Chnziptar 2 Boundary-Value Problems in Electrostatics |

® The correct Green function is not necessarily easy to be found.
@ 3 techniques to electrostatic boundary value problems:
(1) the method of images

(2) expansion in orthogonal functions

3) finite-ol Fosiot calmethod

Method of Images

® The method deals with the problem of
point charges in the presence of boundary
surfaces, eg, conductors either grounded
or held at fixed potentials.
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® Infer from the geometry of the situation
that some suitably placed charges, external
to the region of interest, can simulate the
boundary conditions. The charges are called image charges.
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® The method replaces the actual problem with boundaries by an enlarged region
with image charges but not boundaries.



Point Charge in the Presence of
a Grounded Conducting Sphere

® A point charge is outside a grounded conducting
sphere. Find the potential ( & (|r| - a) =0 ).

® By symmetry the image charge ¢’ will lie on the ray
from the origin to the charge ¢, then
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® As ¢ is closer to the sphere, the ¢’ grows and moves out from the center of the
sphere.

® When ¢ is just outside the surface of the sphere, ¢’ is equal and opposite in and
lies just beneath the surface.



® The actual charge density induced on the surface of the
sphere can be calculated from the normal derivative of ®
at the surface: 3
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® It is easy to show by direct
integration that the total
induced charge on the /r
sphere is equal to the 4ra’c
magnitude of the image —q

charge according to Gauss's law.

® For the force on the charge g,
write down the force between g
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® The alternative method for the force is to calculate the total force acting on the
surface of the sphere
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® The whole discussion has been
based on the understanding that

q is outside the sphere. Actually,{ g _\__ 1\ __ _ _ _ _ __ _ _ _ o7

the results apply equally for ¢
inside the sphere.
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Point Charge in the Presence of a Charged, Insulated, Conducting
Sphere

® Consider an insulated conducting sphere with total charge Q in the presence of
a point charge g.

@ Start with the grounded conducting sphere (with its charge ¢ distributed over
its surface). Then disconnect the ground wire and add to the sphere an amount of

charge (Q — ¢'). This brings the total charge on the sphere up to Q.
.

® The added charge (Q—¢ ) will distribute ,|
itself uniformly over the surface. Then
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® The force acting on the charge ¢g can be |
written down from Coulomb's law
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@ In the limit of ¥' > q, the force reduces to the usual Coulomb's law for 2 small

charged bodies. But close to the sphere the force is modified because of the
induced charge distribution on the surface of the sphere.

® If the sphere is charged oppositely to ¢, or is uncharged, the force is attractive
at all distances.

® Even if the charge Q is the same sign as ¢, the force becomes attractive at very
close distances.

® In the limit of O > ¢, the point of zero force (unstable equilibrium point) is
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® This example explains why an excess of charge on the surface does not leave
the surface because of mutual repulsion of the individual charges.

® As soon as an element of charge is removed from the surface, the image force
tends to attract it back.



Point Charge Near a Conducting Sphere at Fixed Potential
® The potential is the same as for the charged sphere, except that the charge
(Q — ¢q) at the center is replaced by a charge Q'=4megaV
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® For 4me,aV > ¢, the unstable equilibrium point: r' ~g ( 1 +;— \/
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Conducting Sphere in a Uniform Electric Field by Method of Images

® Consider a conducting sphere of radius a in a uniform electric field. A uniform
field can be thought of as being produced by appropriate positive and negative

charges at infinity.
P
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® In the limit as R,  — oo with — constant,
R
this approximation becomes exact.
® A conducting sphere is
placed at the origin, the rf" =
potential will be that due *= % . 2=R
to the charges and their images
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® To the limit E = 5 4
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becomes the applied uniform field: r

® The 1% term —FE, z is the potential of a uniform field. The 2™ is the potential due
to the induced surface-charge density or, equivalently, the image charges.
2

® The image charges form a dipole of strength D :% QX2 2 = dmey,E, a’

® The induced surface-charge density o = =3¢€,E,cos b

— €y ——

° or lr=a
® The surface integral of this charge density vanishes, (but the surface charge
density doesn’t vanish,) so that there is no difference between a grounded and an
insulated sphere.



