

 The value of Az on С is not physically meaningful and is not needed.

 Powerful numerical codes exist to solve more realistic magnetic field problems 

where the permeable materials have large, but not infinite, values of       .
μ

μ0

⇒ A =A +∇ χ ⇒ Az

= Az ( x , y )− A0 ⇐ χ=− A0 z

⇒ ∇
2 Az


=−μ J z  in R + Az


=0  on C



  



  



  



  

 Faraday (1831) observed a transient induced current in a circuit if 
  (a) the steady current in an adjacent circuit is turned on or off, 
  (b) the adjacent circuit with a steady current is moved relative to the 1st circuit,
  (c) a permanent magnet is thrust into or out of the circuit.

 Faraday attributed the transient current to a changing magnetic flux. The 
changing flux induces an electric field around the circuit, the line integral of 
which is called the electromotive force (EMF). The EMF causes a current.

 The induced EMF around the circuit is 
proportional to the time rate of change of 
magnetic flux linking the circuit. 

 The sign is specified by Lenz's lawLenz's law, stating 
that the induced current is in the direction
to oppose the change of flux through the circuit.

 Before special relativity, physical laws are considered invariant under Galilean 
transformations. Physical phenomena are the same when viewed by 2 observers 
moving with a constant velocity relative to one another, provided the coordinates 
are related by the Galilean transformation, r = r – v t,  t = t.

Faraday's Law of Induction 

Φ= ∫
S

B⋅d a & ℰ= ∮
C

E⋅d ℓ

⇒ ℰ=−
d Φ
d t

⇐ by Faraday



  

 The same current is induced in a secondary circuit whether it is moved while 
the primary circuit through which current is flowing is stationary or it is held 
fixed while the primary circuit is moved in the same relative manner.

                                                      The EMF is proportional to the total time

derivative of the flux—the flux can be changed by changing the magnetic 
induction or by changing the shape/orientation/position of the circuit.

 The circuit С can be thought of as any closed path in space, not necessarily an 
electric circuit. Then the equation becomes a relation between the EM fields.

 If the circuit is moving with a velocity, the total time derivative 
must take into account this motion.

 The flux through the circuit may change because 
   (a) the flux changes with time at a point, or 
   (b) the translation of the circuit changes the location of the boundary.

d
d t
=
∂

∂ t
+v⋅∇ ⇒

d B
d t
=
∂ B
∂ t
+(v⋅∇) B

=
∂ B
∂ t
+∇×(B×v )+(∇⋅B) v ⇐ v  is not a field.

⇒
d

d t
∫
S

B⋅d a= ∫
S

∂ B
∂ t
⋅d a+ ∮

C

B×v⋅d ℓ ⇐(non-moving)+(moving)
for the magnetic flux change

∮
C

E⋅d ℓ=−
d

d t
∫
S

B⋅d a ⇒



  

 Think of the circuit and surface as instantaneously at a certain position in space 

in the laboratory

 A charged particle co-moving with in a circuit experiences a force q E . When 

viewed from the laboratory, the charge experiences the Lorentz force q v  B.

E  is in the rest frame of circuit, the time derivative is a total time derivative.

 In the same frame,   

⇒ ∮
C

E ⋅d ℓ=−
d

d t
∫
S

B⋅d a ⇐ E=E +v×B

∮
C

E⋅d ℓ=−∫
S

∂ B
∂ t
⋅d a ⇒ ∫

S

( ∇×E +
∂ B
∂ t
)⋅d a=0

⇒ ∇×E +
∂ B
∂ t
=0 ⇒ ∇×E=0 for electrostatics

∮
C

E⋅d ℓ=−∫
S

∂ B
∂ t
⋅d a ⇒ E =E+ v×B

⇒ ∮
C

(E−v×B)⋅d ℓ=−∫
S

∂ B
∂ t
⋅d a



  

 The creation of a steady-state configuration of currents and associated magnetic 
fields involves an initial transient period during which the currents and fields are 
brought from 0 to the final values.

