Chaptzr 3 Boundary-Value Problems in Electrostatics I
® Solutions of the Laplace equation are represented by expansions in series of
the appropriate orthonormal functions in various geometries.

® The construction of Green functions in terms of orthonormal functions arises in
the attempt to solve the Poisson equation in the various geometries.

Laplace Equation in Spherical Coordinates
® In spherical coordinates, the Laplace equation is as follows:
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® The ¢ dependence of the equation has now been isolated in the last term:

d2 *im .
1 Q2 =—m’ <constant = OQ=e = m: an.mteg.er for ¢
Q do being single-valued
® By similar considerations
d°U  £(+1 /1. B
r T ( 5 )U:O < {:realconstant = U=Ar" 1+7
r r r

1 d (sine-d—’i)+(£(e+1)--’””2 )P:O

sinf dé do sin” @



Legendre Equation and Legendre Polynomials
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This equation is called the generalized Legendre equation, and its solutions are
the associated Legendre functions. (Also dx=-sin6d0)

® Consider the ordinary Legendre differential equation with m=0
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O even power series of x

For a, 70 = a= _
1 odd power series of x

® The 2 relations of a are equivalent, so choose one of a, and a, being nonzero.
® The series converges for x*<1, regardless of the value of /.

® The series diverges at x=*1, unless it terminates.

® Since we want a solution that is finite, we demand that the series terminate.
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® Since o and J are positive integers or 0, the recurrence relation will terminate
only if £ is O or a positive integer.

® If / is even (odd), then only the a=0 (ax=1) series terminates.

® The polynomials in each case have x* as their highest power of x, the next
highest being x*, down to x°(x) for £ even (odd).

® These polynomials are normalized to be unity at x=x1 and are called the
Legendre polynomials of order /,
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® The Legendre polynomials form a complete orthogonal set of functions on the
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® Use Rodrigues' formula to determine the value for £=/{"
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Ex: consider f (x)= +1 for x>0

|
|
—1 for x<O | |
2/0+1 ! ° 1| :
A,= (/ Pgdx—/ Pgdx) = : 4
2
0 ~1 I :
1 I
:(2£+1)/ P,d x only odd £ |
0 coefficients survive ! !
:<_1)£;1<2£+1>(€—2)!! _ (2n+1)1=(2n+1)(2n-1)--x3x1
(£+1)! 2nll= 2n (2n—-2)---X4X2
3 7 11
- fw=3r-Zraile .
® Some useful recurrence relations
dP dP
di”— di‘l—(zeu)m:o, (£+1)P,,,—(2£+1)xP,+£P, =0 (%)
dP,, dP dP
dil—x dxg_(e-l_l)PE:O’ (x*—1) dxg—KxPﬁKPé_l:O
& (24—2n)! -
‘PK(X)=Z(—1)” : -2 o Mathematical methods
n=0 2°nl(—n)(£—2n) for Physicists , Arfken



N ==2,P, (x)t" < generating function
1—2xr+t¢ n=0
2k w2 Coo
= ZPn(O>t”: 1 — (_1)kcikt7k N Pn<0): (—1> 9" , n even
n=0 1+ k=o0 2
0, n odd
dP dP
d‘”— d“—(zeu)mzo
X X
1
= (2€+1)/ Pfdx:Pzﬂ(l)_PzH(O)_Pz 1<1>+Pe 1(O>
0
(_ 1)(€—1)/2 B (_ 1)(g+1)/2 .
=P <O> — P (O> = 9¢-1 C(Zz—ll)/z o ol+1 C(£4+11)/2
:(_1)£—zl (£—-1)! (_1)%1 (£+1)! :(_1)621((6—2)!!+ Il )
[(£—1)1] [(£+1)17T (£—1)11 (£+1)
2 2"
=(—1) 2 (2£+1)((€+f>)'°", ¢ odd



Ex: consider
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Boundary-Value Problems with Azimuthal Symmetry
® The general solution for a problem possessing azimuthal symmetry m=0
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® This expansion provides a means of obtaining the solution of potential problems
from a knowledge of the potential in a limited domain, ie, on the symmetry axis.

On the symmetric axis z =

Ex: let ®,(0) be the potential on the surface of a sphere of radius a, find the
potential inside the sphere.
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® For the problem of the hemispheres at equal and opposite potentials. We have

2 2 J 1 : 2 j
r'—a 4] 1 (2]—1)51

Pl(z=r)=V [ 1-— I :

( ) ( r\/r2+a2) VT Z J' 2 P2

®(r,0)= 4 ( 1_) 4/ -1 r ( 21 ) az' sz_l(cos 0) (2.27)
Jr = 2 2 r! =(3.36)

® The potential at r due to a unit point charge at r’:
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® The potential due to a total charge uniformly distributed around a circular ring
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A spherical surface of radius R has charge uniformly distributed over its surface with a
density Q/4mR?, except for a spherical cap at the north pole, defined by the cone 6 = a.

(a) Show that the potential inside the spherical surface can be expressed as
¢
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where, for £ =0, Py_j(cosa) = —1. What is the potential outside? [Problem 3.2a]
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where y = cos@’, P_i(cosa) = —1, and since |x — x'|71 = Z EHPg(covy) where

(=0
r< (r-) is the smaller (larger) of |x| and |x’| and cosy = x - X/, and the recurrence
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Outside the sphere, i.e., r > R, the potential can be obtained by swapping the position
of r and R in ®;,,

Z R* Py q(cosa) — Pp_i(cos )

) W1 Py(cosh).




Behavior of Fields in a Conical Hole or Near a Sharp Point

: 9
® For < T the region is a deep conical hole in a conductor. For 5> E , the
Z

region is that surrounding a pointed conical conductor.

® Seek solutions finite and single-valued
on the range of x=cos 0

551;x < x=cosf = cosf<x<l
d dP Legendr
= — 1-¢6)— |+ +1)P=0 <«
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(—v) (— v+1) (v+1) (v+2) £2+
1!'1! 212!
® If v is 0 or a positive integer the series is exactly the Legendre polynomials.

