
  

Chapter 2Chapter 2 Boundary-Value Problems in Electrostatics I
 The correct Green function is not necessarily easy to be found.

 3 techniques to electrostatic boundary value problems:

(1) the method of images

(2) expansion in orthogonal functions

(3) finite element analysis (numerical method)

 The method deals with the problem of 
point charges in the presence of boundary 
surfaces, eg, conductors either grounded 
or held at fixed potentials.

 Infer from the geometry of the situation
that some suitably placed charges, external 
to the region of interest, can simulate the 
boundary conditions. The charges are called image charges. 

 The method replaces the actual problem with boundaries by an enlarged region 
with image charges but not boundaries.

Method of Images



  

Point Charge in the Presence of
a Grounded Conducting Sphere

 A point charge is outside a grounded conducting 
sphere. Find the potential (                         ).

 By symmetry the image charge q  will lie on the ray 
from the origin to the charge q, then

 As q is closer to the sphere, the q  grows and moves out from the center of the 
sphere.

 When q is just outside the surface of the sphere, q  is equal and opposite in and 
lies just beneath the surface.

Φ (r )= 1
4 π ϵ0

( q

|r−r ′|
+

q

|r−r″|
)

=
1

4 π ϵ0
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|r r̂− r′ r̂ ′|
+
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)
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1
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 The actual charge density induced on the surface of the 
sphere can be calculated from the normal derivative of  
at the surface:

 It is easy to show by direct 
integration that the total
induced charge on the 
sphere is equal to the 
magnitude of the image 
charge according to Gauss's law.

 For the force on the charge q,
write down the force between q
and q 

r ′− r″= r ′( 1−
a2

r ′ 2
)

⇒ |F|= q2

4 π ϵ0

a r 

(r 2
−a2

)
2

σ=− ϵ0
∂ Φ
∂ r ∣r= a

⇒ ∫ σ d a=−
a
r 

q

=
q

4 π a
a2
− r 2

√(r 2
−2 a r  cos γ+ a2

)
3

r

a
=4

r

a
=2



  

 The alternative method for the force is to calculate the total force acting on the 
surface of the sphere

 The whole discussion has been 
based on the understanding that 
q is outside the sphere. Actually, 

the results apply equally for q 
inside the sphere.

       

|F|=∫ d F x=∫ σ
2

2 ϵ0

cos γ d a=
q2
(r 2

−a2
)
2

32 π
2

ϵ0

∫ cos γ

(r  2
+a2

−2 a r cos γ )
3

d Ω

=
q2

4 π ϵ0

a r

(r  2
−a2

)
2

Φ (r )= 1
4 π ϵ0

( q

|r−r |
−

a r q

|r  2 r−a2 r |
)



  

Point Charge in the Presence of a Charged, Insulated, Conducting 
Sphere

 Consider an insulated conducting sphere with total charge Q in the presence of 
a point charge q.

 Start with the grounded conducting sphere (with its charge q  distributed over 
its surface). Then disconnect the ground wire and add to the sphere an amount of 
charge (Q − q ). This brings the total charge on the sphere up to Q.

 The added charge (Q−q ) will distribute 
itself uniformly over the surface. Then

 The force acting on the charge q can be 
written down from Coulomb's law     

F=
q

4 π ϵ0 r 2
( Q−

q a3
(2 r  2

− a2
)

r  (r 2
−a2

)
2
) r̂ 

4 π ϵ0Φ (r )=
q

|r−r |
−

a
r

q

|r− a2

r 2
r |
+

Q+
a
r 

q

r

r /a



  

 In the limit of r  ≫ a, the force reduces to the usual Coulomb's law for 2 small 
charged bodies. But close to the sphere the force is modified because of the 
induced charge distribution on the surface of the sphere.

 If the sphere is charged oppositely to q, or is uncharged, the force is attractive 
at all distances.

 Even if the charge Q is the same sign as q, the force becomes attractive at very 
close distances.