 If the magnetic flux through a circuit changes, an electromotive force is induced 
around it. To keep the current constant, the sources of current must do work.

 

Energy in the Magnetic Field

Δ (δ W )= J Δ σ ∫
S

δ B⋅d a

= J Δ σ ∫
S

∇×δ A⋅d a

= J Δ σ ∮
C

δ A⋅d ℓ ⇐ Stokes's
theorem

⇒ δ W=∫ δ A⋅J d3 x ⇐ J d3 x= J Δ σ d ℓ

=∫ δ A⋅∇×H d3 x ⇐ ∇×H= J Ampere's law ⇐ ∇⋅J=0

=∫ [H⋅∇×δ A+∇⋅(H×δ A)] d3 x ⇐ ∇⋅(P×Q )=Q⋅∇×P−P⋅∇×Q

=∫ H⋅δ B d3 x  localized field

d W
d t
=− I ℰ= I

d Φ
d t

⇒ δ W= I δ Φ



  

⇒ W=
1
2
∫ H⋅B d3 x (7c)⇐ H⋅δ B= 1

2
δ (H⋅B) ⇐ H ∝ B ⇐

paramagnetic
diamagnetic

⇒ W= 1
2
∫ J⋅A d3 x ⇐ A ∝ J

 The change in energy when an object of μ1 is placed in a magnetic field with 
fixed current sources can be treated in analogy with the electrostatics [Sec. 4.7]. 

 This sign difference comes from the work done by the sources against the emf.

 The magnetic problem with fixed currentsfixed currents is analogous to the electrostatic 
problem with fixed potentialsfixed potentials on the surfaces that determine the fields.

 For a small displacement the work done against the induced emf 's is twice as 
large as, and of the opposite sign to, the potential-energy change of the body.

 The force acting on the body

 W is the total energy required to produce the configuration, whereas U 
includes only the work to establish the permanent magnetic moment in the field, 
not the work to create the magnetic moment and to keep it permanent.     

W= ∫
V1

B⋅H0−H⋅B0

2
d3 x= ∫

V1

μ1−μ0

2
H⋅H0 d3 x= 1

2
∫
V1

μ1−μ0

μ0 μ1
B⋅B0 d3 x

W=
1
2
∫
V1

M⋅B0 d3 x ⇐ B=μ0 (H +M )=μ1 H vs W E=−
1
2
∫
V1

P⋅E0 d3 x

F ξ=
∂W
∂ ξ ∣J=const

 vs  F=−∇ U ⇐ U=−m⋅B



  

A. Coefficients of Self- and Mutual InductanceA. Coefficients of Self- and Mutual Inductance 

 To establish the connection between the current density and the flux linkage

Energy and Self- and Mutual Inductances 

W=
1
2
∫ J⋅A d3 x=

μ0

8 π
∬ J (r )⋅J (r )

|r−r |
d3 x d3 x ⇐ A=

μ0

4 π
∫ J (r ) d3 x 

|r−r |

=
μ0

8 π ∑
i , j=1

N

∬ J (r i)⋅J (r j

)

|r i−r j

|

d3 x i d3 x j

⇐

broken into sums of separate
integrals over each circuit

=
1
2∑

i=1

N

L i I i
2
+ ∑

i=1 , j > i

N

M i j I i I j ⇐

L i =
μ0

4 π I i
2
∬

Ci

J (r i)⋅J (r i

)

|r i−r i

|

d3 x i d3 x i


M i j=
μ0

4 π I i I j

∫
C i

∫
C j

J (r i)⋅J (r j

)

|r i−r j

|

d3 x j
 d3 x i

J d3 x= J∥ d a d ℓ ⇒ ∫ J d3 x= I ∮
C

d ℓ

⇒ M i j=
1

I i I j

∫
C i

J (r i)⋅A i j d3 x i=
1

I i I j

I i ∮
Ci

A i j⋅d ℓ=
1
I j

∫
S i

∇×A i j⋅d a

=
1
I j

∫
S i

B i j⋅d a ⇒ I j M i j=Φi j=
magnetic flux from circuit j

linked within circuit i



  

 For self-inductance, the physical argument is the same.

