
  

Chapter 3Chapter 3 Boundary-Value Problems in Electrostatics II
 Solutions of the Laplace equation are represented by expansions in series of 

the appropriate orthonormal functions in various geometries.

 The construction of Green functions in terms of orthonormal functions arises in 
the attempt to solve the Poisson equation in the various geometries.

 In spherical coordinates, the Laplace equation is as follows:

Laplace Equation in Spherical Coordinates
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 The ϕ dependence of the equation has now been isolated in the last term:

 By similar considerations
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Legendre Equation and Legendre Polynomials

This equation is called the generalized Legendre equationgeneralized Legendre equation, and its solutions are
the associated Legendre functionsLegendre functions. (Also d x = − sin θ d θ)

 Consider the ordinary Legendre differential equation with m=0

 The 2 relations of α are equivalent, so choose one of a0 and a1 being nonzero.

 The series converges for x2<1, regardless of the value of ℓ.

 The series diverges at x=±1, unless it terminates.

 Since we want a solution that is finite, we demand that the series terminate.
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 Since α and j are positive integers or 0, the recurrence relation will terminate 

only if ℓ is 0 or a positive integer.

 If ℓ is even (odd), then only the α=0 (α=1) series terminates.

 The polynomials in each case have xℓ as their highest power of x, the next 

highest being xℓ−2, down to x0(x) for ℓ even (odd).

 These polynomials are normalized to be unity at x=±1 and are called the 

Legendre polynomialsLegendre polynomials of order ℓ,

 The Legendre polynomials form a complete orthogonal set of functions on the 

interval −1≤x≤1:
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)+ ℓ (ℓ+1) Pℓ ] d x=0

⇒ ∫
−1

+1

[( x2
−1)

d Pℓ
d x

d Pℓ

d x
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 Use Rodrigues' formula to determine the value for ℓ=ℓ 

 For any function on 
the interval −1≤x≤1:       
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Ex: consider

 Some useful recurrence relations
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Ex: consider

Similarly,

Note:  
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Boundary-Value Problems with Azimuthal Symmetry 
 The general solution for a problem possessing azimuthal symmetry m=0

 This expansion provides a means of obtaining the solution of potential problems 
from a knowledge of the potential in a limited domain, ie, on the symmetry axis. 

Ex: let Φ0(θ) be the potential on the surface of a sphere of radius a, find the 
potential inside the sphere.

no charge at the origin ⇒ Bℓ=0 ⇒ Φ0 (θ)=∑
ℓ=0

∞
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Φ (θ=0)= ∑
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 For the problem of the hemispheres at equal and opposite potentials. We have

 The potential at r due to a unit point charge at r :

Proof: rotating axes so that r  lies along the z axis

1
|r−r |

=∑
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∞ r<
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∞
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∑
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∞
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= ∑
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1
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r>
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ℓ
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for points off the axis
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 The potential due to a total charge uniformly distributed around a circular ring

Φ (z= r )=
1

4 π ϵ0

q

√r2
+ c2
−2 c r cos α

⇐
c2
=a2

+ b2

cos α=
a
b

=

q

4 π ϵ0
∑
ℓ=0

∞ cℓ

r ℓ+1 Pℓ (cos α) r > c

q

4 π ϵ0
∑
ℓ=0

∞ r ℓ

cℓ+1 Pℓ (cos α) r < c

⇒ Φ (r , θ)=
q

4 π ϵ0
∑
ℓ=0

∞ r<
ℓ

r>
ℓ+1 Pℓ (cos α) Pℓ (cos θ )

where r<=min (r , c) , r>=max (r , c)



  

[Problem 3.2a]



  



  

Behavior of Fields in a Conical Hole or Near a Sharp Point 

 For          , the region is a deep conical hole in a conductor. For           , the 

region is that surrounding a pointed conical conductor.

 Seek solutions finite and single-valued 
on the range of x=cos θ

 If v is 0 or a positive integer the series is exactly the Legendre polynomials.

 For v not being an integer, the series is called a Legendre function of the 1st  kind 
and order v.

ξ≡
1− x

2
⇐ x≡cos θ ⇒ cos β< x<1

⇒
d

d ξ
( ξ (1−ξ ) d P

d ξ
)+ v (v+1) P=0 ⇐

Legendre
equation

⇒ P (ξ)= ξα ∑
j=0

∞

a j ξ
j
⇒

a j +1

a j

=
( j−v) ( j+ v+1)

( j+1)2
 & α=0

set a0=1 ⇒ P (ξ=0)=1

⇒ Pv (ξ )=1+
(− v) (v+1)

1!1!
ξ +
(−v) (− v+1) (v+1) (v+2)

2!2!
ξ

2
+⋯

β>
π

2
β<
π

2



  

 Hypergeometric
                function

 The basic solution to the problem:

 The potential vanishes at θ=β:                         an eigenvalue condition for v.

 The fields and charge density all vary as r ν−1 as r0.

r  0 ⇒ Φ≃ A r v Pv (cos θ ) ⇐ v : the smallest root

⇒ [
E r=−

∂ Φ
∂ r
≃− v A r v−1 Pv (cos θ )

E θ=−
1
r
∂ Φ
∂ θ
≃ A r v−1 Pv


(cos θ ) sin θ

σ (r )=− ϵ0 E θ∣θ=β≃− ϵ0 A r v−1 Pv

(cos β) sin β

F 12 (a , b ; c ; z)=1+
a b
c

z
1!
+

a (a+1) b (b+1)
c (c+1)

z2

2!
+⋯

⇒ Pv (x )= F 12 (−v , v+1 ; 1 ;
1− x

2
)

β≪1 ⇒ v≫1

Pv (cos β )=0

Φ (r , θ)=∑
k=1

∞

Ak r vk Pvk
(cos θ ) ⇐ [

cos β  is the  1st zero for Pv1
( x ) for v= v1

cos β  is the 2nd zero for Pv2
(x ) for v=v2

⋯

A r v Pv (cos θ ) ⇐ v>0 for finite at the origin



  

 An approximate expression for v can be from the Bessel function

 The 1st zero of J0(x) is at x=2.405

                                                small fields & little charge deep in a conical hole

                                                            (plane)

 The fields near a narrow conical point vary r −1+ϵ, ϵ≪1, and very high fields 
exist around the point.

β  π ⇒ v 0 ⇒ v≃( 2 ln
2
π−β

)−1

⇒ [v≃0.2 ⇐ π−β≃10 
v≃0.1 ⇐ π−β≃1 

Pv (cos θ)≃ J 0( (2 v+1) sin θ
2
) ⇐ for large v  and θ <1

⇒ v≃
2.405
β

−
1
2

β  0 ⇒ |E| , σ ∝ r v−1
 0

β=
π

2
⇒ v=1 ⇒ σ ∝ 1 (const)

β>
π

2
⇒ v<1 ⇒ singular at r=0



  

Associated Legendre Functions and the Spherical Harmonics

 The general potential problem can, however, have azimuthal variations.

 Associated Legendre function: generalization of Legendre polynomial

 Spherical harmonics (tesseral harmonics)

Pℓ
m
( x)=(−1)m (1− x2

)

m
2 dm

d xm P ℓ ( x) ⇐ ℓ∈ℕ∪0 , m=0 ,⋯ , ℓ

=
(−1)m

2ℓ ℓ!
√(1− x2

)
m dm+ ℓ

d xm+ ℓ ( x
2
−1)ℓ ⇐ Rodrigues' formula

m=− ℓ ,⋯ , ℓ

⇒ Pℓ
−m
(x )=(−1)m

(ℓ−m)!
(ℓ+m)!