Green Function for the Sphere; General Solution for the Potential

® The potential due to a unit source and its image, *
chosen to satisfy homogeneous boundary conditions,
is the Green function appropriate for Dirichlet or
Neumann boundary conditions. P’

@ For Dirichlet boundary conditions on the
sphere, the Green function for a unit source
and its image is
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® The symmetry in the variables is obvious, as is the condition that G = 0 if either
r or r’ is on the surface of the sphere.

® For the boundary problem in Sec. 2.2, we now can derive the solution as
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® For solutions of a Poisson equation we need not only G, but also
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here r’ means the source space, not only the coordinate of single charge.

® The condition is essentially the induced surface-charge density.

® The solution of the Laplace equation outside a sphere with the potential
specified on its surface is
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® For a problem with a charge distribution, we must add to the potential integral
the appropriate charge density with the Green function.



Conducting Sphere with Hemispheres at Different Potentials
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® Because of the complicated dependence of angle, the integral can t in general
be integrated in closed form.

o P (r , 0, qb) the solution for the potential + 52 —r’+q° 4

@ Consider the potential on the +z axis +V /—
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® In the absence of a closed expression for the integral, we can expand the
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denominator in power series and integrate term by term, defining o=




@ In the expansion of the radicals only odd powers of o cosvy will appear
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® Only odd powers of cos 0 appear, as required by the symmetry of the problem.
r

® For large values of — this expansion converges rapidly and so is a useful
a

representation for the potential.

@ It is easily verified (by the Taylor expansion) that, for cos =1, this expression
agrees with the expansion of the expression for the potential on the axis.

® The special choice in the 2™ expression is related to the Legendre polynomials.



A closed volume is bounded by conducting surfaces that are the n sides of a regular
polyhedron (n = 4, 6, 8, 12, 20). The n surfaces are at different potentials V/,
i =1,2,...,n Prove in the simplest way you can that the potential at the center
of the polyhedron is the average of the potential on the n sides. <= 2.28

Assume G p(x,x’) is the Green’s function that satisfies Dirichlet boundary conditions inside
a polyhedron. Let x. to be the center of a polyhedron. For no charge inside the polyhedron,
the potential at x. is

1 8GD 1 ~ 8GD
P(x.) = T An g @(X’)W(Xc,xi)dﬁl = 7= sz' | (%¢,x")da’,

where S = ) .5; and since ®|g, = V;. Since x. is the center of the polyhedron, therefore, it
is the center of symmetry. There will be no difference for each side S; from the viewpoint of

0Gp
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X.. Therefore, the surface integrations over differenct side §;, i.e., 5
s; dn

the same. Then we can rewrite the expression of the potential at x. as
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where the Gauss theorem is applied and since V'?G(x,x’) = —47d(x — x’). Therefore, the
potential at the center of a polyhedron is the average of the potential on its sides.



Orthogonal Functions and Expansions

® The orthogonal set chosen depends on the symmetries or near symmetries
involved.

® Consider an interval (a, b) in a variable & b
with a set of real or complex orthonormal / U* (g) U, (5) dé=4,
functions U, (§). The orthogonality condition: a

® An arbitrary function can be expanded in a series of the orthonormal functions

= Z a,U (¢) < completeness of the function set

=§(/ €)7()a¢ ) v,(0) < a= [ Uile1r(€)ae

= Z U ( (€)=6(¢' =€) < closure relation or completeness

® The most famous orthogonal functions are the sines and cosines, an expansion
in terms of them being a Fourier series.
a a
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a a a a

1

® The constant function is \/—— for m=0
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® A function is customarily written in the form:

f(x)Z%AO+Z (Amcoszﬁmx +BmsinM)

a a

m=1

where A =— f (x)cos dx, B =— f(x)sin=———dx
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® Suppose that the space is 2d, and the variable £ ranges over the interval (a, b)
while the variable 1 has the interval (¢, d). The orthonormal functions in each
dimension are U, (£) and V,(n). Then the expansion of an arbitrary function is
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® The 2 continuous variables x and k are complete equivalent.



