

Chapter 2 Boundary-Value Problems in Electrostatics I

- The correct Green function is not necessarily easy to be found.

- 3 techniques to electrostatic boundary value problems:

(1) the method of images

(2) expansion in orthogonal functions

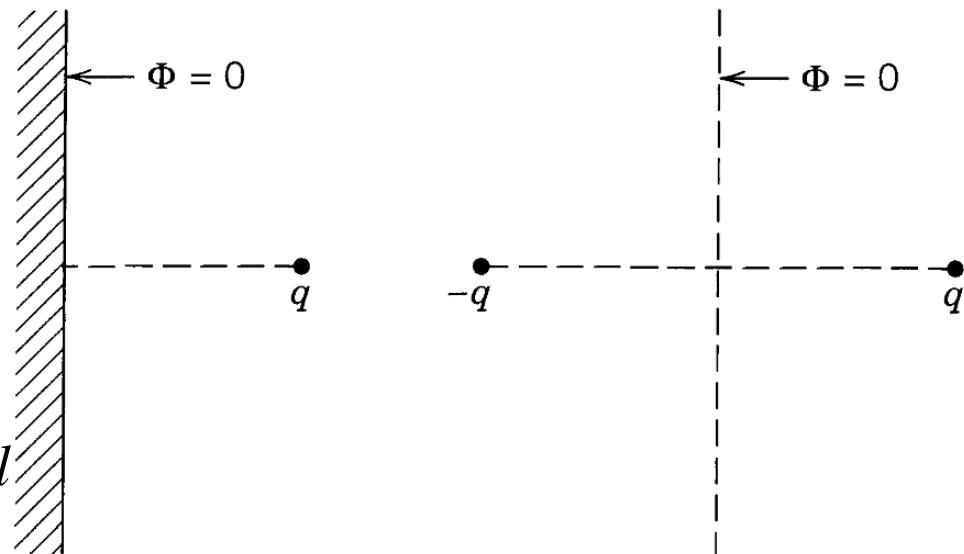
(3) finite element analysis (numerical method)

Method of Images

- The method deals with the problem of point charges in the presence of boundary surfaces, eg, conductors either grounded or held at fixed potentials.

- Infer from the geometry of the situation that some suitably placed charges, *external to the region of interest*, can simulate the boundary conditions. The charges are called *image charges*.

- The method replaces the actual problem with boundaries by an enlarged region with image charges but not boundaries.

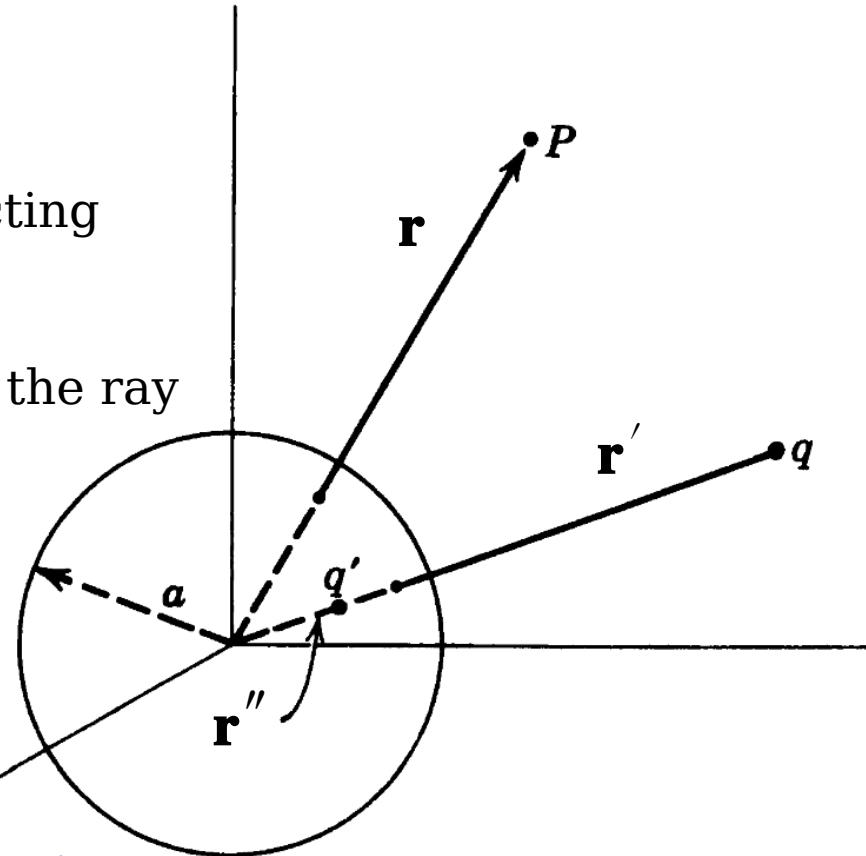


Point Charge in the Presence of a Grounded Conducting Sphere

- A point charge is outside a grounded conducting sphere. Find the potential ($\Phi(|\mathbf{r}|=a)=0$).

- By symmetry the image charge q' will lie on the ray from the origin to the charge q , then

$$\begin{aligned}
 \Phi(\mathbf{r}) &= \frac{1}{4\pi\epsilon_0} \left(\frac{q}{|\mathbf{r} - \mathbf{r}'|} + \frac{q'}{|\mathbf{r} - \mathbf{r}''|} \right) \\
 &= \frac{1}{4\pi\epsilon_0} \left(\frac{q}{|r\hat{\mathbf{r}} - r'\hat{\mathbf{r}}'|} + \frac{q'}{|r\hat{\mathbf{r}} - r''\hat{\mathbf{r}}'|} \right) \\
 \Rightarrow \Phi(r=a) &= \frac{1}{4\pi\epsilon_0} \left(\frac{q}{|a\hat{\mathbf{r}} - r'\hat{\mathbf{r}}'|} + \frac{q'}{|a\hat{\mathbf{r}} - r''\hat{\mathbf{r}}'|} \right) = 0 \Rightarrow \Phi(\mathbf{r}=+a\hat{\mathbf{r}}')=0 \\
 \Rightarrow \frac{q}{r'-a} &= -\frac{q'}{a-r''}, \quad \frac{q}{r'+a} = \frac{q'}{a+r''} \Rightarrow r'' = \frac{a^2}{r'}, \quad q' = -\frac{a}{r'}q
 \end{aligned}$$



- As q is closer to the sphere, the q' grows and moves out from the center of the sphere.
- When q is just outside the surface of the sphere, q' is equal and opposite in and lies just beneath the surface.