Pℓ
m
( x )

⇒ ∫
−1

+1

Pℓ
m
( x ) Pℓ

m
(x ) d x= 2

2 ℓ+1
(ℓ+m)!
(ℓ−m)!

δ
ℓ ′ ℓ

d
d x
( (1− x2

)
d P
d x
)+( ℓ (ℓ+1)−

m2

1− x2 ) P=0 ⇐ x=cos θ

Y ℓ
m
(θ , ϕ)=√

2 ℓ+1
4 π

(ℓ−m)!
(ℓ+m)!

Pℓ
m
(cos θ ) ei m ϕ

⇒ Y ℓ
−m
(θ , ϕ)=(−1)m Y ℓ

 m
(θ , ϕ)



  

⇒ ∫
0

2 π ∫
0

π

Y ℓ
 m

(θ , ϕ) Y ℓ
m
(θ , ϕ) sin θ d θ d ϕ=δ

ℓ′ ℓ
δ

m ′ m
⇐ normalization

orthogonality

⇒ ∑
ℓ=0

∞

∑
m=−ℓ

ℓ

Y ℓ
 m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)=δ (ϕ−ϕ) δ (cos θ−cos θ) ⇐ completeness

ℓ=0 Y 0
0
=

1

√4 π

ℓ=1 [
Y 1

1
=−√ 3

8 π
sin θ ei ϕ

Y 1
0
= √ 3

4 π
cos θ

ℓ=2 [
Y 2

2
=

1
4 √ 15

2 π
sin2
θ e2 i ϕ

Y 2
1
=−√ 15

8 π
sin θ cos θ ei ϕ

Y 2
0
=

1
2 √ 5

4 π
(3 cos2

θ−1)

ℓ=3 [
Y 3

3
=−

1
4 √ 35

4 π
sin3
θ e3 i ϕ Y 3

2
=

1
4 √105

2 π
sin2
θ cos θ e2 i ϕ

Y 3
1
=−

1
4 √ 21

4 π
sin θ (5 cos2

θ−1) ei ϕ Y 3
0
=

1
2 √ 7

4 π
(5 cos3

θ−3 cos θ )

For m=0, Y ℓ
0
(θ , ϕ)=√

2 ℓ+1
4 π

Pℓ (cos θ)



  

For an arbitrary function

 The expansion for θ=0

The general solution

g (θ , ϕ)=∑
ℓ=0

∞

∑
m=−ℓ

ℓ

Aℓ
m Y ℓ

m
(θ , ϕ) ⇐ Aℓ

m
=∫ g (θ , ϕ) Y ℓ

 m
(θ , ϕ) d Ω

For m≠0 ⇒ Y ℓ
m
(θ , ϕ) ∝ f (θ , ϕ) sin θ ⇒ Y ℓ

m
(0 , ϕ)=0

g (θ=0 , ϕ)=∑
ℓ=0

∞

√ 2 ℓ+1
4 π

Aℓ
0
⇐ Aℓ

0
=√2 ℓ+1

4 π
∫ g (θ , ϕ) Pℓ (cos θ ) d Ω ()

All terms in the series with m≠0  vanish at θ=0

Φ (r , θ , ϕ)=∑
ℓ=0

∞

∑
m=−ℓ

ℓ

( Aℓ
m r ℓ+

Bℓ
m

r ℓ+1 ) Y ℓ
m
(θ , ϕ)



  

Addition Theorem for Spherical Harmonics 

 

Proof: if let r  be on the z-axis

If rotate the axis to a new place  

∇
2 :scalar operator ⇒ invariant under rotation ⇒ ∇

 2
=∇

2

⇒ ∇
2 Pℓ (cos γ )+

ℓ (ℓ+1)

r2 P ℓ (cos γ )=0 ⇒ Pℓ  is a spherical harmonic of ℓ

⇒ Pℓ (cos γ )=√ 4 π
2 ℓ+1

Y ℓ
0
(γ , ψ )= ∑

m=− ℓ

ℓ

Am (θ
 , ϕ)Y ℓ

m
(θ , ϕ)

⇒ Am=∫ Y ℓ
 m
(θ , ϕ) Pℓ (cos γ) d Ω=√

4 π
2 ℓ+1

∫ Y ℓ
 m
(θ , ϕ) Y ℓ

0
(γ , ψ) d Ω

Let g (γ , ψ)=√ 4 π
2 ℓ+1

Y ℓ
m
(θ (γ , ψ ) , ϕ (γ , ψ ))=∑

k
Bk Y ℓ

k
(γ , ψ)

For r=(r , θ , ϕ) , r =(r , θ , ϕ)
⇒ cos γ=cos θ cos θ+sin θ sin θ cos (ϕ−ϕ)

⇒ Pℓ (cos γ )=
4 π

2 ℓ+1
∑

m=− ℓ

ℓ

Y ℓ
 m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)

⇒ ∇
 2 Pℓ (cos γ )+

ℓ (ℓ+1)

r2
Pℓ (cos γ )=0

r ′

r



  

⇒ B0=√ 4 π
2 ℓ+1

∫ Y ℓ
m
(θ , ϕ)Y ℓ

 0
(γ , ψ) d Ω= Am


⇒ Am=B0



Choose θ=θ ⇒ g (γ=0 , ψ )= [√
4 π

2 ℓ+1
Y ℓ

m
(θ , ϕ)γ=0=√

4 π
2 ℓ+1

Y ℓ
m
(θ
 , ϕ)

∑
k

Bk Y ℓ
k
(0 , ψ) =√

2 ℓ+1
4 π

B0

⇒ B0=
4 π

2 ℓ+1
Y ℓ

m
(θ
 , ϕ) ⇒ Am (θ

 , ϕ)= 4 π
2 ℓ+1

Y ℓ
 m
(θ
 , ϕ) q.e.d.

 Another theorem 

 A useful application of the addition theorem 

γ=0 ⇒ ∑
m=− ℓ

ℓ

|Y ℓ
m
(θ , ϕ)|2=

2 ℓ+1
4 π

Pℓ (cos γ )=Pℓ (cos θ) P ℓ (cos θ)

+2∑
m=1

ℓ
(ℓ−m)!
(ℓ+m)!

