
  

Chapter 4Chapter 4 Multipoles, Electrostatics of Macroscopic
                 Media, Dielectrics 

 The potential from a charge density outside a sphere can be written as

 ℓ=0: monopole term, ℓ=1: dipole terms, ℓ=2: quadrupole terms, etc.

 The problem is to determine qℓ
m in terms of the charge density ρ(r).
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 For a real charge density the moments with m<0 are

 Electric dipole moment:

 Traceless quadrupole moment tensor:

 The ℓ th multipole coefficients [(2ℓ+1) in number] are linear combinations of the 
corresponding multipoles expressed in rectangular coordinates.

 In the Cartesian coordinates

by direct Taylor series expansion of               .       
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 The electric field components for a given multipolefor a given multipole with definite ℓ, m are

 For a dipole p 

along the z-axis:

 The Cartesian multipole moments are                        in number and for ℓ>1 are 

more numerous than the (2ℓ+1) spherical components.

 The root of the differences lies in the different rotational transformation 
properties of the 2 types of multipole moments; the Cartesian tensors are 
reducible, the spherical are irreducible. [Problem 4.3]
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 Note that for ℓ=2 we have recognized the difference by defining a traceless 
Cartesian quadrupole moment.

 In general the multipole moment coefficients depend on the choice of origin.

 For a point charge e located at x 0=(r0, θ0, ϕ0), the multipole moments are

 For 2 point charges +e and −e at r 0 and r 1, the multipole moments are

TheoremTheorem: The values of qℓ
m for the lowest nonvanishing multipole moment of any 

charge distribution are indep. of the choice of origin, but all higher multipole 
moments do in general depend on the location of the origin. [Problem 4.4]

 Consider a localized charge distribution ρ(r) that gives rise to an electric field 

throughout space. Wish to calculate the integral of E over the volume of a sphere 
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 If the sphere completely encloses the charge density, 

where p is the electric dipole moment of the charge distribution with respect to 
the center of the sphere.
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Divergence theorem extended:
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 This volume integral is independent of the size of the spherical 
region of integration provided all the charge is inside.

 With the charge all 
exterior to the sphere

 The average value of the electric field over a spherical 
volume containing no charge is the value of the field at the 
center of the sphere.

 Modification of the eqn for the electric field of a dipole

 The added delta function does not contribute to the field 
away from the site of the dipole. Its purpose is to yield the 
required volume integral. 
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[Problem 4.2]



  



  

 For a localized charge distribution in an external potential, the electrostatic 

energy of the system is

 This expansion shows the characteristic way in which the various multipoles 
interact with an external field—the charge with the potential, the dipole with the 
electric field, the quadrupole with the field gradient, and so on. 

 In nuclear physics the quadrupole interaction is of particular interest. The 
magnitudes and signs of the electric quadrupole moments reflect the nature of 
the forces between neutrons and protons, as well as the shapes. 
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 A nuclear state has associated with it a quantum-mechanical charge density, 
which depends on the quantum numbers (J,M,α) but is cylindrically symmetric 

about the z axis. Thus the only non-vanishing quadrupole moment is q2
0 or Q33.

 The quadrupole moment of 
 a nuclear state is defined as

 The states of different M value for the same J will have different quadrupole 

moments and so a degeneracy in M value will be removed by the quadrupole 
coupling to the "external" electric field. Detection of these small energy 
differences allows the determination of the quadrupole moment of the nucleus.

 The interaction energy between 2 dipoles

 The dipole-dipole interaction is attractive or repulsive, depending on the 
dipoles' orientation. For fixed orientation and separation of the dipoles, the value 
of the interaction, averaged over the relative positions of the dipoles, is zero.

 If the moments are generally parallel, attraction (repulsion) occurs when the 
moments are oriented more parallel (perpendicular) to the line joining their 
centers. For anti-parallel moments the reverse is true.   
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[Problem 4.7a]



  



  

 Much of electrostatics concerns itself with charges and fields in ponderable 
media whose respective electric responses must be taken into account.

 When an averaging is made of the homogeneous equation

 If an electric field is applied to a medium, the molecular charge density in the 
medium will be distorted. The multipole moments will be different from what 
they were in the absence of the field. The dominant molecular multipole with the The dominant molecular multipole with the 
applied fields is the dipole.applied fields is the dipole.