® For v not being an integer, the series is called a Legendre function of the 1" kind
and order v.
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= P (x)=,F, (—v,v+1;1; 1;x>

@ The basic solution to the problem: A r’ P (cos@) < v>0 for finite at the origin

® The potential vanishes at §=0: P, (cos 3)=0 an eigenvalue condition for v.

o0 .COS B 1s the 1st zero for Pv1 (x) for v = 12
®(r,0)=2 Ar*P, (cosf) < |cos B is the 2nd zero for P, (x) forv= v,
k=1 ,
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r—»0 = ®~Ar"P (cosf) < v:thesmallest root
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® The fields and charge density all vary as r *' as r—0[

0 | | |

B (degrees) —>



® An approximate expression for v can be from the Bessel function

P (cos@)=~J, ((2v+1)sin%) < forlarge v and <1

2405 1
® The 1% zero of J,(x) is at x=2.405 = v= 5 _E
©e3—-0 = |E|,ooxr' '— 0smallfields & little charge deep in a conical hole
i s
® 525 = v=1 = oo 1(const) (plane)
® 5>% = v<1l = singularatr=0

v~0.2 « 7—8=~10"
v~0.1 « 71—f=~1"

-1
epf-m = v—->0 = v:(ZIn 2 ) =
m™—p

® The fields near a narrow conical point vary r '*%, €1, and very high fields
exist around the point.



Associated Legendre Functions and the Spherical Harmonics

® The general potential problem can, however, have azimuthal variations.
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® Associated Legendre function: generalization of Legendre polynomial
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® Spherical harmonics (tesseral harmonics)
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® For an arbitrary function

2(0.9)=3 ¥ a7vi(0.9) < a7=[g(0.9)v"(0,6)d0

=0m=—/¢
® The expansion for =0

For m#0 = Y, (60, ¢) P)sinf = Y )=0

¢ (6=0, ¢:§1/2j+ 1/{f* P (cosf)dQ (%)

All terms in the series with m #0 vanish at 6 =0

! m
0 B
@ The general solution & (7,0, ¢)= E Z (A;"r£+—£f1 ) Y?(G,gb)
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2
Addition Theorem for Spherical Harmonics '

® For r:(r,9,¢), r/:(r/,e/’¢/>
= cosy=cosf cosd +sin O sin 6 cos (¢ — ¢’)

. 47'(' ¢ * m / / m |
= Pyleosy)=o T 3 V(0 6) Y0 (0,9 {
Proof: if let r’ be on the z-axis lT
P ((£+1) |
= V' *P,(cosv)+ 5 P,(cosvy)=0 -]
r
If rotate the axis to a new place -
V?:scalar operator = invariant under rotation = V'*=V?
= V2P6(0057)+£(£:1)Pé(cosy):O = P, is a spherical harmonic of /¢
r
47T 0 : / /
= P,(cosy)= Yely.¢)= 2 A,(0,4)Y7(0.9)
26"‘1 m=—1/{
X m 4 m
= A= [¥i7(0.9) P leosy)an=y S [vin(0.9) vy w) a0

Ty (0(y,p), (v, 9) =3 B, Y (v, ¥)

Let , =
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4 - . . .
- BO:\/2€+1/Y€ (0,0)Y" (v, 9)dQ=4, = A, =B
4 4
Yy (0,6),.,=
Choose =0 = g(y=0,%)= 26+1 ! 2/0+1
2/4+1
ZBkYIE(O,%b) —
Lk 4
4 m( n/ / , , 4 1 ¥m /o~ ,
B = Y , A 9, — 9’
= 0 2£+1 Z( ¢) = m( ¢) 2£+1 / ( ¢)

°7=0 = 2 |r}(0,¢)=

m=—/ 47‘(’

® A useful application of the addition theorem

o0

B

r — l'| (=071, £=0 m




Two point charges g and —q are located on the z axis at z = +a and z = —a,
respectively.

(a) Find the electrostatic potential as an expansion in spherical harmonics and
powers of r for both r > a and r < a. [Problem 3.6a]

The electric potential for the two point charges at az and —az is

1 1
b(r) = — _ ).
471'60 r —az| |r+ az

Z Z 2€ + 1 £_|_1 vam(ef qb’)}/}gm(ﬁ, Cb), and ELISO a’i — (OL, 9, — 0: qbl)a

—az = (a,0 =, gb’ ) in the Spherlcal coordinate where ¢’ is arbitrary, and there thus
exists azimuthal symmetry, then the the potential expanded in spherical harmonics is

Since
x — X’I

00 14 1 g
o(r0.6)= -3 3 T T Ym0, = Yio (7. )] Yin 0,
£=0 m=
Oy L T 0.6 — Yl o) Y0, 0
€0 '—0 20+ 1 T€>+1

= Vira ; m St = P(=D]Yio 0, )
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1 —
4’7’1’60 ; 20 + 1 fer |

0

(=1)“1Y20 (0, ¢)
2k+1

2
7,
\feo;\/m akrz Y2k+10(6, @),

0

where where r. (r-) is the smaller (larger) of r and a, and we use Yyo(0,¢) =

20 + 1
47

Py(cos®) and Pp(£1) = (£1)~%.



Laplace Equation in Cylindrical Coordinates; Bessel Functions
The Laplace 72 0° q) 10 10°® 0@

equations: Vie= L ,0 8p+ 2 8¢2+6z2 =0 = ®=R(p)0(¢)Z(z)
. &’z _ d2Q+v2Q=0 d* R, 1dR (k ——2)R 0
dz’ - dg’ Cdp’ ,0 dp o
= Z(z)=e¢""", Q(¢p)=e"""" = veZ, k€R(+), andlet x=k p
. 0
= j A jR (1_\/_2) R=0 < Bessel equation = R(x)zxaz a;x’
x° xdux X j=0
o, a=*v a, =— dyj—2 _(—1)]F(a+1)a0 ) e 4 = 1
a.,=0" Y 4j(j+a) zzf]vp(]+a+1) b PS>, 2T (a+1)

2

= 2 lt :J—n— —
solutions: /., (x) ,gojzr(jiwl)

B ZZ = J,_, arelinearly independent

s S

veZ = J =(—-1)J < need another linear
o ' independent solution

J,cosvm—J_, ,
= N = < Neumann function

v . 00 ~Nd
SIn v 7 . F(Z)E/ e—ttz—ldt:(z_l)!
0




® Replace J,, with J, and N, no matter if v is an integer or not.

e Hankel functions: H''= J+i N _, H'? = J, —i N 6 usually used in radiation.