 For current in a medium of μ≠μ0, it is the best to use (7c) for magnetic energy.

ℰ=−
d Φ
d t
=−L

d I
d t
−∑M1 i

d I i

d t



  

B. Estimation of Self-Inductance for Simple CircuitsB. Estimation of Self-Inductance for Simple Circuits

 If the current density is uniform, from 
symmetry and Ampere's law the magnetic 
induction is azimuthal

 Assume the wire and the medium are nonpermeable

 At distances large compared to      , the falloff of the magnetic induction as     is

replaced by a dipole field                           

W=∫ H⋅B
2

d3 x=∫ B⋅B
2 μ

d3 x= 1
2

L I 2

⇒ L= 1
I 2
∫ B2

μ
d3 x

L in≡L (ρ=a)=
μ0

8 π
∫ d ℓ

Lout≡L (ρmax>a)=
μ0

2 π
ln
ρmax

a
∫ d ℓ

⇒

d L in

d ℓ
=
μ0

8 π

d L out

d ℓ
=
μ0

2 π
ln
ρmax

a
⇐

ρmax=O (√A)

=O ( C
2 π
)

B=Bϕ ϕ̂ ⇐ Bϕ=
μ0 I

2 π a

ρ<

ρ>
⇐ ρ≶=

min
max
(a , ρ)

√ A 1
ρ

|B|=O ( μ0 m

4 π r3
) ⇐ m=O ( I A)

magnetic moment of the loop



  

4 comments:

(1)

(2)

(3) High frequency can get rid of the interior contribution because the current 
     will be confined to near the surface of the wire.

(4)

Exercise 

⇒
d Ldipole

d ℓ
=O ( 4 π

μ0 I 2 C
∫
ρmax

∞ ( μ0 I A

4 π r3 )
2

r2 d r )=O ( μ0 A2

4 π ρmax
3 C

)

=O ( μ0 √A

4 π C
)=O ( μ0

4 π
)   for  ρmax=√ξ

 A ⇐ ξ

∼1

L=L in+ Lout+ Ldipole≈
μ0

4 π
C ( ln

ξ A

a2 +
1
2
) ⇐ ξ∼1 , C≫ 1

1 turn N turns ⇒ L N=N 2 L1

d L tot

d ℓ
=

d L1

d ℓ
+

d L2

d ℓ
=
μ0

8 π
( 1+4 ln

ρmax

a1

+1+4 ln
ρmax

a2

) ⇐ ρmax=
d
2

=
μ0

π
( 1

4
+ ln

d /2

√a1 a2

) ⇒ ξ=
1
2

compare with Problem 5.26

ξ=
64
π e4≈0.373 for a thin wire bent into a circle [Problem 5.32]

μ0 μ ⇒
1
2

μ

2 μ0



  

Example: Determine the mutual inductance between a 
conducting triangular loop and a very long straight wire.

Apply Ampere's law and write the expression for B2, caused 

by a current I2 in the long straight wire:

The equation of the sloped line of the triangle is

z=[(d +b)−r ] tan π
3
=√3 (d +b− r ) ⇒ d a1= z d r ϕ̂

⇒ Φ1=∫ μ0 I 2

2 π r
z d r=√3

μ0 I 2

2 π
∫

d

d + b
d +b−r

r
d r

=
√3 μ0 I 2

2 π
( (d +b) ln

d +b
d
−b )⇒ M1 2 I 2

⇒ M=M1 2=
√3 μ0

2 π
( (d +b) ln

d + b
d
−b )

I1

I2

∮ B2⋅d ℓ=μ0 I 2 ⇒ B2=
μ0 I 2

2 π r
ϕ̂ ⇒ Φ1=∫ B2⋅d a1



  

Example: Find the self-inductance of a toroidal coil 
with rectangular cross section (inner radius a, outer 

radius b, height h), that carries a total of N turns.

