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Multipole Expansion

® The potential from a charge density outside a sphere can be written as
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= < multipole expansion
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® /=0: monopole term, /=1: dipole terms, /=2: quadrupole terms, etc.

@ The problem is to determine ¢,” in terms of the charge density p(r’).
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® For a real charge density the moments with m<0 are qzm = (— 1 )m q,
® Electric dipole moment: p = / r P (r/) d’x’

® Traceless quadrupole moment tensor:
Q= (3 x; x/j—csl.jr/z)p(r/) d°x = QZ/(B r/®r/—r/2]I)p(r/) d’ x’

® The /™ multipole coefficients [(2£+1) in number] are linear combinations of the
corresponding multipoles expressed in rectangular coordinates.
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® In the Cartesian coordinates & (r) =
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® The electric field components for a given multipole with definite ¢, m are
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® The Cartesian multipole moments are

2
more numerous than the (2/+1) spherical components.

® The root of the differences lies in the different rotational transformation
properties of the 2 types of multipole moments; the Cartesian tensors are
reducible, the spherical are irreducible. [Problem 4.3]

in number and for />1 are



® Note that for /=2 we have recognized the difference by defining a traceless
Cartesian quadrupole moment.

® In general the multipole moment coefficients depend on the choice of origin.

® For a point charge e located at X ,=(r,, 6,, ¢,), the multipole moments are

=erlyt” (6., 6) = nonvanishing _, g0 = e - only one independent
14 0"/ 0 0 . 0 .
in general V4 of the location

® For 2 point charges +¢ and —e at r, and r,, the multipole moments are

q?ze[réYzm(Ho, ¢o)—rfY?m(91, ¢1)] = quo

= 61?:\/%6(%—&), Q1=—\/ge[(xo—x1)—i(yo—y1)]

independent of the location, depend only on the relative position

Theorem: The values of g,” for the lowest nonvanishing multipole moment of any

charge distribution are indep. of the choice of origin, but all higher multipole
moments do in general depend on the location of the origin. [Problem 4.4]

® Consider a localized charge distribution p(r’) that gives rise to an electric field
throughout space. Wish to calculate the integral of E over the volume of a sphere
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@ If the sphere completely encloses the charge density,

r.=r, r,=R :>/ E(r)d®x=—-2"

r<R 3 E0
where P is the electric dipole moment of the charge distribution with respect to
the center of the sphere.



Divergence theorem extended:
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Let v— f ¢ where ¢ isaconstant vector = V-¢=0
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® This volume integral is independent of the size of the spherical
region of integration provided all the charge is inside. -

® With the charge all
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E field at the center

® The average value of the electric field over a spherical
volume containing no charge is the value of the field at the
center of the sphere.

® Modification of the eqn for the electric field of a dipole
o
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® The added delta function does not contribute to the field

away from the site of the dipole. Its purpose is to yield the
required volume integral.




A point dipole with dipole moment p is located at the point x,. From the properties
of the derivative of a Dirac delta function, show that for calculation of the potential
® or the energy of a dipole in an external field, the dipole can be described by an

effective charge density

Peie(X) = —p » VO(X — X,) [Problem 4.2]

Since the dipole p is a point dipole located at xg, we can consider it as a constant diple
1 p-(x—xp)
dmeg  |x — xgl3
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pett (X) d®z’. We can achieve the goal
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during the derivation. The potential due to p is ®(x) = . In the problem

we are asked to transform it into ®(x) =

with the following manipulations:
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where peg(x) = —p - Vi(x — xp).
The energy of p in the external electric field E is W = —p - E(xg). In the problem we
are asked to transform it into W = / pot (X)®(x)d?2. We can achieve the goal with the



following manipulations:

W=—-p-E(x¢g) =—p- /E(X)5(X —xg)d*z=p- /5(X — x0)V®(x)d>z

= —p- /(I)(X)V5(X —x¢)d%z = /[—p . Vo(x —x0)]®(x)d%x = /Peﬁ(X)<I>(X)d3:c,

where peg(x) = —p - Vio(x — x¢) again.