Separation of Variables; Laplace Equation in Rectangular
Coordinates

@® Equations involving the 3-dim Laplacian operator are known to be separable in
11 different coordinate systems.

® Discuss only 3 of these — rectangular, spherical, and cylindrical.

@ The Laplace equation in rectangular coordinates: \/? & = 0’2 + "2 8 (I) =0

0 x° 8y 8Z

A 1d°x 1dY 14d°Z
® Assume @(x,y,z)IX(x)Y(y)Z(z) = ydxz-l-?d—yz-l-gdzz:o

@ Hold for arbitrary values of the independent coordinates, each of the 3 terms
must be separately constant:

2 2
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@ By linear superposition, the solution can construct a very large class of
solutions to the Laplace equation.

® To determine « and [ it is necessary to impose specific boundary conditions on
the potential.

® To find the potential everywhere inside the box, . ,
X=sinax, Y=sinfy

¢0,y,z)=0, ®(x,0,z)=0, ®(x,y,0)=0 =
( Y ) ( ) ( ) Z=sinh(mz>
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@ If the rectangular box has potentials different from 0 on all 6 sides, the
required solution for the potential inside the box can be obtained by a linear
superposition of 6 solutions, one for each side.

® The problem of the solution of the Poisson equation, ie, the potential inside the
box with a charge distribution inside, as well as prescribed boundary conditions
on the surface, requires the construction of the appropriate Green function.



A 2d Potential Problem; Summation of a Fourier Series

@ Consider the solution by

separation of variables of the 2d

5
@

Laplace equation in Cartesian
coordinates, in which the

potential is independent of z,
P e a e RorC
® Boundary conditions:
®(0,y)=®(a,y)=0
¢(x,0)=0, ®(x,0
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® The smooth behavior in x of the
asymptotic solution sets in for y = q,
regardless of the complexities of ®(x,0).
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® The imaginary part of a logarithm is equal to the phase of its argument,

F=A+iB=S(cosp+ising)=Se'* = InF=In(Se'’)=InS+i¢
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® The infinite series has now been transformed into the explicit closed form.

® The real or the imaginary part of an analytic function satisfies the Laplace
equation in two dimensions as a result of the Cauchy-Riemann equations.



Fields and Charge Densities in 2d Corners and Along Edges
® The geometry suggests use of polar
rather than Cartesian coordinates.

® The Laplace equation in 2d:

vzq)_li( 6<I>) 1 0°®
0p

P Op
® Separation of variables:

®(p,¢)=R(p)¥(p)

2
Lo d 4R 18T
Rdp dp VY d¢
2
N ﬁ d dR):Vz’ ld \Ij:_v
R d \I!d¢2
=ap+bp butfor v=0 = |R(P)Zac+bylnp

=Acos(v¢)+Bsin(vg¢) V(¢)=A,+B,¢
®Ift ere 1s no restriction on ¢, it is necessary that v be"a positive or negative

integer or O to ensure that the potential is single-valued = B,=0.

® The general solution:

®(p,p)=a,+b,In p+i (anp”sin(n¢+an)+b—':lsin(n ¢+ﬂn))
n=1 p



® If there is no charge at the origin, all the b, are 0. If the origin is excluded, the

b, can be different from 0.

® The logarithmic term is equivalent to a line charge on the axis with charge

density per unit length A=—-2m¢, b, .

°« (p.0)=0(p, B)=V

= b,=b,=a,=0,a,=

= ®(p,¢)=V+ a,p’ sin
m=1

® The undetermined coefficients a,, depend on the potential remote from p=0.