 The magnetic field inside the toroid is

 The total flux is N times this, 

so the self-inductance

B=
μ0 N I
2 π s

L=
μ0 N 2 h

2 π
ln

b
a

⇒ Φsingle=∫ B⋅d a=
μ0 N I

2 π
h ∫

a

b
d s
s
=
μ0 N I h

2 π
ln

b
a



  

Example: Find the magnetic energy stored in a section of length ℓ.

 According to Ampère’s law, only the field between the cylinders is nonzero, 

 This method of calculating self-inductance is especially useful when the current 
is not confined to a single path, but spreads over some surface or volume, so that 
different parts of the current enclose different amounts of flux. [Problem 5.27]

B=
μ0 I

2 π s
ϕ̂ ⇒ energy density w=

1
2 μ0

( μ0 I

2 π s
)

2

=
μ0 I 2

8 π2 s2

⇒ W=∫ w d τ=∫ μ0 I 2

8 π2 s2 2 π ℓ s d s=
μ0 I 2 ℓ

4 π
∫

a

b
d s
s
=
μ0 I 2 ℓ

4 π
ln

b
a

W=
1
2

L I 2
⇒ L=

μ0 ℓ

2 π
ln

b
a

external inductance  of a coaxial line



  

 Quasi-staticQuasi-static: the finite speed of light can be neglected and fields are treated 

as if they propagated instantaneously,

 It is the regime where the system is small compared with the EM wavelength. 
It permits neglect of the contribution of the Maxwell displacement current to 
Ampere's law. And the magnetic fields dominate.  

Quasi-Static Magnetic Fields in Conductors; Eddy Currents; 
Magnetic Diffusion

⇒ ∇×H= J , ∇⋅B=0 , ∇×E+
∂ B
∂ t
=0 , J=σ E Ohm's law

⇒ E=−
∂ A
∂ t
−∇ Φ ⇐ B=∇×A

=−
∂ A
∂ t

⇐ Φ=0 ⇐ ρ 0 ⇒ ∇⋅E=0 ⇒ ∇⋅A=const⇒ 0

∇×B=μ J=μ σ E ⇐ B=μ H ⇒ ∇×∇×A=∇ (∇⋅A)−∇2 A=−μ σ
∂ A
∂ t

⇒ ∇
2 A=μ σ

∂ A
∂ t

diffusion equation ⇒ ∇
2 E=μ σ

∂ E
∂ t

for ∂ σ
∂ t
=0

⇒ ∇
2 B=μ σ

∂ B
∂ t

, ∇ 2 J=μ σ
∂ J
∂ t

for σ=const

c∞ ⇒
1
c
 0



  

 The diffusion equation allows us to estimate the time for decay of an initial 
configuration of fields with typical spatial variation.

 For a copper sphere of radius 1cm, the decay time of some initial В field inside 
~5-10 ms; for the molten iron core of the earth ~ 10 5 years.

∇
2 A=O ( A

L2
) ,

∂ A
∂ t
=O( A

τ
)

⇒ τ=O (μ σ L2
) ⇒ L=O ( 1

√μ σ ν
) ⇐ ν= 1

τ



  

A. Skin Depth, Eddy Currents, Induction HeatingA. Skin Depth, Eddy Currents, Induction Heating

 Boundary conditions

 The linearity of the diffusion 
equation implies that there is 
only an x-component throughout 
the half-space, H x ( z > 0, t ).