 If the molecules have a net charge and there is macroscopic excess or free 
charge, the charge density at the macroscopic level is

 If we now look at the medium from a macroscopic point of view, without higher 
macroscopic multipole moment densities, the potential caused in V is  

Elementary Treatment of Electrostatics with Ponderable Media  
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 The divergence of P in the effective charge density comes from that if the 
polarization is nonuniform there can be a net increase or decrease of charge 
within any small volume.

 Assume the response of the system to an applied field is linear and the medium 
is isotropic 

 All problems in the medium are reduced to those earlier ones, except that the 
electric fields produced by given charges are reduced by a factor ϵr

−1. The 
reduction comes from a polarization of the atoms that produce fields in 
opposition to that of the given charge. 
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 If there are different media juxtaposed, we must consider the boundary 
conditions on D and E at the interfaces between media

 The boundary conditions are valid for time-varying as well as static fields. 

(D2−D1)⋅ n̂21=σ
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Polarization ChargesPolarization Charges
 For polarized material with polarization P, we 

would like to know what the field is produced by 
this object.

 For a single dipole p:

 For dipole moment d p = P d τ  in each volume element d τ , the total potential

 The potential (and hence also the field) of a polarized object is the same as that 
produced by a volume charge density                       plus a surface charge densityρpol=−∇⋅P
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 Find the appropriate solution to the equations

& the boundary condition
                             at z=0:

                  everywhere ⇒ Е is derivable from a potential ⇒ 

 Use the image method

  

Boundary-Value Problems with Dielectrics   
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ϵ2> ϵ1 ϵ2< ϵ1

⇒
q−q

=q″

q+q

ϵ1
=

q″

ϵ2

⇒
q
=−

ϵ2− ϵ1

ϵ2+ ϵ1
q

q″=2
ϵ2

ϵ2+ ϵ1
q

⇒ ρ pol≡−∇⋅P =− ϵ0 χe ∇⋅E
∝ q δ (z−d )

the polarization-charge density
 At the surface, χe takes a discontinuous 

jump,             as z passes through z=0

 In the limit ϵ2≫ϵ1 the dielectric ϵ2 behaves much like a conductor in that  E 20 

⇒ σpol −
q

2 π

ϵ0

ϵ1

d

√(ρ2
+ d2

)
3
=

ϵ0

ϵ1
σ conducting surface

⇒ σpol=(P1−P2)⋅n̂21=−
q

2 π

ϵ0 (ϵ2− ϵ1)

ϵ1 (ϵ2+ ϵ1)

d

√(ρ2
+ d2

)
3

⇐
P i=(ϵi−ϵ0) E i

=(ϵ0− ϵi) ∇ Φ (0±
)

Δ χe=
ϵ2−ϵ1

ϵ0



  

 Axial symmetry of the geometry
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 The dipole moment p, oriented in the direction of the applied field, can be 
regarded as the volume integral of the polarization

 This can be thought as producing an internal 
field directed oppositely to the applied field, 
so reducing the field insider the sphere.
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 The problem of a spherical cavity in a 
dielectric medium and with an applied 
electric field parallel to the z axis can be 
handled in exactly the same way as the 
dielectric sphere. 

 The results for the cavity can be obtained from those of the sphere by the 

replacement 

E in=
3 ϵr

2 ϵr+1
E0 ⇒ E in>E 0  if ϵ> ϵ0 ⇒ p=−4 π ϵ0

ϵr−1

2 ϵr +1
a3 E0

the dipole orients oppositely to the applied field

ϵr 
1
ϵr

⇐ ϵr =
ϵ
ϵ0



  

 In dense media the polarization of neighboring molecules gives rise to an 
internal field Еi in addition to the average macroscopic field Е, so that the total 

field at the molecule is Е + Еi  and Еi =
 Еnear

 − ЕP .  

 Inside some macroscopically small, but microscopically large, volume V we 
subtract out the smoothed macroscopic equivalent of the nearby molecular 
contributions (ЕP) and replace it with the correctly evaluated contribution (Еnear). 

This difference is the extra internal field Еi.

 For the volume chosen to be a sphere, the total dipole moment inside is

 For atoms in a simple cubic lattice For atoms in a simple cubic lattice Еnear vanishes at any lattice site vanishes at any lattice site (by Lorentz).

Proof:     

Molecular Polarizability and Electric Susceptibility    
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 It seems plausible that Enear=0 also for 
completely random situations. Although it is 
not true, it is a good working assumption 
that Enear0 for most materials.