1% 1%

dQ
o0 cly N, HY HY = a +0 =2Ya, o Q. =2 —
X X

(#)

. A\ %(1nf+o.5772--->, y=0
o xk]l = J — ( ) N, — 2

—Fiv)(%)v, v>0

2 2v+1 2 . 2v+1
x>1,v=J —o4—cos| x— ), N, —o4——sin| x— T
X 4 T X 4

v=0, x, =2.405, 5520, 8.654,:
®J,(x,,)=0 =x, isthen"root = =1, x, =3.832, 7.016, 10.173,-
v=2, x,,=5.136, 8417, 11.620, -

v 1 :
X, =T ( n+ 5 2 ) < asymptotic formula



J,(x)
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a-.\‘___\
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. 4 A -1.5
\ N \
.\ Il / \\ . -
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. / /

< I
|
I
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\ - - ) 1
\ N/ S N f | -
\ Ny \N/ .
A / \sll.‘--‘ I |
— 2.5 Y,
|
| «
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VA
B Yl(x) R
-3.0 Yz(x) —_———-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I
0 5 10 15 20 0 5 10 15 20
X X
1 ™ 1 27 ( )
_ . _ i{xcosp—mo
J (x)=— cos(xsmgo—mgo)dgo——m e dy
™ J o 2TI 0

{+ Problem 3.16d



o pJv(xvnB)forfixed v=>0, n=1,2, - form an orthogonal seton 0 <p<a
a
¥ 2
Proof:1 d 0 d J, xvnﬁ + va _V J, xvnﬁ =0
pdp| dp a at  p a

¢ d d
:>/ Jv(xvn/ﬁ) P ]v('xvnﬁ)

0 a dp| dp a

a 2 2
Xon ¥ P p /
+/ ( 2_ z)p‘lv(’xvnl_)‘]v(xvn_)dp:o <*)
0 a p a a

write down the same equation, with n and n interchanged, and sbutract

= (2=t [0 (w2 ) g (5.2 ) ap=0 « ortosonaty
0 a a condition



® The normalization integral:
¢ P P a
/ p‘lv('xvn/_) ‘]v('xvn_)dp:_‘]v-'-l(‘xvn)(snn/
0 a a 2

#) = J_ =27 FJ = J. . (x )=FJ(x. ) = J
vx1l X v v vx1l vn vn

Proof:

(*/)—(n<—>n/) = X ](x

vn 1%

2 2 a
Xon — Xon P P
= > pfv(%ﬁ—)fy(%n—)dp
a 0 a a




® Assuming the set of Bessel functions is complete, the Fourier-Bessel series of f

f(p):ZAanV (xvn ’ ) , 0=p<a, v=-1
n=1

a

where A,, = 2 / pf(p)JV(xvnﬁ)dp
('xvn) 0 a

2 42
a J

v+1

® The Fourier-Bessel series is appropriate to functions vanishing at p =a, ie
homogeneous Dirichlet boundary conditions on a cylinder.

A . S . . — P .
@ An alternative expansion is in a series of functions vp J, | ¥, — | where y, , is
a

the n™ root of J' (y)=0, and is useful for functions with vanishing slope at p =a.

® The reason is that, in proving the orthogonality of the functions, it demands

d , , d —
pd,(kp)~—1J,(K p)=pJ,(K p)=—1J,(kp)=0 at P=0
dp dp p=a

o kg=Yn o J,(x,,)=0 - piJv(kp)+)\Jv(kp)=O at the endpoints

Yon J/V (yvn) =0 dp in general



® Some of the other possibilities

Neumann series: >, a, J . (z), Schlomilch series: X a, J (n x)

v+n
0 n=0

Kepler motion of planets and of

Kapteyn series: X a, J , ((v+n)z) < = ,
n=0 radiation by moving charges

d*Z
o If y —+k*Z=0 = Z(z)=sinkz, coskz § x=kp
Z
2 2 2 2
= d I§+1 dR—(k2+v—2)R:O = d I§+ld—R—(1+v—2)R:O
dp® pdp p dx” xdx X

= I (x)=i"J,(ix), Kv(x):%iv”H(vl)(ix) < modified Bessel functions

For v>0

_ (ln%+0.5772---) =0

F(V)(3>V, v#0

x<1l = I (x)- L (ﬁ)v, K, (x)—

I'(v+1)

2 X

, Kv(x)—n/ie_x
2 X

x>1,v = [ (x)- < 1+0(1)
V27 x X
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A hollow right circular cylinder of radius.b has its axis coincident with the z axis
and 1its ends at z = 0 and z = L. The potential on the end faces is zero, while the
potential on the cylindrical surface is given as V(¢, z). Using the appropriate sep-
aration of variables in cylindrical coordinates, find a series solution for the potential

anywhere inside the cylinder. [Problem 3.9]
fz
b=0
¢ = V(¢, Z)
L N
-
_0_____.——/ y )

This problem can be described with a Laplace equation V2®(x) = 0 since there is no charge
in the domain of interest. Because of the cylindrical geometry of the problem, the Laplace
equation is written in cylindrical coordinates:

O°¢ 109 100 9*P

8—[ﬂ+;ap+p28¢2+ﬁ:0'




With the separation of variables ®(p, ¢, z) = R(p)Q(¢)Z(z), the Laplace equation turns to
the three ordinary differential equations:

d?Z d2Q d’R 1dR v?
—— +kZ=0 —— +—-—— —(k*+—=|R=0.
2 " L de T E o ( UQ)
Their elementary solutions are Z = csinkz + dcoskz, ) = Acosme¢ + Bsinmao, and

R = al,,(kp) + BK,,(kp) where [,, and K, are modified Bessel functions. Now we bring
the boundary conditions into the consideration. Since Z(0) = Z(L) = 0, it leads to d = 0
and k = nm/L where n € N. For the potential to be single-valued when the full azimuth is
allowed, therefore m € Z. We expect R(p = 0) is finite in the hollow cylinder, then g = 0.
Combining the result, the general solution of ® is

O(p, ¢, 2) Z ZI Apn cosmae + By,nsinmo) sm%,
m=0n=1

where the coefficients A,,,,,’s and an s can be obtained by applying the boundary condition
on the cylinder surface. The boundary condition is

— Z Z Im(%b) mn COS MG + Byynsinme) sin % =V (9, z),

m=0n=1

therefore,

Amn 2 ok , . |cosmd'| . nwZ o,
|:an] _WLIm(nﬂ'b/L)‘/c; /[; V(Cb,Z) [Sinmqﬁ’]SIH T dZ d@, ﬂ"},%oj

1 2m L , , . nﬂ_zl
Aon_leo(nwb/L)/O fo V(¢', 2") sin

T dz'dg’.