- The actual charge density induced on the surface of the sphere can be calculated from the normal derivative of Φ at the surface:

$$\sigma = -\epsilon_0 \frac{\partial \Phi}{\partial r} \Big|_{r=a} \Rightarrow \int \sigma dA = -\frac{a}{r'} q$$

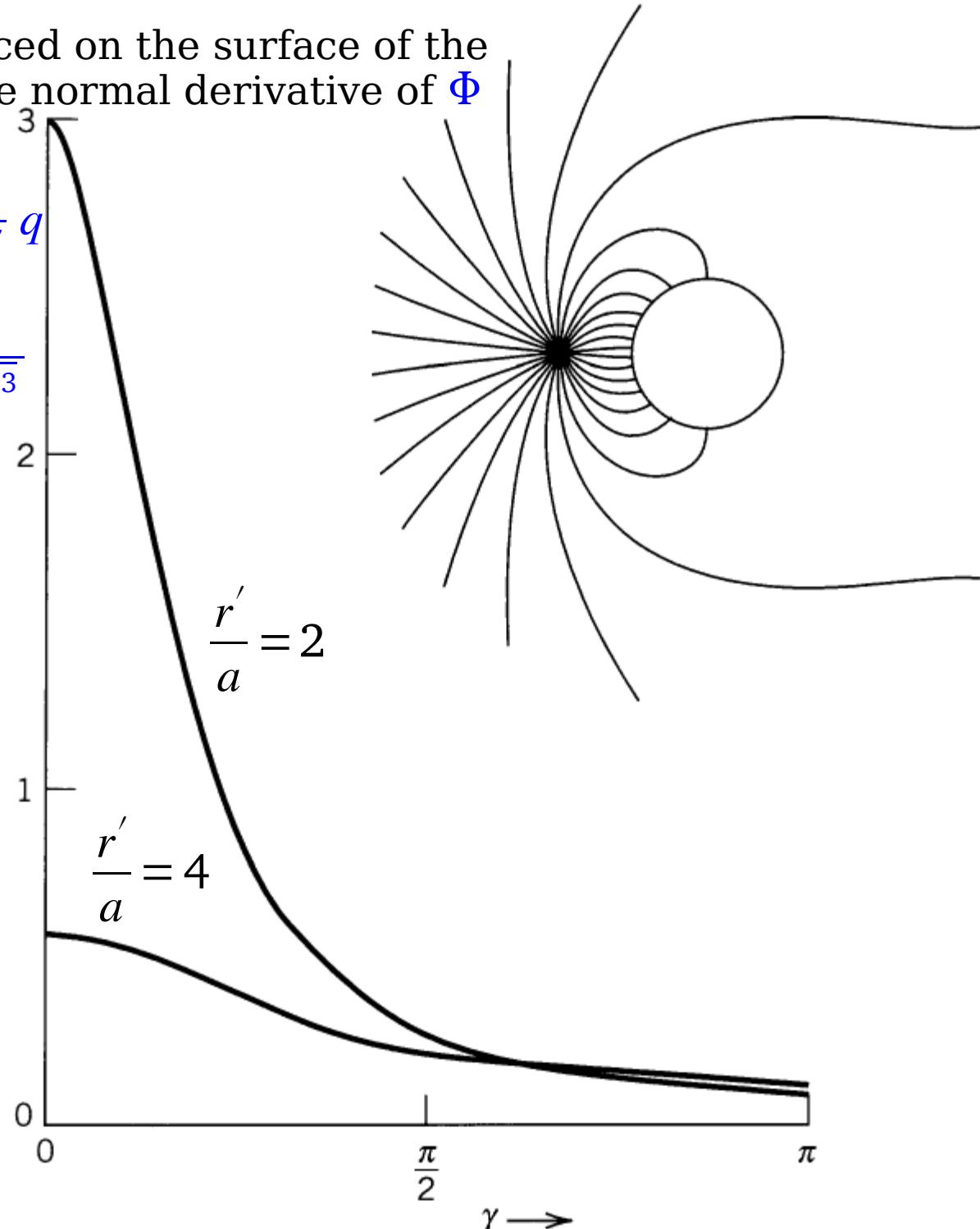
$$= \frac{q}{4\pi a} \frac{a^2 - r'^2}{\sqrt{(r'^2 - 2ar' \cos \gamma + a^2)^3}}$$

- It is easy to show by direct integration that the total induced charge on the sphere is equal to the magnitude of the image charge according to Gauss's law.

- For the force on the charge q , write down the force between q and q'

$$r' - r'' = r' \left(1 - \frac{a^2}{r'^2} \right)$$

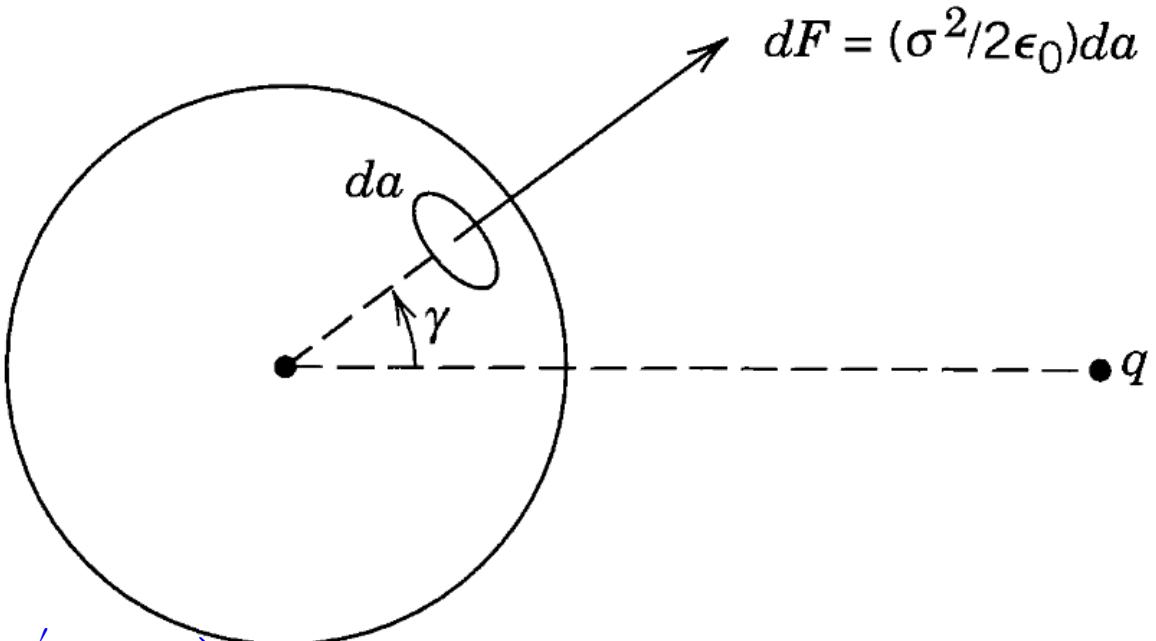
$$\Rightarrow |\mathbf{F}| = \frac{q^2}{4\pi\epsilon_0} \frac{a r'}{(r'^2 - a^2)^2}$$