Pℓ
m
(cos θ) Pℓ

m
(cos θ) cos m (ϕ−ϕ)

1
|r−r |

=∑
ℓ=0

∞ r<
ℓ

r>
ℓ+1 Pℓ (cos γ )=∑

ℓ=0

∞

∑
m=−ℓ

ℓ 4 π
2 ℓ+1

r<
ℓ

r>
ℓ+1 Y ℓ

 m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)



  

[Problem 3.6a]



  



  

Laplace Equation in Cylindrical Coordinates; Bessel Functions

⇒
d2 Z

d z2 −k2 Z=0 ,
d2 Q

d ϕ2 + v2 Q=0 ,
d2 R

d ρ2 +
1
ρ

d R
d ρ
+( k2

−
v2

ρ
2 ) R=0

⇒ Z (z)=e± k z , Q (ϕ)=e± i v ϕ
⇐ v∈ℤ , k∈ℝ (+) , and let x≡k ρ

⇒
d2 R

d x2 +
1
x

d R
d x
+( 1−

v2

x2 ) R=0 ⇐ Bessel equation ⇒ R (x )= xα ∑
j=0

∞

a j x j

⇒ α=±v
aodd=0

, a2 j=−
a2 j−2

4 j ( j+α)
=
(−1) j

Γ (α+1) a0

22 j j !Γ ( j+α+1)
⇐ a0=

1
2α Γ (α+1)

⇒ 2  solutions: J
±v ( x)=∑

j=0

∞ (−1) j

j! Γ ( j±v+1)
( x

2
)2 j± v

[
v∉ℤ ⇒ J±v  are linearly independent

v∈ℤ ⇒ J
−v=(−1)v J v ⇐

need another linear
independent solution

⇒ N v=
J v cos v π− J−v

sin v π
⇐ Neumann function

The Laplace 
equations: ∇

2Φ=
∂

2Φ

∂ ρ
2 +

1
ρ

∂ Φ
∂ ρ
+

1
ρ

2

∂
2Φ

∂ ϕ
2 +
∂

2Φ

∂ z2 =0 ⇒ Φ=R (ρ)Q (ϕ) Z (z)

Γ (z)≡ ∫
0

∞

e−t t z−1 d t=(z−1)!



  

x≪1 ⇒ J v
1

Γ (v+1)
( x

2
)v

, N v  [
2
π
( ln

x
2
+0.5772⋯) , v=0

−
Γ (v)
π
( 2

x
)v

, v>0

x≫1 , v ⇒ J v  √ 2
π x

cos( x−
2 v+1

4
π ) , N v  √ 2

π x
sin ( x−

2 v+1
4
π )

 Replace J±v with Jv and Nv no matter if v is an integer or not.

 Hankel functions:                                                          usually used in radiation.

  J v ( xv n)=0 ⇐ xv n is the nth root ⇒
v=0 , x0 n=2.405 , 5.520 , 8.654 ,⋯
v=1 , x1 n=3.832 , 7.016 , 10.173 ,⋯
v=2 , x2 n=5.136 , 8.417 , 11.620 ,⋯

xv n≃π ( n+
v
2
−

1
4
) ⇐  asymptotic formula

Ωv∈{J v , N v , H v
(1) , H v

(2)
} ⇒ Ωv−1+Ωv+1=

2 v
x
Ωv , Ωv−1−Ωv+1=2

d Ωv

d x
(#)

H v
(1)
≡ J v+ i N v , H v

(2)
≡ J v− i N v



  

N ν (x )J ν (x )

J m ( x )=
1
π
∫

0

π

cos (x sin φ−m φ) d φ=
1

2 π im ∫
0

2 π

ei (x cos φ−mφ) d φ

 Problem 3.16d



  

                          for fixed                                 form an orthogonal set on

Proof:

0≤ρ≤a

1
ρ

d
d ρ [ρ

d
d ρ

J v( x v n

ρ

a
)]+(

xv n
2

a2 −
v2

ρ
2 ) J v( x v n

ρ

a
)=0

⇒ ∫
0

a

J v( xv n 
ρ

a
) [ d

d ρ [ρ
d

d ρ
J v( xv n

ρ

a
)]

+( xv n
2

a2 −
v2

ρ
2 ) ρ J v( xv n

ρ

a
)] d ρ=0 ⇐ ×ρ J v( xv n

ρ

a
)

⇒ ρ J v ( x
v n′
ρ

a
) d

d ρ
J v( xv n

ρ

a
)|

0

a

[ = xv n J v ( xv n ) J v

(x v n)]

−∫
0

a

ρ
d

d ρ
J v( xv n 

ρ

a
) d

d ρ
J v( xv n

ρ

a
) d ρ

+∫
0

a( xv n
2

a2 −
v2

ρ
2 ) ρ J v( xv n 

ρ

a
) J v ( xv n

ρ

a
) d ρ=0 (


)

write down the same equation, with n  and n  interchanged, and sbutract

⇒ (xv n
2
− xv n 

2
) ∫

0

a

ρ J v( xv n
ρ

a
) J v( xv n

ρ

a
) d ρ=0 ⇐ orthogonality

condition

v≥0 , n=1, 2 ,⋯√ρ J v( xv n

ρ

a
)



  

 The normalization integral:

Proof: 

∫
0

a

ρ J v( x v n
ρ

a
) J v( x v n

ρ

a
) d ρ=

a2

2
J v±1

2
(xv n) δn n

(# ) ⇒ J v±1=
v
x

J v∓ J v

⇒ J v±1 ( xv n)=∓ J v


( xv n) ⇒ J v

 2
( xv n)= J v±1

2
(xv n)

(

)−(n↔ n) ⇒ xv n J v ( xv n) J v


(x v n)− xv n J v ( xv n) J v


( xv n )

=
xv n

2
− x v n

2

a2 ∫
0

a

ρ J v( xv n
ρ

a
) J v( xv n

ρ

a
) d ρ

xv n= xv n+ ϵ ⇒ J v ( xv n )≈ J v (x v n)+ ϵ J v

(xv n)

⇒ xv n J v (x v n) J v

(xv n)− xv n J v (x v n) J v


(x v n)≈ ϵ xv n J v

2
(x v n) ⇐ J v ( xv n)=0

⇒
xv n 

2
− xv n

2

a2
∫

0

a

ρ J v( xv n
ρ

a
) J v( x v n

ρ

a
) d ρ≈

2 xv n ϵ

a2
∫

0

a

ρ J v
2( xv n

ρ

a
) d ρ

⇒ ∫
0

a

ρ J v
2( x v n

ρ

a
) d ρ=

a2

2
J v
 2
( xv n)=

a2

2
J v±1

2
(xv n) QED



  

 Assuming the set of Bessel functions is complete, the Fourier-Bessel series of f

 The Fourier-Bessel series is appropriate to functions vanishing at ρ = a, ie 
homogeneous Dirichlet boundary conditions on a cylinder.

 An alternative expansion is in a series of functions                           where yvn is 

the nth root of  J 
v
 ( y )=0, and is useful for functions with vanishing slope at ρ = a.

 The reason is that, in proving the orthogonality of the functions, it demands   

f (ρ)=∑
n=1

∞

Av n J v( xv n

ρ

a
) , 0≤ρ<a , v≥−1

where Av n=
2

a2 J v +1
2
( xv n)

∫
0

a

ρ f (ρ) J v ( xv n

ρ

a
) d ρ

√ρ J v( yv n

ρ

a
)

ρ J v (k ρ)
d

d ρ
J v (k


ρ)−ρ J v (k


ρ)

d
d ρ

J v (k ρ)=0   at  ρ=0
ρ=a

⇒ k a= xv n

yv n

⇒
J v ( xv n)=0
J v

( yv n)=0

⇒ ρ
d

d ρ
J v (k ρ)+λ J v (k ρ)=0 at the endpoints

in general



  

 Some of the other possibilities

    

Neumann series: ∑
n=0

∞

an J v+ n (z) , Schlomilch series: ∑
n=0

∞

an J v (n x )

Kapteyn series: ∑
n=0

∞

an J v+ n ((v+n) z) ⇐ Kepler motion of planets and of
radiation by moving charges