Boundary-Value Problems in Cylindrical Coordinates / ¢ =Vin¢)

® The potential on the side and the bottom is O, C ~_
the topis &=V (p, ¢) | 'y
=> Q(¢)=Asinmp+Bcosm¢, Z(z)=sinhkz
= R(p)=CJ,(kp)+DN,(kp) = meZ p=0 L
R(0)=finite = D=0 <« Nm(p—>0)—>oo

X,
R<ka):O i kmn n’ I/lEIN ch(xmn):O /"‘;—- RN Y

> #(p.0,2)= 2 i (K, p)sinh &,

><(A sinm¢+B,  cosmae) *
= V= ZJ (k, p)sinhk, L(A  sinme¢+B,  cosmae)

2CSChkan o a
A= [ sinmods [ pvi,lh,p)dp
ra J, (k,,a)J 0

m+1

N ZCSChkan o a
B,,= / Cosmcbdqb/pVJm(kmnp)dp
0 0

n Cl Jm+1 (kmna)

using % for m=0



= cp(p,¢,z):2/ e ““J (kp)[A, (k)sinmp+B (k)cosmp]dk ($)

= V(p,gb):Z/ J (kp)lA, (k)sinm¢p+B, (k)cosme|dk

:>/Oojm(k o)A dk——/

® These radial integral equations of the 1° kind can be solved since they are

sinmqb
cosmgb

d¢

Hankel transforms: F ( / flp)J,(kp)pdp

6 (k—k) [Prob. 3.16a]

® Using the integral relation / xJ (kx)J, (K'x)dx=

. 1

k 2 . . —B k

7/ pdp/ 4oV p, ¢) 1, (kp)|Snm® g using o Bolk)
0 0

A, (k)|Z
= m =
B (k cos m ¢

form=0



=>Zk ky e — )/ pJ,(k,, p)J, [k, p)dp=LHS

x,.)=RHS

a—w = diserele ko yg —>/ kdk/ 0J (K p)J.(kp)dp
— continuous d k 0 0

2V_17T>>1 for a— oo

X, nm+

72 (x, )= 2 cosz(xvn—2v4+37r)—> 2 cos’(n—1)m = 2

X

vn

= RHSZxMXV’””z_ g2 (x,,) o 1_/ §(k—k')dk
0
* , §(k—k'
= /pfm(kp)f (k'p)dp= (k )
0



® J (kx)'s for fixed v, Re(v)>—1, form a complete, orthogonal (in k) set on the
interval 0 <x < o0. For m fixed

A(X)Z/ Z(k)]v(kx)dk = Z(k):k/ XA(X)JV(kx)dx Hankel
0 0 transform

® Spherical Bessel function J, (Z) = 1/2iz J 10 (Z) , £€INUQO [See Chapter 9]

/ r2j,(kr)j,(K'r)dr= 4 §(k—k') < orthogonality relation
0

2
N 0 2k
/ k* jlkr)j,(kr)dk= 27T2 §(r—r') < completeness relation
0 r

® The Fourier-spherical Bessel expansion for a given £

~~ ~

A(r):/wA(k)jg(kr)dk - A(k)zz—kz/wrzA(r)jg(kr)dr

0 T 0

® Useful for current decay in conducting media or time-dependent magnetic
diffusion with angular symmetry. [Problems in Chapter 5]

® The treatment of the Laplace equation in rectangular coordinates has been
shown in Sec. 2.9.



For the cylinder in Problem 3.9 the cylindrical surface is made of two equal half-
cylinders, one at potential V and the other at potential —V/, so that

V for —m2 < ¢ < 7/2

V(d, 2) =
(¢, 2) {—V for w2 < ¢ < 372

(a) Find the potential inside the cylinder. [Problem 3.10]
{:

/y

i

ﬁl al “ "m
L]

> X




Since the boundary condition on the cylindrical surface, V (¢, z), is an even function of
¢, it implies that all the coefficients B,,, vanish. The left coefficients are

2 2m L
Amn — f’ / /-
WLIm(nwb/L)/O /0 V(¢',2') cosmg’sin

2‘/[1 B (_1)n] m/2 ! 1./ 3 /2 I 1./
2L, (nb/ L) f_ﬁ/z cosm@ d¢’ — /ﬂ/z cosme do

AV ()= ()] e

mnm?1,,(ntb/L) 2
The result indicates that A,,,, is nonvanishing only when m and n are both odd. Then
16V (-1)*2k+ 1)~ (204 1)1
7T212k_|_1((2€ -+ 1)7Tb/L)
k,¢ € {0} UN. Therefore, the potential can be expressed as

16V I%—l—l 2€ + 1)7Tp/L) cos|[(2k + 1)¢] sin[(2£ 4+ 1)7z/L)]

T?/?TZ

—dzd¢/

where

the nonvanishing coefficients are Asg41 2041 =

kOED



Expansion of Green Functions in Spherical Coordinates

® To handle problems involving distributions of charge and boundary values for
the solutions of the Poisson equation, it needs to determine the Green function
that satisfies the appropriate boundary conditions.

® For the case of no boundary surfaces, the expansion of the Green function

1 _i ¢ 47'(' I"i Y*m(e/ ¢/)Ym(0 ¢)
r—r| SaSe2gw1 o T

® To obtain a similar expansion for the Green function for the "exterior" problem
with a spherical boundary at r=a, which is found from the image form method

/ 47'(' I"ﬁ 1 a2 tl * m / / m
Glr,r)=Y m——( ) v, 8) Y0, 6)

eom 20+1 re a \rr
1 , att! / vanishes for
I"ﬁ 1 612 £+1 r/£+1 (I" a r£+1 ) , r<r = r=a or }"/—>OO
where T ( - ) = .
ry a\rr 1 (r/e_ a ) +>, =  vanishes for
Pt p ) F'=a or r— o

® Symmetric in r and r'.