 For copper at room temperature

 For seawater

  

H x (z , t )=h (z) e− i ω t
⇒ ( d2

d z2 + i μ σ ω ) h (z)=0 ⇒ h (z)=ei k z trial
solution

⇒ k2
= i μ σ ω ⇒ k=±

1+ i
δ
⇐ δ≡√ 2

μ σ ω
skin depth

δ=240 /√ν m ⇐ ν=
ω

2 π

H z=0
∥
=H z=0–

∥

Bz=0

=B z=0–


+

H z=0–=H x x̂
=H 0 cos ω t x̂

1
σ
=1.68×10−8Ω⋅m ⇒ δ=6.52×10−2

/√ν m

H x (z , t )=α e
−

z
δ e

i ( z
δ
−ω t )
+β e

z
δ e
− i ( z

δ
+ω t )

⇐
β=0 ⇐ H x (z∞ , t )=finite

α=H 0 ⇐ H x (0
+ , t )=H 0 e− i ω t

⇒ H x (z>0 , t )=H 0 e
−

z
δ cos( z

δ
−ω t ) ⇐ only the real part counts



  

 The magnetic field falls off exponentially in z, with a spatial oscillation of the 
same scale, being confined mainly to a depth less than the skin depth.

 Only  а у-component of E:

 For very small skin depth, the volume current flow in the region within O ( δ ) of 

the surface acts as a surface current to reduce the magnetic field to 0 for z ≫ δ.

 The time-averaged power input per unit volume

 The heating of the conducting medium to a depth of the order of the skin depth 
is the basis of induction furnaces and of microwave cookers.   

⇒ E y=
μ ω δ

√2
H 0 e

−
z
δ cos( z

δ
−ω t +

3 π
4
) ⇐ taking the

real part
⇐

1
σ δ
=
μ ω δ

2

⇒
E y

c Bx

=
E y

c μ H x

=O ( ω δ
c
)≪ 1 ⇐ quasi-static

assumption
⇒ B  dominates

⇒ J y (z>0)=σ E y=
√2
δ

H 0 e
−

z
δ cos( z

δ
−ω t + 3 π

4
)

⇒ K y (t )≡ ∫
0

∞

J y (z , t) d z=−H 0 cos ω t ⇐ effective surface (Eddy) current

E y=
1
σ

d H x

d z
=

i−1
σ δ

H 0 e
−

z
δ e

i ( z
δ
−ω t )

⇐
∇×H= J

=σ E

P resistive=⟨ J⋅E ⟩=
μ

2
ω H 0

2 e
−2

z
δ



  

B. Diffusion of Magnetic Fields in Conducting MediaB. Diffusion of Magnetic Fields in Conducting Media
 Consider 2 infinite uniform current sheets, parallel to each other and located a 

distance 2 a apart, at z = −a and z = +a. For t < 0

 For J ( t ≥ 0 ) = 0, A & H decay according
                            to the diffusion equation:  

 Use a Laplace transform to separate the space & time dependences     

H x (z , t )= ∫
0

∞

e− p t h (z , p) d p ⇒ ( d2

d z2 + k2) h (z , p)=0 ⇐ k2
=μ σ p

symmetric about z=0 ⇒ h∝ cos k z ⇒ H x (z , t )= ∫
0

∞

e
−

k2 t
μ σ h (k ) cos k z d k

H x (z , 0+
)= ∫

0

∞

h (k ) cos k z d k=H 0 [Θ (z+ a)−Θ (z−a)] ⇐ Θ : step function

⇒
1
2
∫
−∞

+∞

h (k ) ei k z d k=H 0 [Θ (z+a)−Θ (z−a)] ⇐ h (− k )=h (k ) for
symmetry

⇒ h (k )=
H 0

π
∫
−a

a

e−i k z d z=
2 H 0

π k
sin k a ⇐ Fourier integral ⇒ κ≡k a

H=[H 0 x̂  for |z|< a
0 otherwize

⇐ J= J y ŷ ⇐ J y=H 0 [δ (z+a)−δ (z−a)]

∇
2 H=μ σ

∂ H
∂ t



  