Multipole Expansion of the Energy of a Charge Distribution in an
External Field
® For a localized charge distribution in an external potential, the electrostatic

energy of the system is W :/ p(r)®(r)d’x
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® This expansion shows the characteristic way in which the various multipoles
interact with an external field—the charge with the potential, the dipole with the
electric field, the quadrupole with the field gradient, and so on.

® In nuclear physics the quadrupole interaction is of particular interest. The
magnitudes and signs of the electric quadrupole moments reflect the nature of
the forces between neutrons and protons, as well as the shapes.



® A nuclear state has associated with it a quantum-mechanical charge density,
which depends on the quantum numbers (J,M,«) but is cylindrically symmetric
about the z axis. Thus the only non-vanishing quadrupole moment is ¢,° or Q..

a nuclear state is defined as QJMa = —

® The quadrupole moment of O 1 2 2 3
” p (BZ_r)pJMa<r>d X

® The states of different M value for the same J will have different quadrupole

moments and so a degeneracy in M value will be removed by the quadrupole

coupling to the "external" electric field. Detection of these small energy
differences allows the determination of the quadrupole moment of the nucleus.

® The interaction energy between 2 dipoles
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® The dipole-dipole interaction is attractive or repulsive, depending on the
dipoles' orientation. For fixed orientation and separation of the dipoles, the value
of the interaction, averaged over the relative positions of the dipoles, is zero.

@ If the moments are generally parallel, attraction (repulsion) occurs when the
moments are oriented more parallel (perpendicular) to the line joining their
centers. For anti-parallel moments the reverse is true.



A localized distribution of charge has a charge density [Problem 4.7a]

p(r) = m r’e " sin’f
(a) Make a multipole expansion of the potential due to this charge density and

determine all the nonvanishing multipole moments. Write down the potential
at large distances as a finite expansion in Legendre polynomials.

Rewrite the charge density

1 r? 1 r? 1 72
— — — sin?f = ——(1— 29
p(r) 64 e” Sl 64w e” ( cos™0) = 967 e

This charge density is not so “localized,” thus a multipole expansion of the potential is valid
only at large distance. Since this charge density is azimuthally symmetric, we can foresee
that only the m = 0 multipole moments ¢,y are nonvanishing.

— [Py (cos @) — Pa(cosB)].

(a) With Eq. (4.3) in the context, the multipole moments are
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Elementary Treatment of Electrostatics with Ponderable Media

® Much of electrostatics concerns itself with charges and fields in ponderable
media whose respective electric responses must be taken into account.

® When an averaging is made of the homogeneous equation

VXE_ =0 => VXE=0 = the electric field is still derivable from a potential

micro

@ If an electric field is applied to a medium, the molecular charge density in the
medium will be distorted. The multipole moments will be different from what
they were in the absence of the field. The dominant molecular multipole with the
applied fields is the dipole.

P(r)=) N,(p,) < theelectric polarization (dipole moment per unit volume )

® If the molecules have a net charge and there is macroscopic excess or free
charge, the charge density at the macroscopic level is

p(r):ZNi<ei>+pexcess < <ei>:Ousually = p(r)Npexcess

@ If we now look at the medium from a macroscopic point of view, without higher
macroscopic multipole moment densities, the potential caused in AV is

A®(r,r')= L (p(r>AV+P(r”)-%Av) s regAvV
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= V-D=p < D=¢,E+P electric displacement ( *

® The divergence of P in the effective charge density comes from that if the

polarization is nonuniform there can be a net increase or decrease of charge
within any small volume.

® Assume the response of the system to an applied field is linear and the medium
is isotropic = P=¢,x,E < x,: electric susceptibility

= D=eE <« €:€0<1+Xe) = erEi=1+Xe:dleleCtrlC = PZ(e—eO)E
€o constant

= V-E= % for a uniform dielectric < € 1s independent of position

@ All problems in the medium are reduced to those earlier ones, except that the
electric fields produced by given charges are reduced by a factor 6[1. The

reduction comes from a polarization of the atoms that produce fields in
opposition to that of the given charge.



@ If there are different media juxtaposed, we must consider the boundary
conditions on D and E at the interfaces between media

(D,-D,) - n,, =0 —~ 5 - macroscopic surface-charge density
(E,—E,)xn,, =0 on the boundary surface
_ Dy-Dy=0¢

E,=E|

@ The boundary conditions are valid for time-varying as well as static fields.
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Polarization Charges
® For polarized material with polarization P, we

would like to know what the field is produced by p
this object.