@ The reason for different linear combinations for r<r and for r>r" is connected
with the fact that the Green function is a solution of the Poisson equation with a
delta function inhomogeneity.

® From first principles, a Green function for a Dirichlet potential problem
V?G(r,r)=—47né(r-r') « G(r,r')=0 for r or r’ on the boundary

§(r—r')d(¢p—¢)d(cos®—cos )

{=0m J4
A’Z(I’|I’/,9/, /):gg(r,r/)Yzm(é’/,gb/)
= ]. d2 / e £+1 / 47'(' /
L (et ) -5 g == A s 1)
rdr r r
A ri+ il for r<r
> ()= "
A rt+ . for r>r




1 0 8 2
in 0 — 0(0+1)—
sin ¢ 59(8111 09)+( £+1) Sinzﬁ)

1 0 . 0 1 0
0— |+ Yy =—£(L+1) Yy
7 |sino ae(sm ae) 0 od| (£+1) Y]
1 %) 0 1 o> ,
L*=- 0—5 LPy;=£(£+1)Y
sin 6 80(Sm 09) sin® 0 a¢2 = ¢ ( )
o° 2 2
ror’ 72 dr . -
= Y, isalso kind of eigenfunciton of V? up to a factor of lz
r
]LZE—i(xﬁ —y&)c):—i@qs = LZY?ZmY? = axzﬁi,...
X

L.=—i(yo —z@) (+sm¢89+cotecosq§8)
]Ly=—z( 0,—x0.)=i(— cos¢89+cot051n¢6¢)
> L,=L +iL =¢"%(+0,+icotf0,)

= I :I[JX+I[4y+ILZ:%(IL+ L +L_ ]L+)+I[J§



® A, B, A, B are functions of 7 to be determined by the boundary conditions, the
requirement implied by §(r—r'), and the symmetry of g,(r, ) in r and r'.

® Suppose that the boundary surfaces are concentric spheres at r=a and r=>b
2/4+1

!/ a /
Ar (1_1’2“1), for r<r

20+1
B’ rett p
; 1— , for r>r
+1 +

= 85(61”’/):&(]9”/):0 = ge(’””"/):

. p2L+1
{ 2/0+1 22+1
/ Fo a rs . /
= g£<r,r>=C . (1— 2“1) (1_b2£+1) < symmetry in r and r
SN K(£+1) r,*47T / r.=r'+e
2(”&)_ g, |dr=— —6(r—r)dr = S
s \dr r R F_=r —€
d d 47
i dr<rg£)r'+ dr(”ge)r'_— 7

d B . a2£+1 d 1 r£+1
E(rg»r;_c (I’ N r/é+1 dr rﬂ_b2£+1 o,

0+(0+1) (%)2“1]




d
E(”gﬁ)r’_
7\ 24+1 20+1 T
:g/ 1—(1) £+1+£(ﬁ/) ] iR
r b r :‘
= j— 47T 1 ‘E\Eo
2£+1 a 2/7+1
(5)
© E / /
, 47Y," (0,0 )Y (0,0) r
- G(r’r)zzz : : 20+1]
=0 m=t (2£+1)1—(ﬁ) ]
b
4 I, a’tt! .
_)22€+1r£+1 - 2/0+1 YE (0,¢)Yg<9,¢> fOI' b—>OO
{, m > <
¢
4 r. «m { , - 50
Y," (6 Y, (6 for ¢
_>£’ 2/0+71 A1 "0, 97) Y7 (6, 9) Orb—>oo
4
N




Solution of Potential Problems with the Spherical Green Function
Expansion

® The general solution to the Poisson equation with specified values of the
potential on the boundary surface

1 oG , |

]. / / 3 7 /
¢ (r)= r)G(r,r)d x ——— ®(r - d
® Consider the potential inside a sphere of radius b and set a=0
¢ N
06 _0G  _ 4= (1) "8, ¢) Y (6,¢) and 2(X)=VI0.9)
on 0Or -y b” im \ D p(r')=0

- al0)=X (fvie s e ) (£) rie.s

b
L, m 2z
@ Consider V=0 & p(r')= Q 5(1’/—61)5((:089) < cos ==0
2ma a 2
only terms with m=0 survive because of azimuthal
symmetry
]. / / 3 /
=& (r)= /p(r)G(r,r)dx b ,@
4 e,
Q 0 ri ri€+1 ,>
- 47e, zgo P,(0) rﬁ” 1- p2e+l P, (cos 6) ¢

where r_=min (r , a), r, = max (r , a)
X



_ _(=1)"(2n-1)1 o (20) _(2n)!
P,,.,(0)=0, P, (0)= 2" < (2n 1)”_(2n)!!_2”n!
2n 4n+1
0 < (—1)(2n—1)11 1 ( r. )
- (l’) 47’('60”;0 2" in+1 pAn+l 2n<COS )
_-)4786 Z—:o( )<2”n! ) 2n+1P2n<0039) < b—oow = Sec. Il
0n= N

02ndexamp1e: V=0 & p(r/>_ Q 5(0080 _1>+5(COSH +1)

20 277
0 0 b J20+1
= P (r)= P,(1)+P,(—1)|P,(cos @ — [ 1-—= dr’
0=y 2 PP 1P (eos0) [ (1)
b 20+1 ¢ .
Fo rs / 1 r /0 / Linear
/o r£+1 (1_ 2+ ) dr = ( L1 B p2i+1 ) /or dr > dengty

25

b 7 {0
+ !/ 1 r d /
r /0+1 2/+1 r b
r r b y

20+1 ( ;f)
o 1_7
¢(£+1) b




® The potential diverges along the z axis for cos@==+1, except at r=>b exactly.

® The surface-charge density on the grounded sphere

o d 0 . 40+1
O)=¢, — =-— 1+ P 0
o (6 o, 47rb2( ;2“1 2¢{cos ))

® The leading term shows that the total charge induced on the sphere is —(Q, the
other terms integrating to O over the surface of the sphere.