 In the limit of Q ≫ q, the point of zero force (unstable equilibrium point) is 

very close to the sphere, at

 This example explains why an excess of charge on the surface does not leave 
the surface because of mutual repulsion of the individual charges.

 As soon as an element of charge is removed from the surface, the image force 
tends to attract it back.      

r≃a( 1+ 1
2 √

q
Q
)

F=0 ⇒ Q−
q a3

(2 r  2
− a2

)

r (r 2
−a2

)
2
=0 ⇒ r  (r  2

−a2
)
2
=

q
Q

a3
(2 r  2

−a2
)

Using perturbation
method

⇒
q
Q
=0  get r  (0)= a ⇒ r  (1)=r  (0)+ δ  get δ=

a
2 √

q
Q



  

Point Charge Near a Conducting Sphere at Fixed Potential
 The potential is the same as for the charged sphere, except that the charge     

(Q − q ) at the center is replaced by a charge Q = 4 π ϵ0 a V

 For 4 π ϵ0 a V ≫ q, the unstable equilibrium point: 

Φ (r )= 1
4 π ϵ0

( q
|r−r |

−
a r q

|r  2 r− a2 r |
)+ a

r
V

⇒ F= q

r 2 ( a V −
1

4 π ϵ0

q a r 3

(r 2
−a2

)
2 ) r̂ 

r≃a( 1+1
2 √

q
4 π ϵ0 a V
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Conducting Sphere in a Uniform Electric Field by Method of Images

 Consider a conducting sphere of radius a in a uniform electric field. A uniform 
field can be thought of as being produced by appropriate positive and negative 
charges at infinity.

 The electric field near 

the origin:

 In the limit as R, Q  ∞ with       constant, 

this approximation becomes exact.

 A conducting sphere is 
placed at the origin, the 
potential will be that due 
to the charges and their images

4 π ϵ0Φ=
Q

√r2
+R2

+2 r R cos θ
−

a Q

√r2 R2
+ a4

+2 a2 r R cos θ

−
Q

√r2
+R2

−2 r R cos θ
+

a Q

√r2 R2
+ a4

−2 a2 r R cos θ

Q
R2

E 0≃
1

2 π ϵ0

Q

R2



  

 For R ≫ r:

 To the limit                         

becomes the applied uniform field:

 The 1st term −E0 z is the potential of a uniform field. The 2nd is the potential due 
to the induced surface-charge density or, equivalently, the image charges.

 The image charges form a dipole of strength

 The induced surface-charge density

 The surface integral of this charge density vanishes, (but the surface charge 
density doesn’t vanish,) so that there is no difference between a grounded and an 
insulated sphere. 

σ=− ϵ0
∂ Φ
∂ r ∣r= a

=3 ϵ0 E 0 cos θ

Φ=−
2 Q

4 π ϵ0 R2 ( r−
a3

r2 ) cos θ+⋯

E 0≡
Q

2 π ϵ0 R2

D=
a
R

Q×2
a2

R
=4 π ϵ0 E 0 a3

Φ=−E 0( r−
a3

r2 ) cos θ



  

Green Function for the Sphere; General Solution for the Potential
 The potential due to a unit source and its image, 

chosen to satisfy homogeneous boundary conditions, 
is the Green function appropriate for Dirichlet or 
Neumann boundary conditions.

 For Dirichlet boundary conditions on the 
sphere, the Green function for a unit source 
and its image is

 The symmetry in the variables is obvious, as is the condition that G = 0 if either 
r or r  is on the surface of the sphere.

 For the boundary problem in Sec. 2.2, we now can derive the solution as

G (r , r )= 1
|r−r |

−
a r 

|r 2 r−a2 r |

=
1

√r2
+ r 2−2 r r cos γ

−
a

√r2 r  2
+a4

−2 r r a2 cos γ

4 π Φ (r )=∫
V

q
ϵ0

δ (r −y )G (r , y ) d3 y+∮
S

( G
∂ Φ
∂ n

−Φ
∂ G
∂ n
) d a ⇐ Φ (a)=0

r
r 



  

 For solutions of a Poisson equation we need not only G, but also

here r  means the source space, not only the coordinate of single charge. 