- The alternative method for the force is to calculate the total force acting on the surface of the sphere

$$\begin{aligned}
 |\mathbf{F}| &= \int dF_x = \int \frac{\sigma^2}{2\epsilon_0} \cos \gamma d\Omega = \frac{q^2 (r'^2 - a^2)^2}{32\pi^2\epsilon_0} \int \frac{\cos \gamma}{(r'^2 + a^2 - 2ar' \cos \gamma)^3} d\Omega \\
 &= \frac{q^2}{4\pi\epsilon_0} \frac{ar'}{(r'^2 - a^2)^2}
 \end{aligned}$$

- The whole discussion has been based on the understanding that q is outside the sphere. Actually, the results apply equally for q inside the sphere.



$$\bullet \Phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{|\mathbf{r} - \mathbf{r}'|} - \frac{ar'q}{|r'^2 \mathbf{r} - a^2 \mathbf{r}'|} \right)$$

Point Charge in the Presence of a Charged, Insulated, Conducting Sphere

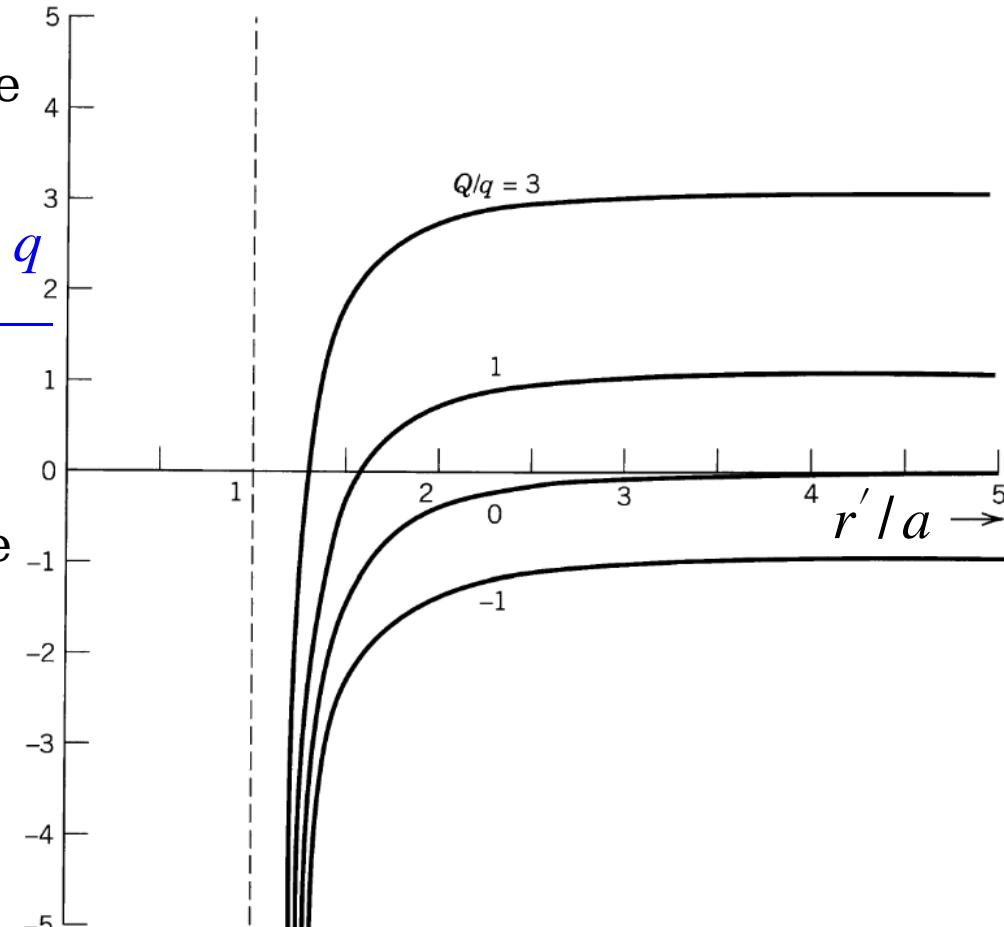
- Consider an insulated conducting sphere with total charge Q in the presence of a point charge q .
- Start with the grounded conducting sphere (with its charge q' distributed over its surface). Then disconnect the ground wire and add to the sphere an amount of charge $(Q - q')$. This brings the total charge on the sphere up to Q .