⇒ H x (z , t>0)=
2 H 0

π
∫

0

∞

e−κ
2
ν t sin κ
κ

cos
κ z
a

d κ ⇐ ν≡
1
μ σ a2

characteristic
decay rate

Error function Ξ (ξ )=−Ξ (− ξ )≡ 2
√π
∫

0

ξ

e− x2

d x=sgn (ξ ) 2
π
∫

0

∞

e
−

x2

4 ξ2 sin x
x

d x

⇒ Ξ (ξ ∞) 1−
e− ξ

2

√π ξ
( 1− 1

2 ξ2 +⋯) , Ξ (|ξ|≪ 1)≈2 ξ
√π
( 1− ξ

2

3
+⋯)

⇒ H x=
H 0

2 [Ξ (
a+ z

2 a √ν t
)+Ξ ( a− z

2 a √ν t
)] H 0 [Θ (z+a)−Θ (z−a)] for

ν t  0

≈
H 0

√π ν t
e
−

z2

4 ν a2 t ( 1+

z2

2 ν a2 t
−1

12 ν t
+⋯)

H x 0 as ν t  0 , |z|>a

H x≈
H 0

√π ν t
for ν t≫

|z|
2 a

⇐ t ∞

H x=H x , max at ν t≈
z2

2 a2



  

sin κ cos
κ z
a
=

1
2
( sin

κ (a+ z)
a

+ sin
κ (a− z)

a
)

⇒ H x=
H 0

π
∫

0

∞
e−κ

2
ν t

κ
( sin

κ (a+ z)
a

+ sin
κ (a− z)

a
) d κ

=
H 0

π
∫

0

∞

e−κ
2
ν t ( sin k

k
d k+

sin k –
k –

d k – ) ⇐ k±≡κ ( 1±
z
a
)

=
H 0

π
∫

0

∞

( e
−

k
2

4 ξ
2 sin k

k
d k+ e

−
k –

2

4 ξ –
2 sin k –

k –
d k – ) ⇐ ξ±=

a± z
2 a √ν t

=H 0

Ξ (ξ)+Ξ (ξ–)
2

=
H 0

2 [Ξ (
a+ z

2 a √ν t
)+Ξ( a− z

2 a √ν t
)]  κ

2
ν t=

k±
2

4 ξ±
2

Define I (a)= ∫
0

∞

e− x2

cos a x d x ⇒ I (0)= ∫
0

∞

e− x2

d x=√π
2
⇐ Gauss

integral

⇒
d I
d a
=−∫

0

∞

x e− x2

sin a x d x= 1
2
∫

0

∞

sin a x d e− x2

=
1
2
( e− x2

sin a x|
0

∞

− ∫
0

∞

e− x2

d sin a x )=− a
2
∫

0

∞

e− x2

cos a x d x=−
a
2

I

⇒
d I
I
=−

a
2

d a ⇒ I (a)= ∫
0

∞

e− x2

cos a x d x=√π
2

e
−

a2

4 ⇐ I (0)=√π
2

Feynman Technique



  

Ξ (ξ >0)= 2
π
∫

0

∞

e− p2 sin x
x

d x ⇐ p≡
x

2 ξ
⇒

d e− p2

d ξ
=2 e− p2 p2

ξ
, Ξ (0)=0

⇒
d Ξ
d ξ
=

4
π ξ
∫

0

∞

p2 e− p2 sin x
x

d x=
4
π ξ
∫

0

∞

p e− p2

sin (2 ξ p) d p

=−
2
π ξ
∫

0

∞

sin (2 ξ p) d e− p2

⇐ d e− p2

=−2 p e− p2

d p

=−
2
π ξ
( e− p2

sin (2 ξ p)|
0

∞

− ∫
0

∞

e− p2

d sin (2 ξ p))
=

4
π
∫

0

∞

e− p2

cos (2 ξ p) d p=
2
√π

e−ξ
2

⇒ d Ξ=
2
√π

e−ξ
 2

d ξ

⇒ Ξ (ξ )=Ξ (ξ )−Ξ (0)= ∫
0

ξ

d Ξ= 2
√π
∫

0

ξ

e−ξ
 2

d ξ= 2
√π
∫

0

ξ

e− x2

d x
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