V, sin(vB)=0 < u:m—;, m=1,2,
mm ¢
B

® For small enough p only the 1° term in the series will be important.

®(p, ¢)NV+a1p_Sln7T—¢ =

a, ™ +-1
E, = —a—q):—l—pﬂ sin
op B
1 0P a,m
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B

< surface charge density



® The components of the field and the surface-charge density near p=0 all vary

-1
with distance as ,5
P ~1/3

p

® For a very deep corner (small 3) the power of p becomes very large, and no
charge accumulates in such a corner.

® When 8>, the 2d corner becomes an edge and the field and the surface-
charge density become singular as p—0.

® The 2d electrostatic considerations apply to many 3d situations, even with time-
varying fields.

® The singular behavior of the fields near sharp edges is the reason for the
effectiveness of lightning rods.

Selected problems: 3, 7, 13, 15, 23, 26



Starting with the series solution (2.71) for the two-dimensional potential problem
with the potential specified on the surface of a cylinder of radius b, evaluate the
coefficients formally, substitute them into the series, and sum it to obtain the po-
tential inside the cylinder in the form of Poisson’s integral:

b2 _ p2
p> — 2bp cos(¢’ — ¢)

What modification 1s necessary if the potential 1s desired in the region of space
bounded by the cylinder and infinity? [Problem 2.12]

1 2ar
Do 6) = 5= | ®b. ¢) dg’

Equation (2.71) reads as

P(p,p) =ag+colnp+ Z[anp” sin(ng + ay,) + cpp” " sin(ng + )]

n=1
For the potential inside the cylinder, it requires the potential ® to be regular for 0 < p < b
and it indicates ¢y = ¢,, = 0 for all ¢,,’s. Then the potential becomes

o0 1 (o @] .
Pin(p,¢) = ao + Y anp™sin(ng + ay) = 5o+ Y p"(Ansinng + By, cosng),
n=1

n=1
where
1 21 1 2m
Ay = 200 = ~ / O(b, ¢ )d¢', A, =ancosa, = — | ®(b,¢')sinng'dd,
™ Jo ﬂ-bn 0
1 27
B, = a,sinq,, = — ®(b, ¢') cos ng'de’.

an 0



Rewrite the potential by replacing these coefficients with the above expressions

1 2w oo 27
bl ) =5 [ 00,0040+ 35 | ([ 0.0 singas ) sinns

27

1 27
+ (— f (b, ¢') cos nqﬁ’dgb’) coanb]
o™ Jo
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21 J, ’ et hn
_ i 7 D(b, @) _i ﬁ[ in(p—g") + —m(fb—fb’)] — 1| d¢’
=5/ , 2 g e €
1 [ i 1 1
= — o ' : . —1 /
27T 0 (b’ ¢) ) _] —_ pez(ﬁb—ﬁb’)/b T 1 — pe_z(ﬁb—d”)/b ] déb
1 27 b2 o p2
= — (I) / !.
21 Jo (6,9 )b2 + p? — 2bpcos(¢p — ¢') dé

For the potential outside the cylinder, it requires the potential ® to be finite for b < p < oo
and it indicates ¢y = a,, = 0 for all a,,’s. Then the potential becomes

o0 1 o0
Dout(p, @) = ag + Z cnp” 'sin(ng + By) = §A0 + Z p~ " (C,sinng + D, cosng),
n=1 n=1



where

n 21 bn 2
C,, = ¢, cos B, = b?f ®(b,¢")sinng’de’, D, =c,sinB, = ?f ® (b, d") cosng’de’.
0 0

Following the same reasoning, it is easy to find

1 o / )02 _b2 /
®out(pa<b) — %/0 (I)(b7¢ )b2 +p2 — prcos(qb — gb,)dd) ‘

Therefore, the modification needed from ®;, to ®,, is to swap p and b in their expressions.
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