If 
d2 Z

d z2 + k2 Z=0 ⇒ Z (z)=sin k z , cos k z  x=k ρ

⇒
d2 R

d ρ2 +
1
ρ

d R
d ρ
−( k2

+
v2

ρ
2 ) R=0 ⇒

d2 R

d x2 +
1
x

d R
d x
−( 1+

v2

x2 ) R=0

⇒ I v (x )= i−v J v (i x ) , K v (x )=
π

2
iv+1 H v

(1)
(i x ) ⇐  modified Bessel functions

For v≥0

x≪1 ⇒ I v (x )
1

Γ (v+1)
( x

2
)v

, K v ( x) 
−( ln

x
2
+0.5772⋯) , v=0

Γ (v)
2
( 2

x
)v

, v≠0

x≫1, v ⇒ I v (x )
ex

√2 π x [1+O ( 1
x
)] , K v ( x ) √

π

2 x
e− x [1+O( 1

x
)]



  

K ν ( x)I ν (x )



  

[Problem 3.9]



  



  

Boundary-Value Problems in Cylindrical Coordinates 

 The potential on the side and the bottom is 0, 
the top is

⇒ Q (ϕ)= A sin m ϕ+B cos m ϕ , Z (z)=sinh k z
⇒ R (ρ)=C J m (k ρ)+D N m (k ρ) ⇐ m∈ℤ
R (0)=finite ⇒ D=0 ⇐ N m (ρ  0) ∞

R (k a)=0 ⇒ k m n=
xm n

a
, n∈ℕ ⇐ J m (x m n)=0

⇒ Φ (ρ , ϕ , z)=∑
m=0

∞

∑
n=1

∞

J m (k m n ρ) sinh km n z

×(Am n sin m ϕ+Bm n cos m ϕ)
⇒ V=∑

m , n
J m (k m n ρ ) sinh km n L (Am n sin m ϕ+ Bm n cos m ϕ)

⇒

Am n=
2 csch k m n L

π a2 J m+1
2
(k m n a)

∫
0

2 π

sin m ϕ d ϕ ∫
0

a

ρ V J m (km n ρ) d ρ

Bm n=
2 csch km n L

π a2 J m+1
2
(km n a)

∫
0

2 π

cos m ϕ d ϕ ∫
0

a

ρ V J m (km n ρ) d ρ

using 
B0 n

2
 for m=0

Φ=V (ρ , ϕ)



  

 

 These radial integral equations of the 1st kind can be solved since they are 

Hankel transforms:

 Using the integral relation                                                                 [Prob. 3.16a]

Push a ∞ , 0≤ z ∞ ⇒ Φ (z ∞)=0

⇒ Φ (ρ , ϕ , z)=∑
m=0

∞

∫
0

∞

e− k z J m (k ρ) [ Am (k ) sin m ϕ+Bm (k ) cos m ϕ ] d k ($)

If Φ (z=0)=V

⇒ V (ρ , ϕ)=∑
m=0

∞

∫
0

∞

J m (k ρ) [Am (k ) sin m ϕ+Bm (k ) cos m ϕ ] d k

⇒ ∫
0

∞

J m (k

ρ) [

Am (k

)

Bm (k

)] d k = 1

π
∫

0

2 π

V (ρ , ϕ) [sin m ϕ
cos m ϕ ] d ϕ

F v (k )= ∫
0

∞

f (ρ ) J v (k ρ) ρ d ρ

⇒
Am (k )
Bm (k)]=

k
π
∫

0

∞

ρ d ρ ∫
0

2 π

d ϕ V (ρ , ϕ) J m (k ρ) [sin m ϕ
cos m ϕ

& using 
1
2

B0 (k )

for m=0

∫
0

∞

x J m (k x) J m (k
 x ) d x=

δ (k−k )
k



  

∫
0

a

ρ J v (kv n ρ) J v (k v n ρ) d ρ=
a2

2
J v±1

2
( xv n) δ n n  ⇐ k v n≡

xv n

a
, k v n≡

xv n

a

⇒∑
n

k v n  (kv , n+1−k v n ) ∫
0

a

ρ J v (k v n  ρ) J v (k v n ρ) d ρ=LHS

=
a2

2
k v n (k v , n+1− kv n) J v +1

2
(xv n)= xv n

xv , n +1− xv n

2
J v+1

2
( xv n)=RHS

a ∞ ⇒
discrete kv n

  continuous d k
⇒ LHS  ∫

0

∞

k d k ∫
0

∞

ρ J v (k

ρ) J v (k ρ) d ρ

xv n n π+
2 v−1

4
π≫ 1   for   a∞

J v +1
2
( xv n)

2
π x v n

cos2( xv n−
2 v+3

4
π ) 2

π xv n

cos2
(n−1) π=

2
π xv n

⇒ RHS= xv n

xv , n+1− xv n

2
J v +1

2
( xv n) 1= ∫

0

∞

δ (k−k ) d k

⇒ ∫
0

∞

ρ J m (k ρ) J m (k

ρ) d ρ=

δ (k−k )
k



  

 Jv ( k x )'s for fixed v, Re( v )>−1, form a complete, orthogonal (in k) set on the 

interval  0 < x < ∞. For m fixed 

 Spherical Bessel function                                                           [See Chapter 9]

 The Fourier-spherical Bessel expansion for a given ℓ 

 Useful for current decay in conducting media or time-dependent magnetic 
diffusion with angular symmetry. [Problems in Chapter 5]

 The treatment of the Laplace equation in rectangular coordinates has been 
shown in Sec. 2.9. 

j ℓ (z)≡√
π

2 z
J ℓ+1/2 (z) , ℓ∈ℕ∪0

⇒

∫
0

∞

r2 j ℓ (k r ) jℓ (k
 r ) d r= π

2 k 2 δ (k−k ) ⇐ orthogonality relation

∫
0

∞

k2 jℓ (k r) j ℓ (k r ) d k= π

2 r2 δ (r−r ) ⇐ completeness relation

A (r )= ∫
0

∞
~A (k ) j ℓ (k r ) d k ⇐

~A (k )=
2 k 2

π
∫

0

∞

r2 A (r ) j ℓ (k r ) d r

A (x )= ∫
0

∞
~A (k ) J v (k x) d k ⇐

~A (k )=k ∫
0

∞

x A ( x) J v (k x ) d x Hankel
transform



  

[Problem 3.10]

x

–

z

y



  



  

Expansion of Green Functions in Spherical Coordinates 

 To handle problems involving distributions of charge and boundary values for 
the solutions of the Poisson equationthe Poisson equation, it needs to determine the Green functionGreen function 
that satisfies the appropriate boundary conditions.

 For the case of no boundary surfaces, the expansion of the Green function

 To obtain a similar expansion for the Green function for the "exterior" problem 
with a spherical boundary at r=a, which is found from the image form method

 Symmetric in r and r. 

G (r , r )=∑
ℓ , m

4 π
2 ℓ+1 [ r<

ℓ

r>
ℓ+1
−

1
a
( a2

r r
)ℓ+1

] Y ℓ m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)

where 
r<
ℓ

r>
ℓ+1
−

1
a
( a2

r r
)ℓ+1

= [
1

r  ℓ+1
( r ℓ−

a2 ℓ+1

r ℓ+1
) , r < r ⇒ vanishes for

r=a  or r ∞
1

r ℓ+1
( r  ℓ−

a2 ℓ+1

r  ℓ+1
) , r > r ⇒ vanishes for

r=a  or r ∞

1
|r−r |

=∑
ℓ=0

∞

∑
m=−ℓ

ℓ 4 π
2 ℓ+1

r<
ℓ

r>
ℓ+1 Y ℓ

 m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)



  

 The reason for different linear combinations for r<r and for r>r is connected 
with the fact that the Green function is a solution of the Poisson equation with a 
delta function inhomogeneity.