- The added charge $(Q - q')$ will distribute itself uniformly over the surface. Then

$$4\pi\epsilon_0\Phi(\mathbf{r}) = \frac{q}{|\mathbf{r} - \mathbf{r}'|} - \frac{\frac{a}{r'}q}{\left|\mathbf{r} - \frac{a^2}{r'^2}\mathbf{r}'\right|} + \frac{Q + \frac{a}{r'}q}{r}$$

- The force acting on the charge q can be written down from Coulomb's law

$$\mathbf{F} = \frac{q}{4\pi\epsilon_0 r'^2} \left(Q - \frac{q a^3 (2r'^2 - a^2)}{r' (r'^2 - a^2)^2} \right) \hat{\mathbf{r}'}$$



- In the limit of $r' \gg a$, the force reduces to the usual Coulomb's law for 2 small charged bodies. But close to the sphere the force is modified because of the induced charge distribution on the surface of the sphere.
- If the sphere is charged oppositely to q , or is uncharged, the force is attractive at all distances.
- Even if the charge Q is the same sign as q , the force becomes attractive at very close distances.
- In the limit of $Q \gg q$, the point of zero force (unstable equilibrium point) is very close to the sphere, at $r' \simeq a \left(1 + \frac{1}{2} \sqrt{\frac{q}{Q}} \right)$

$$\mathbf{F} = 0 \Rightarrow Q - \frac{q a^3 (2 r'^2 - a^2)}{r' (r'^2 - a^2)^2} = 0 \Rightarrow r' (r'^2 - a^2)^2 = \frac{q}{Q} a^3 (2 r'^2 - a^2)$$

Using perturbation method $\Rightarrow \frac{q}{Q} = 0$ get $r'^{(0)} = a \Rightarrow r'^{(1)} = r'^{(0)} + \delta$ get $\delta = \frac{a}{2} \sqrt{\frac{q}{Q}}$

- This example explains why an excess of charge on the surface does not leave the surface because of mutual repulsion of the individual charges.
- As soon as an element of charge is removed from the surface, the image force tends to attract it back.

Point Charge Near a Conducting Sphere at Fixed Potential

- The potential is the same as for the charged sphere, except that the charge $(Q - q')$ at the center is replaced by a charge $Q' = 4\pi\epsilon_0 a V$

$$\begin{aligned}\Phi(\mathbf{r}) &= \frac{1}{4\pi\epsilon_0} \left(\frac{q}{|\mathbf{r} - \mathbf{r}'|} - \frac{a r' q}{|r'^2 \mathbf{r} - a^2 \mathbf{r}'|} \right) + \frac{a}{r} V \\ \Rightarrow \mathbf{F} &= \frac{q}{r'^2} \left(a V - \frac{1}{4\pi\epsilon_0} \frac{q a r'^3}{(r'^2 - a^2)^2} \right) \hat{\mathbf{r}}'\end{aligned}$$

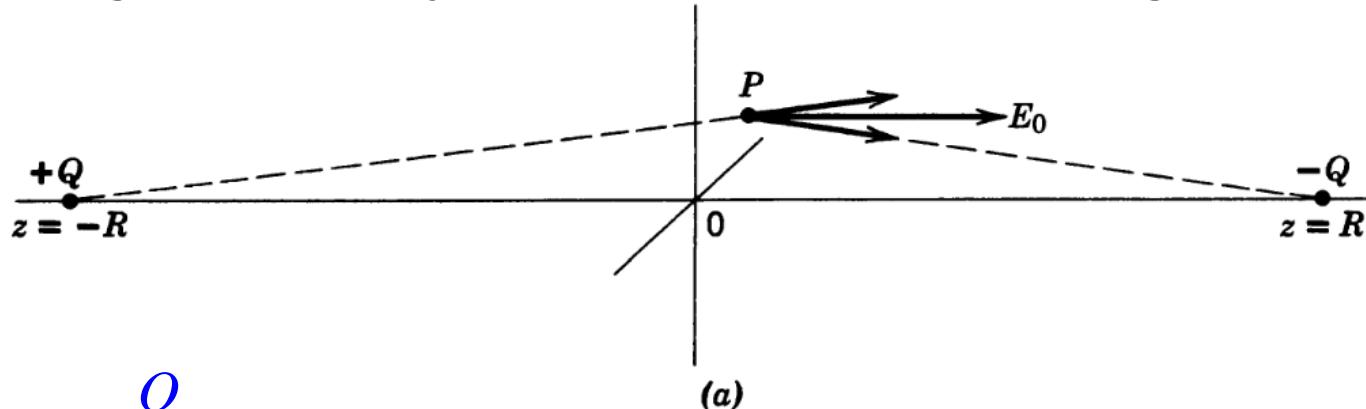
- For $4\pi\epsilon_0 a V \gg q$, the unstable equilibrium point: $r' \simeq a \left(1 + \frac{1}{2} \sqrt{\frac{q}{4\pi\epsilon_0 a V}} \right)$

Conducting Sphere in a Uniform Electric Field by Method of Images

- Consider a conducting sphere of radius a in a uniform electric field. A uniform field can be thought of as being produced by appropriate positive and negative charges at infinity.

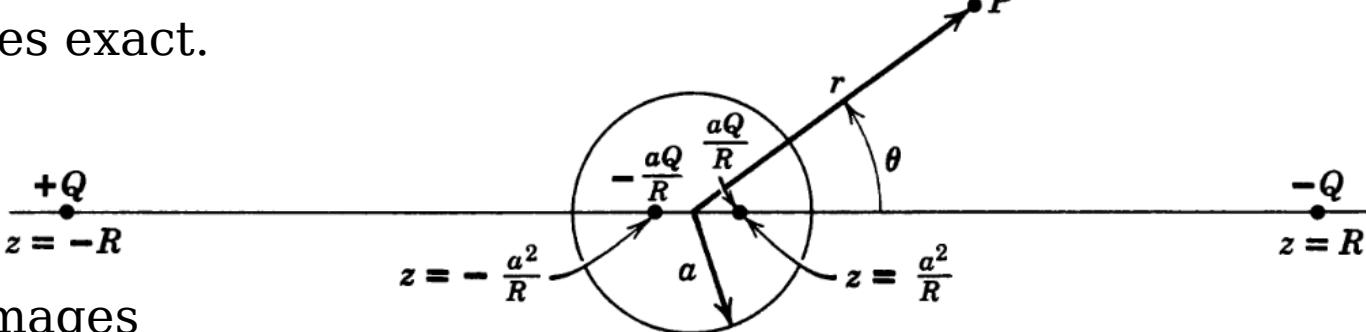
- The electric field near

the origin: $E_0 \simeq \frac{1}{2 \pi \epsilon_0} \frac{Q}{R^2}$



- In the limit as $R, Q \rightarrow \infty$ with $\frac{Q}{R^2}$ constant, this approximation becomes exact.