 The polarization vector

 This dipole moment is approximately proportional to the electric field acting on 
the molecule.
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Clausius-Mossotti equation ⇐ ϵ= ϵ0 (1+χe)= ϵr ϵ0

P=N ⟨pmol⟩ ⇐ ⟨pmol⟩ : average dipole
moment of molecules



  

Atomic/Molecular Polarizability and Electric SusceptibilityAtomic/Molecular Polarizability and Electric Susceptibility
 Consider the relation between mircoscopically molecular properties, ie, the 

atomic/molecular polarizability γmol , and the macroscopically defined parameter, 

the electric susceptibility χ e·

                                              =                                              +

 The relation holds best for dilute substances such as gases. For liquids & solids, 
the equation is only approximately valid, especially if the dielectric constant is 
large.

P= ϵ0 χe E ,
P
N

⇐ p=ϵ0 γmol (E +E i) ⇒ E=(E +E i)+(− P
3 ϵ0

)
⇒ E i=

P
3 ϵ0

⇒
P

ϵ0 χe
=

P
N ϵ0 γmol

−
P

3 ϵ0

⇒ χe= ϵr −1=
3 N γmol

3−N γmol

⇒ γmol=
3
N

ϵr−1

ϵr +2
Clausius-Mossotti equation

−
P

3 ϵ0
E E +E i



  

 The polarization of a collection of atoms or molecules can arise in 2 ways: 

1. the applied field distorts the charge distributions and so produces an induced 
    dipole moment in each molecule;

2. the applied field tends to line up the initially randomly oriented permanent 
    dipole moments of the molecules.

 To estimate the induced moments we consider a simple model of harmonically 
bound charges (electrons & ions). Each charge e is bound under a restoring force

 Since γ has the dimensions of a volume, its magnitude must be of the order of 
molecular dimensions or less, namely γel ≤ 10−29 m3.

 Or, the binding frequencies of electrons in atoms must be of the order of light 

frequencies

consistent with the molecular volume estimate.

Models for the Molecular Polarizability    

−e E ⇐ F=−m ω0
2 r ⇒ pmol=e r=

e2

m ω0
2 E (2)

⇒ γ =
e2

ϵ0 m ω0
2 ⇒ γ mol=

1
ϵ0
∑

e j
2

m j ω j
2

λlight ∼3000 Å ⇒ ω≃6×1015 s−1
⇒ γ el∼

e2

ϵ0 m ω
2 ∼0.88×10−29 m3



  

 For gases 

 For solid or liquid dielectrics:   

 Thermal agitation of the molecules could modify the molecular polarizability.

 The probability distribution of particles in phase space for classical systems is

 For a harmonically bound charge with an applied field in the z direction

 The 2nd type of polarizability is that caused by the partial orientation of random 
permanent dipole moments. The orientation polarization is important in "polar" 
substances such as HCl and H2O.

H =
p2

2 m
+

m
2

ω0
2 r2

−e E z=
p2

2 m
+

m
2

ω0
2 r  2

−
e2 E2

2 m ω0
2 ⇐ r 

=r −
e E

m ω0
2 ẑ

⇒ ⟨ pmol⟩=

∫ ( e z
+

e2 E

m ω0
2 ) f (H ) d3 x d3 p

∫ f (H ) d3 x  d3 p
=

e2

m ω0
2

E ⇐ same as (2)

Boltzmann
factor

f (H )=e
−

H
k T ⇒ ⟨ pmol⟩=

∫ e z f (H ) d3 x d3 p

∫ f (H ) d3 x d3 p

N =2.7×1025 m−3
⇒ χe≤10−3

⇒
ϵ
ϵ0
≤1+10−3

⇒ ϵair=1.00054 ϵ0 , ϵNH3
=1.0072 ϵ0 , ϵCH3 OH=1.0057 ϵ0 , ϵHe=1.000068 ϵ0

N =1028
−1029

/m3
⇒ χe∼10±1



  

 With an applied field there is a tendency to line up along the field in the 
configuration of lowest energy, thus there will be an average dipole moment.

 The Hamiltonian of a molecule  

 In general both types of polarization, 
induced and orientation, are present

Selected problems: 1, 9, 10, 13 

γmol≃γ i+
1

3 ϵ0

p0
2

k T
⇒  in the form a+

b
T

H =H 0−p0⋅E=H 0− p0 E cos θ

⇒ ⟨ pmol⟩=

∫ p0 cos θ e
p0⋅E
k T d Ω

∫ e
p0⋅E
k T d Ω

≃
1
3

p0
2

k T
E

by expanding the exponentials

for  
p0 E
k T

≪ 1

e
p0⋅E
k T

≈1+
p0

k T
E cos θ ⇒ ∫ e

p0⋅E
k T d Ω≈ 2 π ∫

−1

+1 ( 1+
p0

k T
E cos θ ) d cos θ=4 π

⇒ ∫ p0 cos θ e
p0⋅E
k T d Ω≈ 2 π p0 ∫

−1

+1 ( cos θ+
p0

k T
E cos2

θ ) d cos θ=
4 π

3

p0
2

k T
E



  

[Problem 4.12]



  



  

                                          for the energy due to a charge density and a potential 

cannot in general be used in our macroscopic description of dielectric media 
because work is done in a dielectric media not only to bring real (macroscopic) 
charge into position, but also to produce polarization in the medium.