 From first principles, a Green function for a Dirichlet potential problem

∇
2 G (r , r )=−4 π δ (r−r ) ⇐ G (r , r )=0  for r  or r   on the boundary

δ (r−r )= 1
r2
δ (r−r ) δ (ϕ−ϕ) δ (cos θ−cos θ)

=
1
r2 δ (r−r )∑

ℓ=0

∞

∑
m=− ℓ

ℓ

Y ℓ
 m
(θ
 , ϕ)Y ℓ

m
(θ , ϕ)

⇒ G (r , r )=∑
ℓ=0

∞

∑
m=−ℓ

ℓ

Aℓ
m
(r | r  , θ , ϕ) Y ℓ

m
(θ , ϕ)

⇒ [
Aℓ

m
(r | r  , θ , ϕ)=gℓ (r , r ) Y ℓ

 m
(θ
 , ϕ)

1
r

d2

d r2 ( r gℓ (r , r))− ℓ (ℓ+1)

r2 g ℓ (r , r )=−
4 π
r2 δ (r−r )

⇒ gℓ (r , r)= [
A r ℓ+

B

r ℓ+1 for r < r

A r ℓ+
B

r ℓ+1
for r >r 



  

[ 1
sin θ

∂

∂ θ
( sin θ

∂

∂ θ
)+( ℓ (ℓ+1)−

m2

sin2
θ
)]Y ℓm=0

⇒ [ 1
sin θ

∂

∂ θ
( sin θ

∂

∂ θ
)+ 1

sin2
θ

∂
2

∂ ϕ
2 ] Y ℓm=− ℓ (ℓ+1) Y ℓ

m

L2
≡− [ 1

sin θ
∂

∂ θ
( sin θ

∂

∂ θ
)+ 1

sin2
θ

∂
2

∂ ϕ
2 ] ⇒ L2 Y ℓ

m
= ℓ (ℓ+1)Y ℓ

m

⇒ ∇
2Φ= 1

r
∂

2

∂ r2
(r Φ)−

L2

r2
Φ=0 ⇒

d2 U
d r2

=
ℓ (ℓ+1)

r2
U ⇐ Φ=

U
r

Y ℓ
m

⇒ Y ℓ
m  is also kind of eigenfunciton of ∇2  up to a factor of 

1
r2

L z≡− i (x ∂y− y ∂ x)=− i ∂ϕ ⇒ L z Y ℓ
m
=m Y ℓ

m
⇐ ∂x≡

∂

∂ x
,⋯

L x≡− i ( y ∂z− z ∂y)= i (+sin ϕ ∂θ+ cot θ cos ϕ ∂ϕ)

L y≡− i (z ∂ x− x ∂z)= i (−cos ϕ ∂θ+ cot θ sin ϕ ∂ϕ)

⇒ L±=L x± i L y=e± i ϕ
(±∂θ+ i cot θ ∂ϕ)

⇒ L2
=L x

2
+L y

2
+L z

2
=

1
2
(L L–+L– L)+L z

2



  

 A, B, A, B are functions of r to be determined by the boundary conditions, the 
requirement implied by δ(r−r), and the symmetry of gℓ(r, r) in r and r.

 Suppose that the boundary surfaces are concentric spheres at r=a and r=b 

⇒ gℓ (a , r )=gℓ (b , r )=0 ⇒ gℓ (r , r)= [
A r ℓ ( 1−

a2 ℓ+1

r2 ℓ+1 ) ,   for r < r

B

r ℓ+1 ( 1−
r2 ℓ+1

b2 ℓ+1 ) ,   for r >r 

⇒ gℓ (r , r)=C
r<
ℓ

r>
ℓ+1
( 1−

a2 ℓ+1

r<
2 ℓ+1
) ( 1−

r>
2 ℓ+1

b2 ℓ+1
) ⇐ symmetry in r  and r

∫
r –
′

r
′

( d2

d r2
(r gℓ)−

ℓ (ℓ+1)
r

g ℓ ) d r=− ∫
r –
′

r
′

4 π
r
δ (r− r) d r ⇐

r

=r + ϵ

r –

= r−ϵ

⇒
d

d r
(r gℓ)r′ −

d
d r
(r gℓ)r–′=−

4 π
r 

d
d r
(r gℓ)r′ =C ( r  ℓ−

a2 ℓ+1

r ℓ+1
) d

d r
( 1

r ℓ
−

r ℓ+1

b2 ℓ+1
)

r= r ′

=−
C
r [1−(

a
r 
)2 ℓ+1

] [ℓ+(ℓ+1)( r

b
)2 ℓ+1

]



  

d
d r
(r gℓ)r–′

=
C
r  [1−(

r 

b
)2 ℓ+1

] [ ℓ+1+ ℓ ( a
r
)2 ℓ+1

]
⇒ C= 4 π

2 ℓ+1
1

1−( a
b
)2 ℓ+1

⇒ G (r , r )=∑
ℓ=0

∞

∑
m=− ℓ

ℓ
4 π Y ℓ

 m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)

(2 ℓ+1) [1−( a
b
)2 ℓ+1

]
r<
ℓ

r>
ℓ+1 ( 1−

a2 ℓ+1

r<
2 ℓ+1 )( 1−

r>
2 ℓ+1

b2 ℓ+1 )

∑
ℓ , m

4 π
2 ℓ+1

r<
ℓ

r>
ℓ+1
( 1−

a2 ℓ+1

r<
2 ℓ+1
) Y ℓ

 m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)  for b ∞

∑
ℓ , m

4 π
2 ℓ+1

r<
ℓ

r>
ℓ+1

Y ℓ
 m
(θ
 , ϕ)Y ℓ

m
(θ , ϕ) for a 0

b∞

∑
ℓ , m

4 π
2 ℓ+1

r<
ℓ

r>
ℓ+1 ( 1−

r>
2 ℓ+1

b2 ℓ+1 ) Y ℓ
 m
(θ
 , ϕ) Y ℓ

m
(θ , ϕ)  for a  0



  

Solution of Potential Problems with the Spherical Green Function 
Expansion 

 The general solution to the Poisson equation with specified values of the 
potential on the boundary surface

 Consider the potential inside a sphere of radius b and set a=0

 Consider

only terms with m=0 survive because of azimuthal 
                                                                symmetry

⇒Φ (r )= 1
4 π ϵ0

∫ ρ (r )G (r , r ) d3 x

=
Q

4 π ϵ0
∑
ℓ=0

∞

Pℓ (0)
r<
ℓ

r>
ℓ+1 ( 1−

r>
2 ℓ+1

b2 ℓ+1 ) Pℓ (cos θ )

where r<=min (r , a) , r>=max (r , a)

V=0  & ρ (r )= Q
2 π a

δ (r−a)
δ (cos θ)

a
⇐ cos π

2
=0

Φ (r )= 1
4 π ϵ0

∫
V

ρ (r )G (r , r ) d3 x −
1

4 π
∮
S

Φ (r )
∂G
∂ n

d a

∂ G
∂ n

=
∂ G
∂ r  ∣r ′= b

=−
4 π
b2 ∑

ℓ , m
( r

b
)ℓ Y ℓ

 m
(θ
 , ϕ)Y ℓ

m
(θ , ϕ)   and  Φ (r


)=V (θ , ϕ)

ρ (r )=0

⇒ Φ (r )=∑
ℓ , m
( ∮ V (θ , ϕ)Y ℓ

 m
(θ
 , ϕ) d Ω )( r

b
)ℓ Y ℓm (θ , ϕ)

’



  

 2nd example:

P2 n+1 (0)=0 , P2 n (0)=
(−1)n (2 n−1)!!