 The condition is essentially the induced surface-charge density.

 The solution of the Laplace equation outside a sphere with the potential 
specified on its surface is

 For the interior problem,

 For a problem with a charge distribution, we must add to the potential integral 
the appropriate charge density with the Green function.

∂ G
∂ n∣r ′=a

=( r̂ ⋅∇  G)
r
′
= a
=

r2
− a2

a √(r2
+a2

−2 a r cos γ )
3

⇒ Φ (r )= 1
4 π
∫ Φ (a , θ

 , ϕ

)

a (a2
−r2

)

√(r2
+a2

−2 a r cos γ )
3

d Ω

∇
2Φ=0 ⇒ Φ (r )= 1

4 π
∫ Φ (a , θ

 , ϕ

)

a (r2
−a2

)

√(r2
+a2
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3
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
+ sin θ sin θ

 cos (ϕ−ϕ

)
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∂ n

∂ G
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r
′
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r
′
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=

a2
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a √(r2
+a2

−2 a r cos γ )
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Conducting Sphere with Hemispheres at Different Potentials

 

 Because of the complicated dependence of angle, the integral can’t in general 
be integrated in closed form.

 Consider the potential on the +z axis

 In the absence of a closed expression for the integral, we can expand the 

denominator in power series and integrate term by term, defining α=
a r

r2
+ a2

Φ=
V a (r2

−a2
)

4 π √(r2
+a2

)
3
∫

0

2 π

d ϕ
 ∫

0
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3
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1
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3
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
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
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z √z2
+a2
) ⇒
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2
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 θ


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
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
 ϕ


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0
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d ϕ
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0

1 a (r2
−a2

) d cos θ


√(r2
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3
− ∫

−1
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
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3
)

=
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−a2
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∫

0
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d ϕ
 ∫
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3
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1
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+2 a r cos γ )

3
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
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 In the expansion of the radicals only odd powers of α cosγ will appear

 Only odd powers of cos θ appear, as required by the symmetry of the problem.

 For large values of      this expansion converges rapidly and so is a useful 

representation for the potential.

 It is easily verified (by the Taylor expansion) that, for cos θ=1, this expression 
agrees with the expansion of the expression for the potential on the axis.

 The special choice in the 2nd expression is related to the Legendre polynomials.

1

√(1−2 α cos γ)
3
−

1

√(1+2 α cos γ )
3
=6 α cos γ +35 α

3 cos3
γ+⋯

⇒ ∫
0

2 π

d ϕ
 ∫

0

1

[ cos γ

cos3
γ ] d cos θ


= [

π cos θ
π

4
cos θ (3−cos2

θ)

⇒ Φ (r , θ , ϕ)=
3 a (r2

−a2
)V

2 √(r2
+a2

)
3

α cos θ ( 1+35
24

α
2
(3−cos2

θ)+⋯) ⇐ in α

=
3
2

a2

r2 V [cos θ−
7
12

a2

r2 ( 5
2

cos3
θ−

3
2

cos θ )+⋯] ⇐ in 
a2
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r
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<= 2.28



  

Orthogonal Functions and Expansions
 The orthogonal set chosen depends on the symmetries or near symmetries 

involved.

 Consider an interval (a, b) in a variable ξ 

with a set of real or complex orthonormal 
functions Un(ξ). The orthogonality condition:

 An arbitrary function can be expanded in a series of the orthonormal functions

 The most famous orthogonal functions are the sines and cosines, an expansion 
in terms of them being a Fourier series.