1 p-r

2

@ For a single dipole p: ® (r)= 2
TE T

® For dipole moment d p = P d 7’ in each volume element d 7', the total potential

(:D(r): ]. /I{“dp: 1 / I("'P(l')dT/ <:[_r":r—r/ - r,: source
1%

4 e, r° 4me, r’ coordinates
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® The potential (and hence also the field) of a polarized object is the same as that
produced by a volume charge density Poo == V -P plus a surface charge density

4J=Pn




Boundary-Value Problems with Dielectrics'.:_,‘
@ Find the appropriate solution to the equations

&, V-E=p, z>0 & V XE=0 everywhere

e, V-E=0, z<0

& the boundary condition lim
at z=0: -0

y

= lim

z—0

eV X E =0 everywhere = E is derivable from a potential > E=—V &

® Use the image method
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® In the limit €,> €, the dielectric €, behaves much like a conductor in that E,—0
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® The dipole moment p, oriented in the direction of the applied field, can be
regarded as the volume integral of the polarization
e —1
P=(c—¢,)E=3¢, c+2 E = constant Eg
> ¢ =P-f=3¢ ——— E_cos 0
pol 0 €r+2 0

® This can be thought as producing an internal
field directed oppositely to the applied field, Eg
so reducing the field insider the sphere. @——>




® The problem of a spherical cavity in a
dielectric medium and with an applied
electric field parallel to the z axis can be

handled in exactly the same way as the
dielectric sphere.

® The results for the cavity can be obtained from those of the éphere by the

€
replacement ¢, > — < €, =—
€
€, 0
A E,>E, if bre, P
= — = E. > i e€>e¢, = p=—4me,——a
0 0 0 0 0
T 2e,+1 " 2€+1

the dipole orients oppositely to the applied field



Molecular Polarizability and Electric Susceptibility
® In dense media the polarization of neighboring molecules gives rise to an
internal field E; in addition to the average macroscopic field E, so that the total

field at the molecule is E+ E, and E.=E ... — E,.

® Inside some macroscopically small, but microscopically large, volume V we
subtract out the smoothed macroscopic equivalent of the nearby molecular

contributions (E,) and replace it with the correctly evaluated contribution (E,.,.).
This difference is the extra internal field E..

® For the volume ?S:hosen to be a sphere, the total dipole moment inside is
4 1R
p= PV =
P P
/ Edr=—P - E,=—° . / Edx=—— = E=—+E
<R 3¢, 41 R R 3¢, 3 €,

® For atoms in a simple cubic lattice Enear vanishes at any lattice site (by Lorentz).

3(pr r.—r
Proof:E(O)—Z (P ”k) ;. ”kp = rl.jk:(ia,ja,ka)
ijk 47'('60 ijk
B 3(i" py+ig'py+ik py)—(i+j°+k%) p,

i j k 47T€0a\/l+ 2r k2P

P < assume V is so small that P is essentially constant

near
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ijk (l +]+k) ijk (l+]+k) ijk (z+]+k)

(by symmetry) p

3i°— (i + j+ k%)
= E =p =0=E,=F
1% \/(l ¢ P ) 2~ L3

= EK__ =0 for asimple cubic lattice

near

® It seems plausible that E_ =0 also for

completely random situations. Although it is
not true, it is a good working assumption

that E_...=0 for most materials.

average dipole
)

moment of molecules
® This dipole moment is approximately proportional to the electric field acting on
the molecule.

® The polarization vector P=N <pmol> < <Pm01

(P =€ Vot (E+E,) < . : molecular polarizability

. ]. . 3]\']/}/mol _
= P=N~vy_,| e, E+=P Jfor E =0 = x, = < P=¢,x, E
3 3—N7v_.

5 E—Gy

N e+2¢,

= = Clausius-Mossotti equation < e=¢, ( 1+ xe) =€, €,



Atomic/Molecular Polarizability and Electric Susceptibility
® Consider the relation between mircoscopically molecular properties, ie, the
atomic/molecular polarizability v, ,, and the macroscopically defined parameter,

the electric susceptibility x -

.