2n n!
⇐ (2 n−1)!!≡

(2 n)!
(2 n)!!

=
(2 n)!
2n n!

⇒ Φ (r )= Q
4 π ϵ0

∑
n=0

∞ (−1)n (2 n−1) !!
2n n!

r <
2 n

r>
2 n+1 ( 1−

r>
4 n +1

b4 n+1 ) P2 n (cos θ)


Q

4 π ϵ0
∑
n=0

∞ (−1)n (2 n−1) !!

2n n!

r<
2 n

r>
2 n +1

P2 n (cos θ) ⇐ b∞ ⇒ Sec. III

V=0  & ρ (r )= Q
2 b
δ (cos θ−1)+ δ (cos θ+1)

2 π r 2

⇒ Φ (r )=
Q

8 π ϵ0 b∑
ℓ=0

∞

[P ℓ (1)+Pℓ (−1)] Pℓ (cos θ) ∫
0

b r<
ℓ

r>
ℓ+1 ( 1−

r>
2 ℓ+1

b2 ℓ+1 ) d r 

∫
0

b r<
ℓ

r>
ℓ+1 ( 1−

r>
2 ℓ+1

b2 ℓ+1 ) d r=( 1
r ℓ+1−

r ℓ

b2 ℓ+1 ) ∫
0

r

r ℓ d r 

+ r ℓ ∫
r

b( 1
r  ℓ+1−

r ℓ

b2 ℓ+1 ) d r 

=
2 ℓ+1
ℓ (ℓ+1)

( 1−
r ℓ

b ℓ
)



  

 The potential diverges along the z axis for cosθ=±1, except at r=b exactly.

 The surface-charge density on the grounded sphere

 The leading term shows that the total charge induced on the sphere is −Q, the 
other terms integrating to 0 over the surface of the sphere.   

σ (θ )=ϵ0
∂ Φ
∂ r ∣r= b

=−
Q

4 π b2 ( 1+∑
ℓ=1

∞ 4 ℓ+1
2 ℓ+1

P2 ℓ (cos θ ))

For ℓ=0 : ∫
0

b( 1
r>

−
1
b
) d r =( 1

r
−

1
b
) ∫

0

r

d r + ∫
r

b( 1
r 
−

1
b
) d r= ln

b
r

⇒ Φ (r )=
Q

4 π ϵ0 b [ ln
b
r
+∑
ℓ=1

∞ 4 ℓ+1
2 ℓ (2 ℓ+1)

( 1−
r2 ℓ

b2 ℓ ) P2 ℓ (cos θ)]
where Pℓ (−1)=(−1)ℓ



  

[Problem 3.13]



  



  



  

Expansion of Green Functions in Cylindrical Coordinates

 The Green function:

 The delta functions can be written in terms of orthonormal functions: 
 
δ (ϕ−ϕ


)=

1
2 π ∑m=−∞

∞

ei m (ϕ−ϕ′)

δ (z− z)= 1
2 π
∫
−∞

∞

ei k ( z− z ′) d k= 1
π
∫

0

∞

cos k (z− z) d k

⇒ G (r , r )= 1
2 π2 ∑

m=−∞

∞

∫
0

∞

ei m (ϕ−ϕ′) cos k (z− z) gm (k , ρ , ρ) d k

⇒
1
ρ

d
d ρ
( ρ d gm

d ρ
)−( k2

+
m2

ρ
2 ) gm=−

4 π
ρ
δ (ρ−ρ


) ⇒

I m (k ρ)
K m (k ρ)

 for ρ≠ρ

Let [
ψ1 (k ρ)= A I m (k ρ)+B K m (k ρ)  satifies the boundary condition for ρ<ρ

ψ2 (k ρ)=C I m (k ρ)+D K m (k ρ)  satifies the boundary condition for ρ>ρ

⇒ gm (k , ρ , ρ)=ψ1 (k ρ<) ψ2 (k ρ>) ⇐ the symmetry of the Green function

⇒
d gm

d ρ ∣ρ
′
+ ϵ

−
d gm

d ρ ∣ρ
′
− ϵ

=k | ψ1 ψ2

ψ1

ψ2
 |(=k W [ψ1 , ψ2]⏟

Wronskian

)=− 4 π
ρ


∇ x
2 G (r , r )=−4 π δ (ρ−ρ)

δ (ϕ−ϕ

)

ρ
δ (z− z)



  

ei m ϕ 's form an orthogonal set. ⇒ f (ϕ)=∑
ℓ=−∞

∞

Aℓ ei ℓ ϕ

⇒ ∫
0

2 π

f (ϕ)( 1
2 π ∑m=−∞

∞

ei m (ϕ−ϕ
′
)) d ϕ= 1

2 π
∫

0

2 π

∑
ℓ=−∞

∞

Aℓ ei ℓ ϕ
′

∑
m=−∞

∞

ei m (ϕ−ϕ
′
) d ϕ

= ∑
ℓ , m=−∞

∞

Aℓ ei m ϕ ( 1
2 π
∫

0

2 π

ei (ℓ−m) ϕ′ d ϕ ) ⇐
1

2 π
∫

0

2 π

ei (m−n) ϕ d ϕ=δm n

= ∑
ℓ , m=−∞

∞

Aℓ ei m ϕ
δm ℓ=∑

ℓ=−∞

∞

Aℓ ei ℓ ϕ
= f (ϕ)

⇒ δ (ϕ−ϕ

)=

1
2 π ∑m=−∞

∞

ei m (ϕ−ϕ ′)
⇐ ∫

0

2 π

f (ϕ) δ (ϕ−ϕ) d ϕ= f (ϕ)

F (k )= ∫
−∞

∞

f (z) e− i k z ′ d z + f (z)=
1

2 π
∫
−∞

∞

F (k ) ei k z d k ⇐ Fourier
Transform

⇒ f (z)= 1
2 π
∫
−∞

∞

F (k ) ei k z d k= 1
2 π
∫
−∞

∞ ( ∫
−∞

∞

f (z) e− i k z ′ d z) ei k z d k

= ∫
−∞

∞

f (z)( 1
2 π
∫
−∞

∞

ei k (z− z′) d k ) d z

⇒ δ (z− z)=
1

2 π
∫
−∞

∞

ei k ( z− z′) d k=
1
π
∫

0

∞

cos k (z− z) d k



  

 The Sturm-Liouville type equation:

 The Wronskian of 2 linearly independent solutions of a he Wronskian of 2 linearly independent solutions of a Sturm-Liouville type Sturm-Liouville type 

equation is proportional toequation is proportional to

Proof:

d
d x
( p ( x )

d ψ
d x
)+q (x ) ψ=0

1
p ( x )