 The orthonormal functions

 The constant function is 

f (ξ )=∑
n=1

∞

an U n (ξ ) ⇐ completeness of the function set

=∑
n=1

∞ ( ∫
a

b

U n

(ξ

) f (ξ ) d ξ

)U n (ξ ) ⇐ an= ∫
a

b

U n

(ξ ) f (ξ ) d ξ

⇒ ∑
n=1

∞

U n

(ξ

)U n (ξ )=δ (ξ


− ξ) ⇐ closure relation or completeness

√2
a

sin
2 π m x

a
, √ 2

a
cos

2 π m x
a

  for x∈[− a
2

,
a
2 ]

1

√a
 for m=0

∫
a

b

U n

(ξ )U m (ξ ) d ξ=δm n



  

 A function is customarily written in the form:

 Suppose that the space is 2d, and the variable ξ ranges over the interval (a, b) 
while the variable η has the interval ( c, d ). The orthonormal functions in each 

dimension are Un(ξ) and Vm(η). Then the expansion of an arbitrary function is 

 For Fourier integral, start with: 

f ( x )=
1
2

A0+∑
m=1

∞

( Am cos
2 π m x

a
+Bm sin

2 π m x
a

)
where Am=

2
a
∫

−a /2

+ a /2

f ( x ) cos
2 π m x

a
d x , Bm=

2
a
∫

− a /2

+ a /2

f (x ) sin
2 π m x

a
d x

⇒ f ( x)= 1

√a ∑m=−∞

∞

Am e
i

2 m π x
a ⇐ Am=

1

√a
∫

−a /2

+ a /2

e
− i

2 m π x ′

a f (x ) d x

(a , b) (−∞ ,+∞) ⇒ U m (x ) U (m , x )

⇒ ∫
a

b

U n
*
( x)U m ( x ) d x  ∫

−∞

+∞

U *
(n , x )U (m , x ) d x=δ (m−n)  δ m n

U m ( x )=
1

√a
e

i
2 m π x

a ⇐ [
m=0 ,±1 ,±2 ,⋯

x ∈ (− a
2

,
a
2
)

f (ξ , η)=∑
n
∑

m
an m U n (ξ )V m (η ) ⇐ an m= ∫

a

b

d ξ ∫
c

d

U n

(ξ )V m


(η ) f (ξ , η ) d η



  

 The 2 continuous variables x and k are complete equivalent.  

a ∞ ⇒ [
2 π m

a
 k

∑
m

 ∫
−∞

+∞

d m 
a

2 π
∫

−∞

+∞

d k

Am  √2 π

a
A (k )

⇒ f ( x)= 1

√2 π
∫

−∞

+∞

A (k ) ei k x d k ⇐ A (k )= 1

√2 π
∫

−∞

+∞

e−i k x f ( x) d x

⇒
1

2 π
∫

−∞

+∞

ei (k− k
′
) x d x=δ (k− k ) , 1

2 π
∫

−∞

+∞

ei k (x− x
′
) d k=δ ( x− x)

orthogonality condition completeness relation



  

Separation of Variables; Laplace Equation in Rectangular 
Coordinates 
 Equations involving the 3-dim Laplacian operator are known to be separable in 

11 different coordinate systems.

 Discuss only 3 of these — rectangular, spherical, and cylindrical.

 The Laplace equation in rectangular coordinates:

 Assume  

 Hold for arbitrary values of the independent coordinates, each of the 3 terms 
must be separately constant:

 By linear superposition, the solution can construct a very large class of 
solutions to the Laplace equation. 

 To determine α and β it is necessary to impose specific boundary conditions on 
the potential.

 To find the potential everywhere inside the box,

Φ (x , y , z)=X (x ) Y (y ) Z (z) ⇒ 1
X

d2 X

d x2 +
1
Y

d2 Y

d y2 +
1
Z

d2 Z

d z2 =0

1
X

d2 X

d x2 =−α
2 , 1

Y
d2 Y

d y2 =−β
2 , 1

Z
d2 Z

d z2 =α
2
+β

2
⇒ Φ=e± i α x e±i β y e± √α

2
+β

2 z

∇
2Φ=

∂
2Φ

∂ x2 +
∂

2Φ

∂ y2 +
∂

2Φ

∂ z2 =0

Φ (0 , y , z)=0 , Φ (x , 0 , z)=0 , Φ ( x , y , 0)=0 ⇒
X=sin α x , Y=sin β y

Z=sinh (√α
2
+β

2 z)



  

 If the rectangular box has potentials different from 0 on all 6 sides, the 
required solution for the potential inside the box can be obtained by a linear 
superposition of 6 solutions, one for each side.