Solve for the potential in Problem 3.1, using the appropriate Green function ob-
tained in the text, and verify that the answer obtained in this way agrees with the

direct solution from the differential equation. [Problem 3.13]
3.1 Two concentric spheres have radii a, b (b > a) and each is divided into two hemi-

spheres by the same horizontal plane. The upper hemisphere of the inner sphere
and the lower hemisphere of the outer sphere are maintained at potential V. The

other hemispheres are at zero potential




The Green function with the Dirichlet boundary condition for two concentric spheres has
been derived as Eq. (3.125) in Jackson’s Classical Electrodynamics:
14
a3 Y @ OWm00) (TN (LS
(20 4+ 1)[1 — (a/b)2¢+1] piHl P p2tAl

EOm_E

where r~ (r~) is the smaller (larger) of |x| and |x’|. Since ther is azimuthal symmetry in
this problem, only the m = 0 terms survives. And the Green function becomes

Glx.x') i Py(cos 0')Py(cosh) ( p a%“) ( 1 rt )
X, X )= r. — — :
’ _ 20+1 < 41 (+1 20+1
'—0 1 (a / b) T rS b
There is no charge distribution between the two concentric spheres, therefore, according to

the Green theorem, the electric potential within is

1 oG nas L oG oG
d(x) = ym SCI)( )8?1, (x,x")da’ = yym [/Sa d(x )_8?’1, da’ + /qu)( )_8?'1, da,]
_L 2 / oG /I 2% / oG

=1 [a \%(I)(T 0') — 5 adQ > ¢ O(r',0") — ol

(20 + 1)Py(cos (+1 (41,0 /2
— 9 Z + ) Petoos ) (ag+1 — C;)%;z )/ P;(cosf’)sin 0'de’
" 0

- a/b 20+1
?,.E a2€—|—1 ™ , L
- Py(cos¢') sin 0'd6

dQ’ ]




qe

% (20 +1)Py(cos @) [a'Tt  afflpt [t a2t
R T 7 e e A e

Ei

w|<

VS (4n + 3)(2n — I [p2rtl 4 g2nt1 7 g2p2\ "
5 Z n—l—l n + 1)1 pan+3 _ gdn+3 r2

a2n—|—2 + b?n+2

. 2n+1
PinTs a4n—|—3T ] Py, 1(cosf),

0 1
where qp = / Py(cosB)dcosf = / Py(x)dx as in Problem 3.1, and the Dirichlet boundary
e 0

/2
conditions on the two concentric spheres are used. Thus, the result is in agreement with the

one in Problem 3.1.



Expansion of Green Functions in Cylindrical Coordinates

e The Green function: V2 G (r,r' )=—4 76 (p—p) 0 (¢;¢ ) 6(z—27')

® The delta functions can be written in terms of orthonormal functions:

o0

3(p=¢)=5— 2, ¢

m=—oo

5(2—2/)=i/ e”‘(ZZ,)dk:l/ cosk(z—2z')dk
2T "

= G(r,r) " cosk(z—2) gk, p,p)dk
1 d dgm) ( 2 mz) 47 , 1 (kp) /
= o do — | Kt =——0(p—p) =" for p #
p(jp (ﬁ)(ip p2 Em 0 (p p) ‘Kﬁ(kfﬁ P 7= p
Let Y, (kp)=AI (kp)+BK (kp) satifies the boundary condition for p<p’

Y, (k p) =ClI, (k p) +DK (k p) satifies the boundary condition for p >p/
= g (k,p,p)=v,(kp.)v,(kp,) < thesymmetry of the Green function

d d
R 8m . Em =k ¢/1 w/z (:kW[¢1,¢z]):_4zr
dp lp'+e dp o' —€ ¢1 ¢2 - Wronskian - £




¢ ?'s form an orthogonal set. = f(gb): Z A, e’
{=—w
RICH T TEY o L 1
m=—oo 0 f=—c m=—o0

|
[
>

Q

. 1 2w , 1 2m
fm¢ (—/ €l(£_m)¢ dqs/) — - el(m_n)¢d¢:5mn
2T 27 J

- 5(¢—¢’>=i / 1(6)8(8-6)d6'=1(9)
[ N ik g ik 2 . Fourier
F (k)= /_oof(z)e dz + flz / Flk)e™dk Transform



@ The Sturm-Liouville type equation: di ( p(x) i—w ) +q(x)y=0
X X

® The Wronskian of 2 linearly independent solutions of a Sturm-Liouville type

— = Wi (x), v, (x))=— 28

equation is proportional to
p(x)

Proof: di (PW)M) +q(x)9p=0 = ¢ +(lnp)y'+gp ¢=0
X d x

L e np) g p v =0 W, (np) Wit p 6, 1,0
Yo +(Inp) y+qgp e, =0 g, +(In p) g y+q p e ¥, =0

= (9 %, =%, 9y)+(In p) () ¢, =, 93) =0

= (4 g,y )+ p) (95, — b, 97) =0

= L Wiy, g+ (np) Wle,.1,)=0 = dinw=—dlnp

dx
C 1
= W=— = W x —

P P



g,(k,0,p) finite _ o (kp)=Al,(kp)

® No boundary surfaces =

gnlk, o0, p)=0 Y, (kp)= K, (kp)
= A=471 < W[Im(x),Km(x)]:—l  Use the limit froms of
X I, and K,  to calculate.

" - r|

= Z / (kp ) K, (kp.)cosk(z—z)e™ ) dk
: kp)Kylkp,
:_/ cosk(z—z)dk( Lok p) Kolkp.)
T J o 2

zl (kpIK, (K p)cosm(3-4) )

or 50 — only the m=0 _, /
term survives \ p +7°

J(kp)coskzdk

= Ko(kVp +p?=2pp'cos(¢p—¢') = p*=p*+p~2pp cos(p—¢)

=1,(kp) K,k p)+2 D 1,k p) K, (k p.)cosm (¢—¢')

m=1
o0

= In 2 /2 1/ , :21nl+2 (&) Cosm(d)_d)) < k—0
p +p —2ppcos(p—¢) P> P> m




The Dirichlet Green function for the unbounded space between the planes at
z = 0 and z = L allows discussion of a point charge or a distribution of charge
between parallel conducting planes held at zero potential. [Problem 3.17]

(a) Using cylindrical coordinates show that one form of the Green function is

G(x, x')

4 > e /
15 5 ool e e

\\
\
\
"\
l"'\‘
o
S
Tl
p -




The Green function G(x,x’) should satisfy the equation, V2G(x,x') = —4763 (x — x').
In cylindrical coordinates it reads,
4

9 190 1 9% 0?