⇒ W [ψ1 (x ) , ψ2 (x )]=−
4 π

x

d
d x
( p ( x )

d ψ
d x
)+q (x ) ψ=0 ⇒ ψ

″
+(ln p) ψ+q p−1

ψ=0

⇒
ψ1
″
+( ln p) ψ1


+q p−1

ψ1=0

ψ2
″
+( ln p) ψ2


+q p−1

ψ2=0
⇒
ψ1
″
ψ2+( ln p) ψ1


ψ2+ q p−1

ψ1 ψ2=0

ψ1 ψ2
″
+(ln p) ψ1 ψ2


+ q p−1

ψ1 ψ2=0

⇒ (ψ1
″
ψ2−ψ1 ψ2

″
)+(ln p) (ψ1


ψ2−ψ1 ψ2


)=0

⇒
d

d x
(ψ1


ψ2−ψ1 ψ2


)+(ln p) (ψ1


ψ2−ψ1 ψ2


)=0

⇒
d

d x
W [ψ1 , ψ2]+(ln p)W [ψ1 , ψ2]=0 ⇒ d ln W=−d ln p

⇒ W=
c
p
⇒ W ∝ 1

p



  

 No boundary surfaces

⇒ A=4 π ⇐ W [ I m (x ) , K m (x )]=−
1
x
⇐

Use the limit froms of
I m  and K m  to calculate.

⇒
1

|r−r |
=

2
π ∑

m=−∞

∞

∫
0

∞

I m (k ρ<) K m (k ρ>) cos k (z− z) ei m (ϕ−ϕ
′
) d k

=
4
π
∫

0

∞

cos k (z− z) d k ( I 0 (k ρ<) K 0 (k ρ>)

2

+∑
m=1

∞

I m (k ρ<) K m (k ρ>) cos m (ϕ−ϕ))

⇒
gm (k , 0 , ρ )  finite
gm (k ,∞ , ρ)=0

⇒
ψ1 (k ρ)= A I m (k ρ)
ψ2 (k ρ)= K m (k ρ)

r  0 ⇒ only the m=0
term survives

⇒
1

√ρ2
+ z2

=
2
π
∫

0

∞

K 0 (k ρ) cos k z d k

⇒ K 0 (k √ρ
2
+ ρ

 2
−2 ρ ρ  cos (ϕ−ϕ)) ⇐ ρ

2
 ρ

2
+ρ

2
−2 ρ ρ cos (ϕ−ϕ)

= I 0 (k ρ<) K 0 (k ρ>)+2∑
m=1

∞

I m (k ρ<) K m (k ρ>) cos m (ϕ−ϕ)

⇒ ln 1
ρ

2
+ρ

 2
−2 ρ ρ cos (ϕ−ϕ)

=2 ln 1
ρ>
+2∑

m=1

∞

( ρ<

ρ>
)

m
cos m (ϕ−ϕ)

m
⇐ k  0



  

[Problem 3.17]



  



  



  



  

Eigenfunction Expansions for Green Functions 

 Elliptic differential equation

 If the solutions are required to satisfy homogeneous boundary conditions on 
the surface S of the volume of V, then the equation will not in general have well-
behaved solutions, except for certain values of λ. 

 The values of λ, denoted by λn, are called eigenvalues (or characteristic values) 

and the solutions ψn(r) are called eigenfunctions :

 The eigenfunctions are orthogonal:                                               & assumed 
completeness.

 The spectrum of eigenvalues λn may be a discrete set, or a continuum, or both.

 To find the Green function:    

∫
V

ψm

(r ) ψn (r ) d3 x=δm n

⇒ G (r , r )=∑
n

an (r

) ψn (r ) ⇒ ∑

m

am (r

) (λ−λm) ψm (r )=−4 π δ (r−r )

⇒ ∫
V

∑
m

am (r

) (λ−λm) ψm (r ) ψn


(r ) d3 x=−4 π ∫

V

δ (r−r ) ψn

(r ) d3 x

⇒ an (r

)=

4 π
λn−λ

ψn

(r ) ⇒ G (r , r )=4 π∑

n

ψn

(r ) ψn (r )
λn−λ

∇
2
ψn (r )+[ f (r )+λn ]ψn (r )=0

∇
2
ψ (r )+[ f (r )+λ ] ψ (r )=0

∇
2 G (r , r )+[ f (r )+λ ]G (r , r )=−4 π δ (r−r )



  

G (r , r )=4 π ∫ ψ

(r  , λ) ψ (r , λ)
λ

−λ

d λ For a continuous spectrum 

 Consider

 The eigenfunctions for the wave equation:

 2nd ex: a box with x = y = z = 0, x = a, y = b, z = c: For a Dirichlet problem, 

ω=c k
(−∂t

2
+ c2

∇
2
)Ψ=0 ⇒ Ψ=ψ e−i ω t

(∇
2
+ k 2
)ψ k (r )=0 ⇒ ψk (r )=

ei k⋅r

(2 π)3 /2
⇒ ∫ ψ k 


(r ) ψ k (r ) d3 x=δ (k− k )

⇒ G (r , r )= 1
|r−r |

=
1

2 π2
∫ ei k⋅(r−r ′)

k2
d3 k ⇒  3d Fourier integration of 1

|r−r |

(∇
2
+ k ℓ m n

2
) ψℓ m n (x , y , z )=0

⇒

ψℓ m n (x , y , z)=√ 8
a b c

sin
ℓ π x

a
sin

m π y
b

sin
n π z

c

k ℓ m n
2
=π

2( ℓ2

a2
+

m2

b2
+

n2

c2
)

f (r )=λ=0 ⇒ ∇
2 G (r , r )=−4 π δ (r−r )



  

⇒ G (r , r)= 32 π
a b c ∑

ℓ , m , n=1

∞ sin
ℓ π x

a
sin
ℓ π x

a
sin

m π y
b

sin
m π y

b
sin

n π z
c

sin
n π z

c
k ℓ m n

2

=
16 π
a b ∑

ℓ , m=1

∞

sin
ℓ π x

a
sin
ℓ π x

a
sin

m π y
b

sin
m π y

b

sinh (K ℓ m z<) sinh [K ℓ m (c− z>)]

K ℓ m sinh (K ℓ m c)

(the z  coordinate is singled out for special treatment like in Sec 3.9 & 3.11)

⇒
sinh (K ℓ m z<) sinh [K ℓ m (c− z>)]

K ℓ m sinh (K ℓ m c)
=

2
c∑

n=1

∞ sin
n π z

c
sin

n π z
c

k ℓ m n
2

⇐
K ℓ m

2

π
2
=
ℓ2

a2
+

m2

b2

1
|r−r |

=
1

√ρ2
+ ρ

 2
−2 ρ ρ  cos (ϕ−ϕ)+(z− z)2

⇐
r =(ρ , ϕ , z)
r =(ρ , ϕ , z)

= ∑
m=−∞

∞ ∫
0

∞

J m (k ρ) J m (k ρ

) ei m (ϕ−ϕ′) e−k ( z>− z<) d k ⇐ Problem 3.16b

⇒
1

√ρ2
+ z2

= ∑
m=−∞

∞ ∫
0

∞

J m (k ρ) J m (0) e
i m ϕ e−k |z|d k ⇐  set r =0

= ∫
0

∞

J 0 (k ρ) e
−k |z|d k ⇐ J m (0)=δm 0



  

Mixed Boundary Conditions; Conducting Plane with a Circular Hole 

 Mixed boundary conditions are more difficult to handle than the normal one.