P
Cp2607m01<E+Ei> = E:<E+Ei)+ (__)
3 €,
P P P P 3 N 7m01
= E=— = = - = x,—€,—1=
3 € € Xe N €o 7m01 3 €o 3—N Y ool
e —
= = S & Clausius-Mossotti equation
N € +

® The relation holds best for dilute substances such as gases. For liquids & solids,
the equation is only approximately valid, especially if the dielectric constant is
large.



Models for the Molecular Polarizability
® The polarization of a collection of atoms or molecules can arise in 2 ways:

1. the applied field distorts the charge distributions and so produces an induced
dipole moment in each molecule;

2. the applied field tends to line up the initially randomly oriented permanent
dipole moments of the molecules.

® To estimate the induced moments we consider a simple model of harmonically

bound charges (electrons & ions). Each charge e is bound under a restoring force
2

—eECFZ—meZ)r = P=€er= c 5 E (2)

mwo
2 2
_ e _12 €;
= 7_—2 = /Ymol_e_ 2
€, M W, 0 m;w;

® Since v has the dimensions of a volume, its magnitude must be of the order of

molecular dimensions or less, namely v, = 107> m°.

® Or, the binding frequencies of electrons in atoms must be of the order of light

2
e

————~0.88x10 “m’

€M W

frequencies )\hght ~ 3000 A - w~6%x10"s ! = Yo~

consistent with the molecular volume estimate.



P <107 = 6£s1+10_3
0

= €, =1.00054¢€,, €y =1.0072¢;, €cyon=1.0057¢;, €, =1.000068 ¢,
® For solid or liquid dielectrics: N =10**—=10%®/m° = X~ 10*!

® For gases N =2.7 X 10" m

® Thermal agitation of the molecules could modify the molecular polarizability.

@ The probability distribution of particles in phase space for classical systems is

Bolt _H /ezf(H)dedSp
oltzmann 7(H) T

—e ‘ I <pmol>:

factor /f(H)dgxd?’p
® For a harmonically bound charge with an applied field in the z direction
p2 m p2 m e’ E* e £
H=——+—wer' —eEz=—+—wr *— - = r=r—-——1
2m 2m 2 2m wy m w,
2
, e E 3 7/ .3
/(%+mw2)f(H)dxdp ,
= ()= ° = E < sameas (2)
/f(H)dgx/dSp mw,

® The 2" type of polarizability is that caused by the partial orientation of random
permanent dipole moments. The orientation polarization is important in "polar"
substances such as HCI and H,O.



® With an applied field there is a tendency to line up along the field in the
configuration of lowest energy, thus there will be an average dipole moment.

@ The Hamiltonian of a molecule H=H ,—p, E=H ,— p, E cos 0

P, E
/ pocoste 1 dQ 1 P by expanding the exponentials
P/ P, £ 3 kT for Po <1
/ e " dQ

Py E p pPoE +1 p
e T ~1+—> Ecos 0 :>/edeQN27r/ 1+—2> Ecosf |dcosf=4r
kT kT

-1

po'E +1 2
:/pocosee” d Q~ 27rp0/ (cos@+:—;Ecoszﬁ)dcosé’=437T kp;E
-1

® In general both types of polarization,

induced and orientation, are present Polar
2
L )
Y mol = ’Yi+ . = 1n th@ form a+— v —% $ +
3 € kT T 'mol // Nonpolar

Selected problems: 1, 9, 10, 13

1/T ——>



Water vapor is a polar gas whose dielectric constant exhibits an appreciable tem-
perature dependence. The following table gives experimental data on this effect.
Assuming that water vapor obeys the ideal gas law, calculate the molecular polar-
izability as a function of inverse temperature and plot it. From the slope of the
curve, deduce a value for the permanent dipole moment of the H,O molecule (ex-

press the dipole moment in coulomb-meters). [Problem 4.12]
T(K) Pressure (cm Hg) (eleg — 1) X 10°
393 56.49 400.2
423 60.93 371.7
453 65.34 348.8
483 69.75 328.7

The ideal gas law is PV = nN, kT, where N4 is Avogadro’s number and k = 1.38x10723J /K
is the Boltzmann constant. Thus N = nN,/V = P/kT. According to the Clausius-Mossotti
3eleo—1 3kT e/ep —1