 Consider a small change in the energy due to some sort of change in the 
macroscopic charge density existing in all space

                                            is valid macroscopically only if the behavior is linear.

 An interesting problem is the change in energy when a dielectric object with a 
linear response is placed in an electric field whose sources are fixed.

 The initial electrostatic energy

 Introduce a dielectric object into the field 

Electrostatic Energy in Dielectric Media    

W 1=
1
2
∫ E⋅D d3 x ⇐ D= ϵ E

δ W =∫ δ ρ (r )Φ (r ) d3 x=∫ E⋅δ D d3 x ⇐
E=−∇ Φ
δ ρ=∇⋅δ D ⇐ ∇⋅D=ρ

⇒ W =∫ d3 x ∫
0

D

E⋅δ D

2 E⋅δ D=δ (E⋅D) if the medium
is linear

⇒ W =
1
2
∫ E⋅D d3 x=

1
2
∫ ρ Φ d3 x

W =
1
2
∫ ρ (r )Φ (r ) d3 x

W 0=
1
2
∫ E0⋅D0 d3 x ⇐ D0= ϵ0 E0

W =
1
2
∫ ρ (r )Φ (r ) d3 x



  

 The factor ½ in the expression is because it represents the energy density of a 
polarizable dielectric in an external field, rather than a permanent dipole.

 (3) & (4) show that a dielectric body will tendtend to move toward regions of 
increasing field E0 provided ϵ>ϵ0.

 Imagine a small generalized displacement of the body, then there will be a 
change in the energy, and this means that there is a force acting on the body:

W =∫ E⋅D−E0⋅D 0

2
d3 x=∫ E⋅D0−E0⋅D

2
d3 x+∫ E+E0

2
⋅(D−D0) d3 x

∫ (E +E0)⋅(D −D0) d3 x

=−∫ ∇ Ψ⋅(D−D0) d3 x ⇐ E +E0=−∇ Ψ ⇐ ∇×(E +E0)=0

=∫ Ψ ∇⋅(D−D0) d3 x=0 ⇐ ∇⋅(D −D0)=0 ⇐ ρ0  is fixed

⇒

W =∫ E⋅D 0−E0⋅D
2

d3 x=−∫
V

ϵ−ϵ0

2
E⋅E0 d3 x (3)

=−∫
V

P⋅E0

2
d3 x ⇐ P=(ϵ−ϵ0) E (4)

⇒ w=−
1
2

P⋅E0

F ξ=−
∂ W
∂ ξ ∣Q=const



  

 In practical situations the electric fields are often produced with fixed potentials. 

 For linear media

 If the dielectric properties are not changed, the 2 terms in (5) are equalequal. If the 
dielectric properties are altered, the 2 contributions are not necessarily the same. 

 The reason for the difference is the polarization charge. The change in dielectric 
properties can be thought of as a change in the polarization-charge density.
 
 The process of altering the dielectric properties with fixed potentials can be 

viewed as taking place in 2 steps. In the 1st step the dielectric properties are 

changed with the charges held fixed:

 In the 2nd step the potentials is restored to the original values. There will be a 
flow of charge to change the potential δ 2=−δ 1  

 If a dielectric with           moves into a region of greater 

field strength, the energy increases instead of decreases. 

⇒ δ W 2=
1
2
∫ (ρ δ Φ2+Φ δ ρ2) d3 x=−2 δ W 1

⇒ δ W =δ W 2+ δ W 1=−
1
2
∫ ρ δ Φ1 d3 x ⇒ δ W V =−δ W Q

W =∫ ρ (r )Φ (r )
2

d3 x ⇒ δ W =∫ ρ δ Φ+Φ δ ρ

2
d3 x (5)

ϵ
ϵ0
>1

⇒ F ξ=+
∂ W
∂ ξ ∣V =const

δ W 1=
1
2
∫ ρ δ Φ1 d3 x
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