 An infinitely thin, grounded, conducting plane with a 
circular hole of radius a, and with E far from the hole 
being normal to the plane, constant in magnitude, 
and having different values on either side.

 The total z-component of E field must be continuous across z=0 in the hole

E= [ E0=−E0 ẑ for z +∞
E1=−E1 ẑ for z −∞

⇒ Φ= [ E 0 z+Φ(1) for z>0

E1 z+Φ(1) for z<0

⇒ Φ(1) (x , y , z)= 1
4 π ϵ0

∫ σ
(1)
( x , y) d x  d y

√( x− x )2+(y− y)2+ z2

⇒ Φ(1) (z)=Φ(1) (− z)
E(1)=−∇ Φ(1)

⇒
E x
(1)
(z)=E x

(1)
(− z)

E y
(1)
(z)=E y

(1)
(− z)

, E z
(1)
(z)=−E z

(1)
(− z)

−E0+E z
(1)
∣z=0=−E1+E z

(1)
∣z=0–  for ρ< a ⇒ E z

(1)
∣z=0=−E z

(1)
∣z=0–=

E 0−E1

2

σ
(0)
=−ϵ0 E0

σ –
(0)
= +ϵ0 E 1



  

 The potential is 0 on the 
      surface by hypothesis:

 An electrostatic boundary-value problem with the mixed boundary conditions:

 For large ρ or |z| the rapid oscillations of J0
 ( k ρ ) or the decrease of e− k |z| imply 

that the integral receives its important contributions from the region around k=0

Φ (a≤ρ<∞ , z=0)=0 ⇒ Φ(1) (a≤ρ<∞ , z=0)=0

∂ Φ(1)

∂ z ∣z=0
=

E1−E0

2
 for 0≤ρ<a

Φ
∣z=0
(1)

= 0 for a≤ρ<∞

(&) ⇒ Use ($) and azimuthal symmetry

Φ(1) (ρ , z)= ∫
0

∞

A (k ) J 0 (k ρ) e
−k |z|d k

A (k )=∑
ℓ=0

∞

k ℓ

ℓ!
d ℓ A
d k ℓ

(0) ⇒ Φ(1)=∑
ℓ=0

∞

dℓ A
d k ℓ

(0) Bℓ

⇒ Bℓ=
1
ℓ!
∫

0

∞

k ℓ J 0 (k ρ) e
− k |z| d k=

(−1)ℓ

ℓ!
d ℓ

d|z|ℓ
∫

0

∞

J 0 (k ρ) e−k |z|d k

=
(−1)ℓ

ℓ!
d ℓ

d |z|ℓ
1

√ρ2
+ z2

=
Pℓ (|cos θ|)

r ℓ+1 ⇐
Problem 3.16c
r2
=ρ

2
+ z2 , z=r cos θ

⇒ Φ(1)=∑
ℓ=0

∞
Pℓ (|cos θ|)

r ℓ+1

d ℓ A
d kℓ

(0) ⇐ multipole
expansion

A (0) total charge
d A
d k
(0) dipole moment

⋯



  

 For the mixed boundary value problem

 Consider the dual integral equations
 

 The total charge with  (1) is 0 and the leading term is the ℓ=1 contribution:

(&) ⇒
∫

0

∞

k A (k ) J 0 (k ρ) d k=
E 0−E1

2
 for 0≤ρ<a

∫
0

∞

A (k ) J 0 (k ρ) d k= 0  for a≤ρ<∞
⇐ dual integral

equations

∫
0

∞

y g ( y) J n (y x ) d y= xn  for 0≤ x<1

∫
0

∞

g ( y) J n ( y x) d y=0   for 1≤ x<∞
⇒

g (y )=
Γ (n+1) jn+1 ( y)

Γ (n+3 /2) √π

=
Γ (n+1) J n+3/2 (y)

Γ (n+3 /2) √2 y

[
n= 0

x=
ρ

a
y=k a ] ⇒

A (k )=
a2

π
(E 0−E1) j1 (k a)=

E 0−E1

π
( sin k a

k2 −
a cos k a

k
)

=
a2
(E0−E1)

3 π
( k a−

(k a)3

10
+⋯) ⇒

A (0)=0
d A
d k
(0)≠0

Φ(1)
a3
(E 0−E1)

3 π
|z|

r3 =
1

4 π ϵ0

p⋅r̂
r2 ⇒ p=∓ 4

3
ϵ0 a3

(E0−E1)  for z ≷ 0

effective electric dipole moment



  

 The reversal of the effective dipole moment depending on whether the observer 
is above or below the plane is because that a true dipole potential is odd in z, 
whereas it is even here.

 The idea that a small hole in a plane conducting sheet is equivalent far from the 
opening to a dipole normal to the surface is important in discussing the 
consequences of such openings in the walls of waveguides and cavities.

 The added potential in the neighborhood of the opening

Φ(1)=a2 E0−E1

π
∫

0

∞

j1 (k a) J 0 (k ρ) e
−k |z|d k  different form from Jackson's ,

but the same result

=
E 0−E 1

π
( √a2

− R–
2
−|z|sin−1 a

R
) ⇐ R±=

√(ρ+a)2+ z2
± √(a−ρ)2+ z2

2

⇒ Φ(1) (ρ=0 , z) =
E0−E1

π
( a−|z|sin−1 a

√a2
+ z2
)

⇒

Φ(1) (0 ,|z|≫ a) 
E0−E1

π

a3

3 z2

Φ(1) (0 ,|z| 0) 
E0−E1

π
a

Φ(1) (0≤ρ<a , 0)=
E0−E1

π
√a2
−ρ

2



  

∫
0

∞

j1 (k a) J 0 (k ρ) e
−k |z|d k=− 1

a
∫

0

∞

J 0 e−k |z|d j0 ⇐
d j0

d x
=− j1 , j0 (x )=

sin x
x

=
1
a
−
|z|
a
∫

0

∞

j0 J 0 e−k |z|d k−
ρ

a
∫

0

∞

j0 J 1 e−k |z|d k ⇐
d J 0

d x
=− J1

∫
0

∞

J 0 (k ρ) e− k |z| sin k a
k

d k= sin−1 a
R

∫
0

∞

J 1 (k ρ) e
−k |z| sin k a

k
d k=

a−√a2
−R–

2

ρ

⇐ R±=
√(ρ+a)2+ z2

± √(a−ρ)2+ z2

2

6.752 of Table of Integrals, Series, and Products, Gradshteyn & Ryzhik (2007)

⇒ ∫
0

∞

j1 (k a) J 0 (k ρ) e−k |z|d k=
1
a
−
|z|

a2 sin−1 a
R
−

a−√a2
−R–

2

a2

=
1
a2 ( √a2

− R–
2
−|z|sin−1 a

R
)

⇒ Φ(1)=a2 E0−E1

π
∫

0

∞

j1 (k a) J 0 (k ρ ) e
−k |z|d k

=
E0−E1

π
( √a2

−R–
2
−|z|sin−1 a

R
)



  

 The tangential (a radial field) and the 
normal electric field in the opening

 The magnitude of E has a square root 
singularity at the edge of the opening.

Selected problems: 3, 7, 12, 19, 22, 25 

E∥ (0≤ρ< a , 0)=
E0−E1

π

ρ

√a2
−ρ

2

E z (0≤ρ<a , 0)=−
E0+E 1

2

p−E1=0

p+E0

E0

E1=0
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