 The problem of the solution of the Poisson equation, ie, the potential inside the 
box with a charge distribution inside, as well as prescribed boundary conditions 
on the surface, requires the construction of the appropriate Green function.

Φ (a , y , z)=0
Φ (x , b , z)=0

⇒ αn=
n π

a
, βm=

m π

b

⇒ Φn m=sin (αn x ) sin (βm y ) sinh (√αn
2
+βm

2 z)

⇒ Φ (x , y , z)= ∑
n , m=1

∞

An mΦn m

= ∑
n , m=1

∞

An m sin (αn x ) sin (βm y ) sinh (√αn
2
+βm

2 z)

Φ (x , y , c)=V (x , y)

= ∑
n , m=1

∞

An m sin (αn x ) sin (βm y ) sinh (√αn
2
+βm

2 c)

⇒ An m=
4

a b sinh (c √αn
2
+βm

2
)
∫

0

a

d x ∫
0

b

d y V ( x , y) sin (αn x ) sin (βm y )



  

A 2d Potential Problem; Summation of a Fourier Series

 Consider the solution by 
separation of variables of the 2d 
Laplace equation in Cartesian 
coordinates, in which the 
potential is independent of z,

 Boundary conditions: 

Φ (0 , y)=Φ (a , y)=0
Φ ( x ,∞)=0 , Φ (x , 0)=V

⇒ Φ∼e−α y sin α x ⇐ α=
n π

a

⇒ Φ=∑
n=1

∞

An e
−

n π y
a sin

n π x
a

⇐ An=
2
a
∫

0

a

Φ (x , 0) sin
n π x

a
d x

= [
4 V
n π

for n  odd

0 for n  even

Φ∼e±i α x e±α y
⇐ α ∈ ℝ  or ℂ

∇
2Φ=

∂
2Φ

∂ x2 +
∂

2Φ

∂ y2 =0



  

 The smooth behavior in x of the 
asymptotic solution sets in for y ≥ a,

regardless of the complexities of (x,0).

    sin θ=ℑ [ei θ
]

⇒ Φ=ℑ [∑n odd

4 V
n π

e
i n π

a
( x+ i y)

]
=

4 V
π
ℑ [∑n odd

Z n

n ] ⇐ Z≡e
i π

a
(x + i y )

ln (1+ Z )=Z−
Z 2

2
+

Z 3

3
−

Z4

4
+⋯

⇒ ∑
n odd

Z n

n
=

1
2

ln
1+ Z
1−Z

= ln √
1+ Z
1−Z

⇒ Φ (x , y )=
2 V
π
ℑ [ ln 1+ Z

1−Z ]

⇒ Φ (x , y )=∑
n odd

4 V
n π

e
−

n π y
a sin

n π x
a

⇒ Φ
4 V
π

e
−

π y
a sin

π x
a

  for y≥
a
π



  

 The imaginary part of a logarithm is equal to the phase of its argument,

 The infinite series has now been transformed into the explicit closed form.

 The real or the imaginary part of an analytic function satisfies the Laplace 
equation in two dimensions as a result of the Cauchy-Riemann equations.