- A conducting sphere is placed at the origin, the potential will be that due to the charges and their images



$$4 \pi \epsilon_0 \Phi = \frac{Q}{\sqrt{r^2 + R^2 + 2 r R \cos \theta}} - \frac{a Q}{\sqrt{r^2 R^2 + a^4 + 2 a^2 r R \cos \theta}} \\ - \frac{Q}{\sqrt{r^2 + R^2 - 2 r R \cos \theta}} + \frac{a Q}{\sqrt{r^2 R^2 + a^4 - 2 a^2 r R \cos \theta}}$$

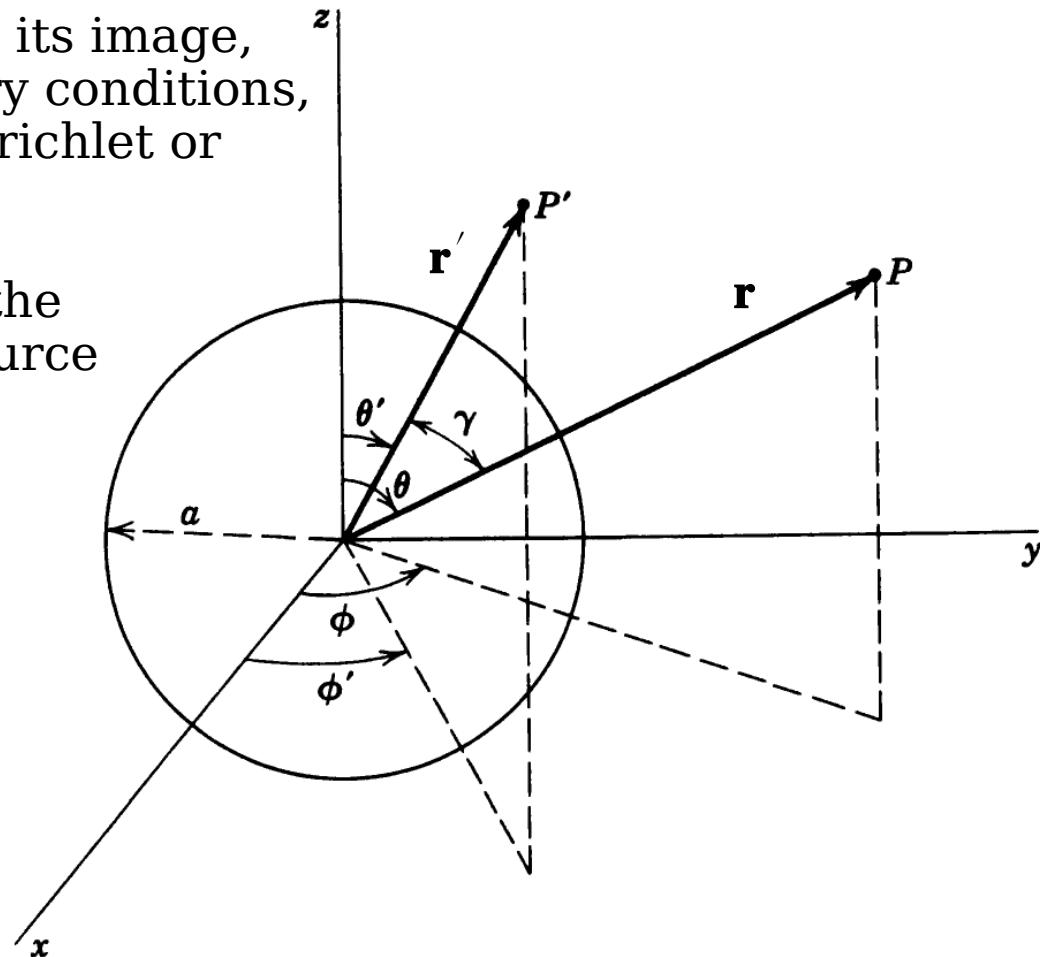
- For $R \gg r$: $\Phi = -\frac{2Q}{4\pi\epsilon_0 R^2} \left(r - \frac{a^3}{r^2} \right) \cos\theta + \dots$
- To the limit $E_0 = \frac{Q}{2\pi\epsilon_0 R^2}$ becomes the applied uniform field: $\Phi = -E_0 \left(r - \frac{a^3}{r^2} \right) \cos\theta$
- The 1st term $-E_0 z$ is the potential of a uniform field. The 2nd is the potential due to the induced surface-charge density or, equivalently, the image charges.
- The image charges form a dipole of strength $D = \frac{a}{R} Q \times 2 \frac{a^2}{R} = 4\pi\epsilon_0 E_0 a^3$
- The induced surface-charge density $\sigma = -\epsilon_0 \frac{\partial \Phi}{\partial r} \Big|_{r=a} = 3\epsilon_0 E_0 \cos\theta$
- The surface integral of this charge density vanishes, (but the surface charge density doesn't vanish,) so that there is no difference between a grounded and an insulated sphere.

Green Function for the Sphere; General Solution for the Potential

- The potential due to a unit source and its image, chosen to satisfy homogeneous boundary conditions, is the Green function appropriate for Dirichlet or Neumann boundary conditions.

- For Dirichlet boundary conditions on the sphere, the Green function for a unit source and its image is

$$\begin{aligned}
 G(\mathbf{r}, \mathbf{r}') &= \frac{1}{|\mathbf{r} - \mathbf{r}'|} - \frac{a r'}{|r'^2 \mathbf{r} - a^2 \mathbf{r}'|} \\
 &= \frac{1}{\sqrt{r^2 + r'^2 - 2 r r' \cos \gamma}} \\
 &\quad - \frac{a}{\sqrt{r^2 r'^2 + a^4 - 2 r r' a^2 \cos \gamma}}
 \end{aligned}$$



- The symmetry in the variables is obvious, as is the condition that $G = 0$ if either \mathbf{r} or \mathbf{r}' is on the surface of the sphere.
- For the boundary problem in Sec. 2.2, we now can derive the solution as

$$4 \pi \Phi(\mathbf{r}) = \int_{\mathcal{V}} \frac{q}{\epsilon_0} \delta(\mathbf{r}' - \mathbf{y}) G(\mathbf{r}, \mathbf{y}) d^3 y + \oint_S \left(G \frac{\partial \Phi}{\partial n'} - \Phi \frac{\partial G}{\partial n'} \right) d a' \leftarrow \Phi(a) = 0$$

- For solutions of a Poisson equation we need not only G , but also $\frac{\partial G}{\partial n'}$

$$\frac{\partial G}{\partial n'}|_{r'=a} = (\hat{\mathbf{n}}' \cdot \nabla' G)|_{r'=a} = [(-\hat{\mathbf{r}}') \cdot \nabla' G]|_{r'=a} = \frac{a^2 - r^2}{a \sqrt{(r^2 + a^2 - 2 a r \cos \gamma)^3}}$$

here r' means the source space, not only the coordinate of single charge.