— + — — | G ' ——90 —¢)o(z — 7). 0.4
s+ e e+ g | GOeX) = = Tb(p— 66~ oG- ). (04)
And G should vanish at z,2’ = 0 and z,2’ = L. The ¢ and z delta functions can be
written in terms of orthonormal functions:

o0

1 ‘ : 2 —
5(¢5—¢5’)=% Z e!m(P=¢) 5(2—2’):EZSinEsinnwz.

m=—oQ n=1

We thus expand G(x,x’) in the similar fashion:

N . NTZ . NTZ
X, X — Z Z Gmn (p, )™ P=9) gin —Z gin :
T

n=0m=—oc

Then the substitution into Eq.(0.4) leads to

d? 1d n?n?  m2 47
- = ——0(p — p'). 0.5
=+ 2 e = = 30— ) 0.5)

For p # p', gmn(p, p')’s are modified Bessel functions I,,,(kp) and K,,(kp) where k =

nr/L. Since g,,, must be well behaved at p — 0 and p — oo, thus

I (kp), p<p
mn ? ' X { ’ ’
L Kmn(kp), p>p'



The symmetry in p and p’ requires that g,.,(p, p') = AL, (kp<) K, (kps), where p.
(p>) is the smaller (larger) of p and p’. The normalization A is determined by the
discontinuity in slope implied by the delta function in Eq.(0.5):

d d A 4

—Gmn| — —9mn| =AW, , Ky =——= ——W,

dp™ |, dp” L p p

where |1 means evaluated at p = p’ & € and ¢ is infinitesimal. And W|I,,, K,,| is the

Wronskian of I, and K,,. Thus A = 4x, and g, = 471y, (kp< ) K (kps). Therefore

nwtz . nnz nm nm
Z Z eim(@= qb)sstm 7 Im(fp<)Km(Tp>).

n=1m=—oo

(b) Show that an alternative form of the Green function is

inh(kz_) sinh[k(L — z_
(X X) =2 2 f dk e"(¢— d))Jm(kP)Jm(kp') Sin ( < )SI:E(IEL() < )]

HH= —oo

For the alternative form, the p and ¢ delta functions are written in terms of orthonormal
functions:

L= p) = [ BT Inb)dk 66— ) = 5o D emen)
P 0 @

1

G(Xx)—2ﬂ_

Z / Ok, (k) T (kp ) g (K, 2, 2" ) dE.

m=—0oco



Then the substitution into Eq.(0.4) leads to

d2

T20m k%G = —4mé(z — 2'). (0.6)

Since g, (k, z, z’) must vanish at z = 0 and z = L, thus

(k 3 sinh kz, z< 2,
Jm s 22 ) & sinh k(L — z), z> 2.

The symmetry in z and 2’ requires that g,,(k, z, z’) = Asinh kz. sinh k(L — 2~), where
2« (2 ) is the smaller (larger) of z and 2’. The normalization A is determined by the
discontinuity in slope implied by the delta function in Eq.(0.6):

d d
7 Im 3 gm‘ = —Aksinh kzcosh k(L — z) — Aksinh k(L — z) cosh kz
z < —

+

= —Aksinh kL = —4r.

where |+ means evaluated at z = 2’ 4+ € and e is infinitesimal. Thus A = ,47]- :
A ksinh kL
T . .
and g,, = p—— sinh kz_ sinh k(L — z~). Therefore
- RS inh kz. sinh k(L — z)
"N — 9 im(¢p—q¢’) Akp) T, (ko > = =7 dk.
Gixx) =2 30 [ €T (k)3 o

m=—0ox



Eigenfunction Expansions for Green Functions
e Elliptic differential equation V/*4) (r)+[ f (r)+A] ¢ (r)=0

® If the solutions are required to satisfy homogeneous boundary conditions on
the surface S of the volume of V, then the equation will not in general have well-
behaved solutions, except for certain values of .

® The values of )\, denoted by A , are called eigenvalues (or characteristic values)
and the solutions ,(r) are called eigenfunctions : V>4 (r)+[f (r)+X |9 (r)=0

® The eigenfunctions are orthogonal: / w ) d’>x= 0, & assumed
completeness.

® The spectrum of eigenvalues A, may be a discrete set, or a continuum, or both.

e To find the Green function: VG (r,r')+[f (r)+A]G(r,r')=—4 76 (r—1’)

- G(r,r»:zan(r’mm = > a, () (A=A, (r)=— 476 (r—r)

m

/ J(A=A,) 9, (x >¢:<r>d3x:—4w/ §(r—r') 9 (r) & x




e For a continuous spectrum G(r,r/):47r/ Y (r ,;)ﬁ(r,)\)d)\/
@ Consider f(r)=A=0 = VZG(I',I'/):—47T5(1'_1'/)
w=ck

® The eigenfunctions for the wave equation: (— 6? +c° Vz) V=0 = ¥=v e !

ikr
(V*+k*) 1, (r)=0 = w"(r):(zﬁ)m = /zp,’:/(r)zpk(r)d?’x:d(k—k/)
1 1 eik-(r—r')
= G(r,r)= — = / d’k = 3d Fourier integration of /
r—r| 27° 2 r—r’|

® 2" ex: abox withx=y=2z=0, x=a, y=>b, z=c: For a Dirichlet problem,

(VA4 ky ) Yya(x,y,2)=0

%mn(X,y,Z): 8 sinewxsinmﬁysin
abc a b C

Ez m2 2

2 2

kémn_ﬂ- ( 2+ 2+ 2)
a b

nmz

SRS




. frx . dnx . mwmy . mmy . nTmZ . ATZ
©  sin sin sin sin sin sin
N G(r r/)_327T Z a a b b C C
’ abcé m,n=1 k?mn
167 N~ . frx . Lnx mmTy . mmwy sinh (K, ,, z_)sinh [K,,, (¢ — z,)]
= sin sin sin sin ,
ab a a b b K, sinh (K, c)

{,m=1

(the z coordinate is singled out for special treatment like in Sec 3.9 & 3.11)

sin = gin 1=
. sinh(Kgmz<)sinh[K£m(c—z>)]_%Z c c - Kﬁm_gz_l_mz
K, sinh(K, c) ¢ L ky 22 b
1 _ 1 e r=(p, ¢, 2
r—rl Vp+p?-2pp cos(¢p—¢)+(z—2)  r'=(p. 4" )

|
I%E

/ J (kp)J (kp)em e *=")qk « Problem 3.16b
0 0

= L - 2 /Jm(kmfm(())eimek'z'dk < set r'=0

:/ Jolkple ™k <= J,(0)=4,,
0



Mixed Boundary Conditions; Conducting Plane with a Circular Hole
® Mixed boundary conditions are more difficult to handle than the normal one.