1+ Z
1−Z

=
1−|Z|2+2 i ℑ [Z ]

|1−Z|2
⇒ cosΘ ∝ 1−|Z|2 , sin Θ ∝ 2 ℑ [Z ]

⇒ the phase of the argument of ln
1+ Z
1−Z

= tan−1 2 ℑ [Z ]

1−|Z|2
⇐ tan Θ=

sin Θ
cosΘ

Z=e
i π

a
(x+ i y)

⇒ ℑ [Z ]=e
−

π y
a sin

π x
a

, 1−|Z|2=1−e
−2

π y
a

⇒ Φ (x , y )=
2 V
π

tan−1
sin

π x
a

sinh
π y
a

⇐ 0≤ tan−1
sin

π x
a

sinh
π y
a

≤
π

2
⇐

sinh β

=
eβ
−e− β

2

F= A+ i B= S (cos ϕ+ i sin ϕ)= S ei ϕ
⇒ ln F= ln (S ei ϕ

)= ln S + i ϕ



  

Fields and Charge Densities in 2d Corners and Along Edges

V

 The geometry suggests use of polar 
rather than Cartesian coordinates.

 The Laplace equation in 2d:

 Separation of variables:

 If there is no restriction on ϕ, it is necessary that v be a positive or negative 

integer or 0 to ensure that the potential is single-valued   ⇒   B0 = 0.

 The general solution:

Φ (ρ , ϕ)=R (ρ)Ψ (ϕ)

⇒
ρ

R
d

d ρ
(ρ

d R
d ρ
)+

1
Ψ

d2Ψ

d ϕ
2 =0

⇒
ρ

R
d

d ρ
(ρ

d R
d ρ
)=v2 , 1

Ψ
d2Ψ

d ϕ
2
=−v2

⇒ [R (ρ)=a ρ
v
+b ρ

−v

Ψ (ϕ)= A cos (v ϕ)+ B sin (v ϕ)
 but for v=0 ⇒ [R (ρ)=a0+b0 ln ρ

Ψ (ϕ)= A0+B0 ϕ

Φ (ρ , ϕ)=a0+b0 ln ρ+∑
n=1

∞ ( an ρ
n sin (n ϕ+αn)+

bn

ρ
n sin (n ϕ+βn))

∇
2Φ=

1
ρ
∂

∂ ρ
( ρ

∂ Φ

∂ ρ
)+ 1

ρ
2

∂
2Φ

∂ ϕ
2 =0



  

 If there is no charge at the origin, all the bn are 0. If the origin is excluded, the 

bn can be different from 0.

 The logarithmic term is equivalent to a line charge on the axis with charge 
density per unit length λ = − 2 π ϵ0 b0 .

 The undetermined coefficients am depend on the potential remote from ρ=0. 

 For small enough ρ only the 1st term in the series will be important.
                

Φ (ρ , 0)=Φ (ρ , β )=V

⇒ b0=bn=αn=0 , a0=V , sin (ν β )=0 ⇐ ν=
m π

β
, m=1,2 ,⋯

⇒ Φ (ρ , ϕ)=V +∑
m=1

∞

am ρ

m π

β sin
m π ϕ

β

Φ (ρ , ϕ)≃V + a1 ρ

π

β sin π ϕ

β
⇒ [

Eρ= −
∂ Φ
∂ ρ
≃−

a1 π

β
ρ

π

β
−1

sin π ϕ

β

Eϕ=−
1
ρ

∂ Φ
∂ ϕ

≃−
a1 π

β
ρ

π

β
−1

cos π ϕ

β

⇒ σ (ρ , 0)=σ (ρ , β)= ϵ0 Eϕ (ρ , 0)≃−
ϵ0 a1 π

β
ρ

π

β
−1

⇐  surface  charge  density



  

 The components of the field and the surface-charge density near ρ=0 all vary 

with distance as           .

 For a very deep corner (small β) the power of ρ becomes very large, and no 
charge accumulates in such a corner.

 When β>π, the 2d corner becomes an edge and the field and the surface- 
charge density become singular as ρ0.

 The 2d electrostatic considerations apply to many 3d situations, even with time-
varying fields. 

 The singular behavior of the fields near sharp edges is the reason for the 
effectiveness of lightning rods.

Selected problems: 3, 7, 13, 15, 23, 26 

ρ

π

β
−1



  

[Problem 2.12]
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