- The condition is essentially the induced surface-charge density.
- The solution of the Laplace equation *outside* a sphere with the potential specified on its surface is

$$\nabla^2 \Phi = 0 \Rightarrow \Phi(\mathbf{r}) = \frac{1}{4\pi} \int \Phi(a, \theta', \phi') \frac{a(r^2 - a^2)}{\sqrt{(r^2 + a^2 - 2 a r \cos \gamma)^3}} d\Omega'$$

where $\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi - \phi')$

- For the *interior* problem, $\frac{\partial G}{\partial n'}|_{r'=a} = (\hat{\mathbf{r}}' \cdot \nabla' G)|_{r'=a} = \frac{r^2 - a^2}{a \sqrt{(r^2 + a^2 - 2 a r \cos \gamma)^3}}$
- $\Rightarrow \Phi(\mathbf{r}) = \frac{1}{4\pi} \int \Phi(a, \theta', \phi') \frac{a(a^2 - r^2)}{\sqrt{(r^2 + a^2 - 2 a r \cos \gamma)^3}} d\Omega'$
- For a problem with a charge distribution, we must add to the potential integral the appropriate charge density with the Green function.

Conducting Sphere with Hemispheres at Different Potentials

- $\Phi(r, \theta, \phi)$ the solution for the potential $+ \xi^2 = r^2 + a^2 \Leftrightarrow \begin{cases} \theta' \rightarrow \pi - \theta' \\ \phi' \rightarrow \phi' + \pi \end{cases}$

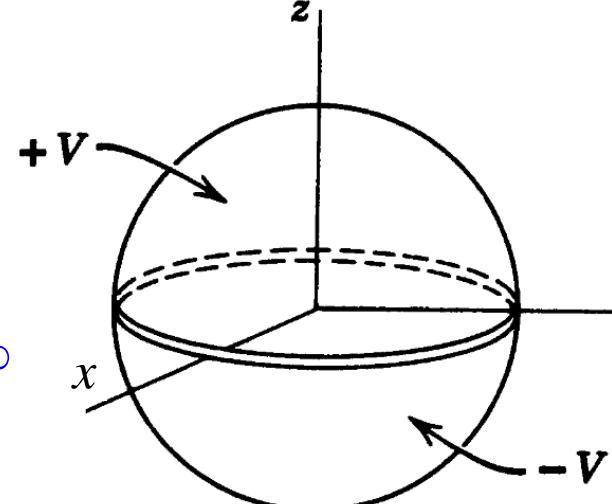
$$\begin{aligned} &= \frac{V}{4\pi} \int_0^{2\pi} d\phi' \left(\int_0^1 \frac{a(r^2 - a^2) d\cos\theta'}{\sqrt{(r^2 + a^2 - 2ar\cos\gamma)^3}} - \int_{-1}^0 \frac{a(r^2 - a^2) d\cos\theta'}{\sqrt{(r^2 + a^2 - 2ar\cos\gamma)^3}} \right) \\ &= \frac{V a(r^2 - a^2)}{4\pi} \int_0^{2\pi} d\phi' \int_0^1 \left(\frac{1}{\sqrt{(\xi^2 - 2ar\cos\gamma)^3}} - \frac{1}{\sqrt{(\xi^2 + 2ar\cos\gamma)^3}} \right) d\cos\theta' \end{aligned}$$

- Because of the complicated dependence of angle, the integral can't in general be integrated in closed form.

- Consider the potential on the $+z$ axis

$$\cos\gamma = \cos\theta' \Leftrightarrow \theta = 0$$

$$\Rightarrow \Phi(z) = V \left(1 - \frac{z^2 - a^2}{z \sqrt{z^2 + a^2}} \right) \Rightarrow \begin{cases} \Phi \simeq \frac{3V a^2}{2z^2}, & z \rightarrow \infty \\ \Phi = V, & z = a \end{cases}$$



- In the absence of a closed expression for the integral, we can expand the

denominator in power series and integrate term by term, defining $\alpha = \frac{ar}{r^2 + a^2}$

$$\Phi = \frac{V a(r^2 - a^2)}{4\pi \sqrt{(r^2 + a^2)^3}} \int_0^{2\pi} d\phi' \int_0^1 \left(\frac{1}{\sqrt{(1 - 2\alpha\cos\gamma)^3}} - \frac{1}{\sqrt{(1 + 2\alpha\cos\gamma)^3}} \right) d\cos\theta'$$

- In the expansion of the radicals only odd powers of $\alpha \cos \gamma$ will appear

$$\frac{1}{\sqrt{(1-2\alpha \cos \gamma)^3}} - \frac{1}{\sqrt{(1+2\alpha \cos \gamma)^3}} = 6\alpha \cos \gamma + 35\alpha^3 \cos^3 \gamma + \dots$$

$$\Rightarrow \int_0^{2\pi} d\phi' \int_0^1 \left[\frac{\cos \gamma}{\cos^3 \gamma} \right] d\cos \theta' = \left[\frac{\pi \cos \theta}{\frac{\pi}{4} \cos \theta (3 - \cos^2 \theta)} \right]$$

$$\begin{aligned} \Rightarrow \Phi(r, \theta, \phi) &= \frac{3a(r^2 - a^2)V}{2\sqrt{(r^2 + a^2)^3}} \alpha \cos \theta \left(1 + \frac{35}{24} \alpha^2 (3 - \cos^2 \theta) + \dots \right) \Leftarrow \text{in } \alpha \\ &= \frac{3}{2} \frac{a^2}{r^2} V \left[\cos \theta - \frac{7}{12} \frac{a^2}{r^2} \left(\frac{5}{2} \cos^3 \theta - \frac{3}{2} \cos \theta \right) + \dots \right] \Leftarrow \text{in } \frac{a^2}{r^2} \end{aligned}$$

- Only odd powers of $\cos \theta$ appear, as required by the symmetry of the problem.
- For large values of $\frac{r}{a}$ this expansion converges rapidly and so is a useful representation for the potential.
- It is easily verified (by the Taylor expansion) that, for $\cos \theta = 1$, this expression agrees with the expansion of the expression for the potential on the axis.
- The special choice in the 2nd expression is related to the Legendre polynomials.