Neleg+2 P €leg+2
the following table:

relation Yme = The corresponding vmo and 1/7" are listed in



T(K)

103/T

393
423
453
483

P/10* (N/m?) (e/eg — 1) x 105 o1 x 102 (m?)
7.531 400.2 2.878
8.123 371.7 2.668
8.711 348.8 2.500
9.299 328.7 2.353

’Ymol ‘./
9o
i
”
>
”
/,,
71’,’, l
v‘l’ T
0

Fig. 4.5 Problem 4.12

2.544
2.364
2.208
2.070

1 p?

From Eq. (4.82), Ymo1 is expected to have a linear relation with 1/7, i.e., Ymo1 >~ Vi + ——

3601k1f

From the data curve(or with the least-square method), see Fig. 4.5, we can deduce the slope

3
3€0k

= 1.106 x 10~*°m® - K.
1073%m?3.) This leads to py = 6.367 x 107°°C - m.

(And the induced molecular polarizability v; = 5.982 x



Electrostatic Energy in Dielectric Media

1
o W= 5 / P (r) % (r) d’ x for the energy due to a charge density and a potential

cannot in general be used in our macroscopic description of dielectric media
because work is done in a dielectric media not only to bring real (macroscopic)
charge into position, but also to produce polarization in the medium.

® Consider a small change in the energy due to some sort of change in the
macroscopic charge density existing in all space

5W:/5P(r)<I>(r)d3x=/E.5Dd3x - E=-V2o
dp=V-é6D « V-D=p
D
= W:/de/ E 5D
0
1 1

2E-§D=¢(E-p) !fthemedium W:E/E-Ddf”x:E/pcbdf”x

. 1s linear
o W= 5 / p(r)®(r) d° x is valid macroscopically only if the behavior is linear.
® An interesting problem is the change in energy when a dielectric object with a
linear response is placed in an electric field whose sources are fixed.

e The initial electrostatic energy W, = % / E,D,d°x = D,=¢,E,

1
@ Introduce a dielectric object into the field W, = > / EDd’x « D=cE



E-D-E,D E-D,—E, D E+E
W:/ 20 > d’ x / 02 ° d3x+/ ; > (D-D,)d’ x

/ (E+E,)-(D-D,)d*»
:—/V\If-(D—DO)d?’x < E+E,=— VU < VX(E+E )=0

:/\I;V-(D—DO)de:O = V:(D-D,)=0 « p, is fixed
ED,—E, D -

W:/ 0o d3x=—/ " OgEEx (3)
2 L2

P-E
:—/ *d’x = P=(e—¢,)E (4)
L2

® The factor Y2 in the expression is because it represents the energy density of a
polarizable dielectric in an external field, rather than a permanent dipole.

=

® (3) & (4) show that a dielectric body will tend to move toward regions of
increasing field E, provided e>¢,,.

® Imagine a small generalized displacement of the body, then there will be a
change in the energy, and this means that there is a force acting on the body:

oW

Fo=—2%
‘ ag|Q:c0nst



® In practical situations the electric fields are often produced with fixed potentials.

@ For linear media WZ/p(r)Zq)(r)dSX = 5W:/p5<1>42-<1>5pd3x (5)

® If the dielectric properties are not changed, the 2 terms in (5) are equal. If the
dielectric properties are altered, the 2 contributions are not necessarily the same.

® The reason for the difference is the polarization charge. The change in dielectric
properties can be thought of as a change in the polarization-charge density.

® The process of altering the dielectric properties with fixed potentials can be
viewed as taking place in 2 steps. In the 1° step the dielectric properties are

1
changed with the charges held fixed: § W, = By / pd® d’x

® In the 2™ step the potentials is restored to the original values. There will be a

flow of charge to change the potential d $,=-9 b,

= 5WZZ%/(p5<I>2+<I>5p2)d3x=—25W1

5 5W:5W2+5W1:—1/ 58, d°x = W, =—0W,
2
e If a dielectric with — >1 moves into a region of greater
€o ow
= F.=+——

field strength, the energy increases instead of decreases. 0¢ |V = const
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