Z

@ An infinitely thin, grounded, conducting plane with a Eq
circular hole of radius a, and with E far from the hole

being normal to the plane, constant in magnitude, l
and having different values on either side.

E,=—E,z for z o+

E =

Elz—Eli for z 5 —

$— E0z+<I>(1) for z>0
E1z+<I>(1> for z<0

1 / m(x/,y/)dx/dy/
V

—

= @(1)(x,y,z)=

o
4 7€, x—xP+(y—y)V+z |
1 (,)= 1) W N\=fgV(_
- ¢ (i))_q) (_é)) - Exn(Z)_E(xn( 2 EV(z)=—E (-2)
E'=-Vo E(z)=E, (-2
® The total z-component of E field must be continuous across z=0 in the hole
E.—E
—E+EY | _=—E+EY _ for p<a = EVY _ =—gVY _ =-0"1

=0~
7 |z 2



® The potential is O on the P

surface by hypothesis: (a<p<ew,z=0)=0 = ‘f[’(l)<as,0<oo, z=0)=0

® An electrostatic boundary-value problem with the mixed boundary conditions:

5(13(1) E,—E, :
- = for 0<p<a (&) = Use ($) and azimuthal symmetry
< |Z=0+ 00
(1) _ —k |z
3. = 0 forasp< #(p.2)= [ Alk)J,(kp)e T ak
0

® For large p or |z| the rapid oscillations of J,(k p) or the decrease of e *H imply

that the integral receives its important contributions from the region around k=0

o0

A= KA ) g S 44 g p

- n , ,
£=0 thdk =0 dk
1 (" T e § L L k]
= Bg—Z/Ok Jo(kp)e "Fdk= TR OJO(kp)e dk
(1) d 1 :Pg(lcowl) _ Problem 3.16¢
a d|Z|£\/Io2+Z2 rit! r’=p°+7°, z=rcosb

Sy > 91) 4¢ : A(0) total charge
— @(1): Z 12 <|COS |) d A (O) - multlpole d A

T d k'’ expansion E(O) dipole moment

£=0



® For the mixed boundary value problem

* E,—E
&) /kA(k)JO(k,o)dkz 02 L for 0<p<a
&) =

0
00

dual integral

—
.
/ A<k>~]o(kp)dk: 0 for a=<p<w cquations
@ Consider th(g dual integral equations
) I'(n+1)j,,(y)
J dy= "1 0<x«l — n+
/Oyg(y) (yx)dy=x"for 0<x ) g(y) T
/ g(y)fn(yX)dy:O for 1< x<w :F<n+1>]n+3/2()’)
’ I'(n+3/2)42y
- ’ E,—E, [ si
n=0 A<k>:a_<EO—E1>j1(ka): 0 1(Slﬂlz€a_acoska)
=) 2 A(0)=0
a a <EO_E1) (k _(ka)3 ) B —
|y=ka] 37 10 E(O)#O
® The total charge with ® * is 0 and the leading term is the /=1 contribution:
(1) a3<E0_E1) z| 1 pr __4 5 _
v 3m r3_47r60 7 ~ p—+§eoa (E,~E,) for z20

effective electric dipole moment



® The reversal of the effective dipole moment depending on whether the observer

is above or below the plane is because that a true dipole potential is odd in z,
whereas it is even here.

® The idea that a small hole in a plane conducting sheet is equivalent far from the
opening to a dipole normal to the surface is important in discussing the
consequences of such openings in the walls of waveguides and cavities.

® The added potential in the neighborhood of the opening

) = ;2 E,—E, /wjl(ka)JO(kp)e_kde 5 different form from Jackson's ,
s 0 but the same result
E . —E + 02+ -2+ _ V4 2
=0 L Va* - R —|gfsin - ) = RiJ(P af+2+(a—p)+z
T R 2
E,—E
(1) _ _ 0 1 .21 a
> & (p=0,z) ——(a—|z|sm —)
o /a2+Z2
E,— E >
@(1)(0, z|>a) —»— L az
T 3Z
E,— E
= 3Y(0,|7]-0) -2 g4
s
E ,—E

<I>(1)(0Sp<a,0)= #\/az—pz



0 a 0 d :_Jl’Jo(x): x

1z 7 &k p [ e dJ

_g—; 0 0]0 k||dk 2/0]0J1ek|dk — xoz— .
) - k a 1 a

J (kp)e Il 2 dk= sin

/0 O \/ R, - R+:¢(P+a)2+zzi\/(a—p)2+zz
0 . B 2_ 5 N 2

/ Jl(kp)e_k|z|—81nkadk:a @ — R
0 k 0

6.752 of Table of Integrals, Series, and Products, Gradshteyn & Ryzhik (2007)
00 5 .
- - — —R
” / jl(ka)fo(kp)ekmdk:l—ﬂsin1 @ _4a-va 7R
0

a g° R, e
= (m—|z|sm-1i)
a R,

E.—FE *
= cI)(l):a2 07T 1/ jl(ka)JO(kp)e_k|Z|dk
0

E.—F
=— 1 (\/dz—R3—|Z|Sin_1Ri)

+




® The tangential (a radial field) and the
normal electric field in the opening

E.—FE
E (0<p<a,0)=—2-1_F
T 2_ 2
a—p
E,+E,

E_(0<p<a,0)=- 5

® The magnitude of E has a square root
singularity at the edge of the opening.

Selected problems: 3, 7, 12, 19, 22, 25

{ | ¥
EO
/ E =0 E - b

e

20
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