A closed volume is bounded by conducting surfaces that are the n sides of a regular polyhedron ($n = 4, 6, 8, 12, 20$). The n surfaces are at different potentials V_i , $i = 1, 2, \dots, n$. Prove in the simplest way you can that the potential at the center of the polyhedron is the average of the potential on the n sides. $<= 2.28$

Assume $G_D(\mathbf{x}, \mathbf{x}')$ is the Green's function that satisfies Dirichlet boundary conditions inside a polyhedron. Let \mathbf{x}_c to be the center of a polyhedron. For no charge inside the polyhedron, the potential at \mathbf{x}_c is

$$\Phi(\mathbf{x}_c) = -\frac{1}{4\pi} \oint_S \Phi(\mathbf{x}') \frac{\partial G_D}{\partial n'}(\mathbf{x}_c, \mathbf{x}') d\mathbf{a}' = -\frac{1}{4\pi} \sum_{i=1}^n V_i \int_{S_i} \frac{\partial G_D}{\partial n'}(\mathbf{x}_c, \mathbf{x}') d\mathbf{a}',$$

where $S = \sum S_i$ and since $\Phi|_{S_i} = V_i$. Since \mathbf{x}_c is the center of the polyhedron, therefore, it is the center of symmetry. There will be no difference for each side S_i from the viewpoint of \mathbf{x}_c . Therefore, the surface integrations over different side S_i , i.e., $\int_{S_i} \frac{\partial G_D}{\partial n'}(\mathbf{x}_c, \mathbf{x}') d\mathbf{a}'$ are the same. Then we can rewrite the expression of the potential at \mathbf{x}_c as

$$\begin{aligned} \Phi(\mathbf{x}_c) &= -\frac{1}{4\pi} \sum_{i=1}^n V_i \int_{S_i} \frac{\partial G_D}{\partial n'}(\mathbf{x}_c, \mathbf{x}') d\mathbf{a}' = -\frac{1}{4\pi} \sum_{i=1}^n V_i \times \frac{1}{n} \oint_S \frac{\partial G_D}{\partial n'}(\mathbf{x}_c, \mathbf{x}') d\mathbf{a}' \\ &= -\frac{1}{4n\pi} \sum_{i=1}^n V_i \int_V \nabla'^2 G_D(\mathbf{x}_c, \mathbf{x}') d^3 x' = \frac{1}{n} \sum_{i=1}^n V_i, \end{aligned}$$

where the Gauss theorem is applied and since $\nabla'^2 G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x} - \mathbf{x}')$. Therefore, the potential at the center of a polyhedron is the average of the potential on its sides.

Orthogonal Functions and Expansions

- The orthogonal set chosen depends on the symmetries or near symmetries involved.
- Consider an interval (a, b) in a variable ξ with a set of real or complex *orthonormal* functions $U_n(\xi)$. The orthogonality condition:

$$\int_a^b U_n^*(\xi) U_m(\xi) d\xi = \delta_{mn}$$
- An arbitrary function can be expanded in a series of the orthonormal functions

$$f(\xi) = \sum_{n=1}^{\infty} a_n U_n(\xi) \Leftarrow \text{completeness of the function set}$$

$$= \sum_{n=1}^{\infty} \left(\int_a^b U_n^*(\xi') f(\xi') d\xi' \right) U_n(\xi) \Leftarrow a_n = \int_a^b U_n^*(\xi) f(\xi) d\xi$$

$$\Rightarrow \sum_{n=1}^{\infty} U_n^*(\xi') U_n(\xi) = \delta(\xi' - \xi) \Leftarrow \text{closure relation or completeness}$$
- The most famous orthogonal functions are the sines and cosines, an expansion in terms of them being a *Fourier series*.
- The orthonormal functions $\sqrt{\frac{2}{a}} \sin \frac{2\pi m x}{a}$, $\sqrt{\frac{2}{a}} \cos \frac{2\pi m x}{a}$ for $x \in \left[-\frac{a}{2}, \frac{a}{2}\right]$
- The constant function is $\frac{1}{\sqrt{a}}$ for $m=0$

- A function is customarily written in the form:

$$f(x) = \frac{1}{2} A_0 + \sum_{m=1}^{\infty} \left(A_m \cos \frac{2\pi m x}{a} + B_m \sin \frac{2\pi m x}{a} \right)$$

$$\text{where } A_m = \frac{2}{a} \int_{-a/2}^{+a/2} f(x) \cos \frac{2\pi m x}{a} dx, \quad B_m = \frac{2}{a} \int_{-a/2}^{+a/2} f(x) \sin \frac{2\pi m x}{a} dx$$

- Suppose that the space is 2d, and the variable ξ ranges over the interval (a, b) while the variable η has the interval (c, d) . The orthonormal functions in each dimension are $U_n(\xi)$ and $V_m(\eta)$. Then the expansion of an arbitrary function is

$$f(\xi, \eta) = \sum_n \sum_m a_{nm} U_n(\xi) V_m(\eta) \Leftarrow a_{nm} = \int_a^b d\xi \int_c^d U_n^*(\xi) V_m^*(\eta) f(\xi, \eta) d\eta$$

- $(a, b) \rightarrow (-\infty, +\infty) \Rightarrow U_m(x) \rightarrow U(m, x)$

$$\Rightarrow \int_a^b U_n^*(x) U_m(x) dx \rightarrow \int_{-\infty}^{+\infty} U^*(n, x) U(m, x) dx = \delta(m-n) \Leftarrow \delta_{mn}$$

- For *Fourier integral*, start with: $U_m(x) = \frac{1}{\sqrt{a}} e^{i \frac{2m\pi x}{a}} \Leftarrow \begin{cases} m=0, \pm 1, \pm 2, \dots \\ x \in \left(-\frac{a}{2}, \frac{a}{2}\right) \end{cases}$

$$\Rightarrow f(x) = \frac{1}{\sqrt{a}} \sum_{m=-\infty}^{\infty} A_m e^{i \frac{2m\pi x}{a}} \Leftarrow A_m = \frac{1}{\sqrt{a}} \int_{-a/2}^{+a/2} e^{-i \frac{2m\pi x'}{a}} f(x') dx'$$

- $a \rightarrow \infty \Rightarrow$

$\frac{2\pi m}{a} \rightarrow k$
$\sum_m \rightarrow \int_{-\infty}^{+\infty} d m \rightarrow \frac{a}{2\pi} \int_{-\infty}^{+\infty} d k$
$A_m \rightarrow \sqrt{\frac{2\pi}{a}} A(k)$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} A(k) e^{i k x} d k \Leftarrow A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-i k x} f(x) d x$$

$\Rightarrow \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(k-k')x} d x = \delta(k-k')$,
orthogonality condition

$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i k (x-x')} d k = \delta(x-x')$,
completeness relation

- The 2 continuous variables x and k are complete equivalent.

Separation of Variables; Laplace Equation in Rectangular Coordinates

- Equations involving the 3-dim Laplacian operator are known to be separable in 11 different coordinate systems.
- Discuss only 3 of these — rectangular, spherical, and cylindrical.

- The Laplace equation in rectangular coordinates: $\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$

- Assume $\Phi(x, y, z) = X(x)Y(y)Z(z) \Rightarrow \frac{1}{X} \frac{d^2 X}{d x^2} + \frac{1}{Y} \frac{d^2 Y}{d y^2} + \frac{1}{Z} \frac{d^2 Z}{d z^2} = 0$

- Hold for arbitrary values of the independent coordinates, each of the 3 terms must be separately constant:

$$\frac{1}{X} \frac{d^2 X}{d x^2} = -\alpha^2, \quad \frac{1}{Y} \frac{d^2 Y}{d y^2} = -\beta^2, \quad \frac{1}{Z} \frac{d^2 Z}{d z^2} = \alpha^2 + \beta^2 \Rightarrow \Phi = e^{\pm i \alpha x} e^{\pm i \beta y} e^{\pm \sqrt{\alpha^2 + \beta^2} z}$$

- By linear superposition, the solution can construct a very large class of solutions to the Laplace equation.
- To determine α and β it is necessary to impose specific boundary conditions on the potential.
- To find the potential everywhere inside the box,

$$\Phi(0, y, z) = 0, \quad \Phi(x, 0, z) = 0, \quad \Phi(x, y, 0) = 0 \Rightarrow \begin{aligned} X &= \sin \alpha x, \quad Y = \sin \beta y \\ Z &= \sinh(\sqrt{\alpha^2 + \beta^2} z) \end{aligned}$$

$$\Phi(a, y, z) = 0 \Rightarrow \alpha_n = \frac{n\pi}{a}, \quad \beta_m = \frac{m\pi}{b}$$

$$\Phi(x, b, z) = 0 \Rightarrow \Phi_{nm} = \sin(\alpha_n x) \sin(\beta_m y) \sinh(\sqrt{\alpha_n^2 + \beta_m^2} z)$$

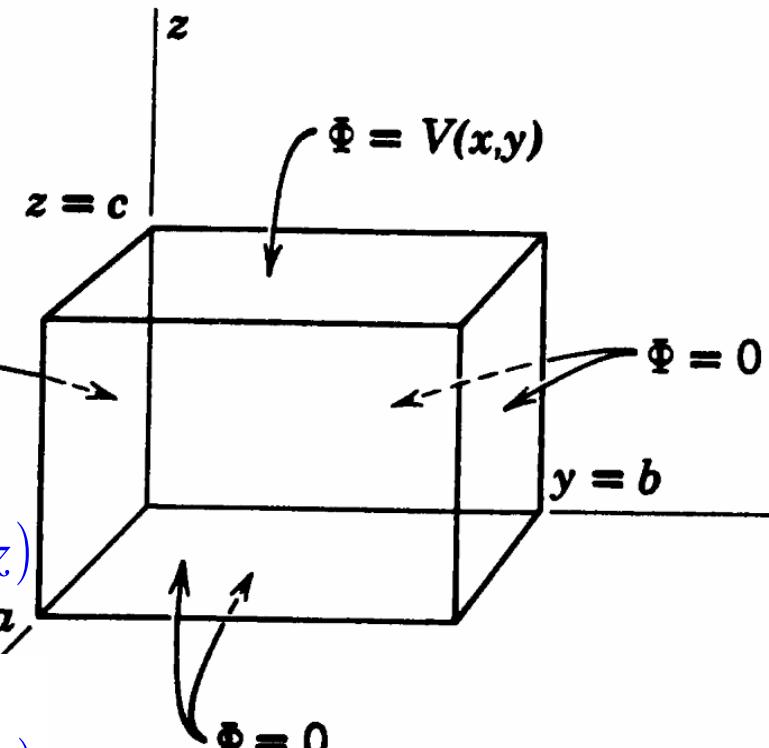
$$\Phi(x, y, z) = \sum_{n, m=1}^{\infty} A_{nm} \Phi_{nm}$$

$$= \sum_{n, m=1}^{\infty} A_{nm} \sin(\alpha_n x) \sin(\beta_m y) \sinh(\sqrt{\alpha_n^2 + \beta_m^2} z)$$

$$\Phi(x, y, c) = V(x, y)$$

$$= \sum_{n, m=1}^{\infty} A_{nm} \sin(\alpha_n x) \sin(\beta_m y) \sinh(\sqrt{\alpha_n^2 + \beta_m^2} c)$$

$$\Rightarrow A_{nm} = \frac{4}{a b \sinh(c \sqrt{\alpha_n^2 + \beta_m^2})} \int_0^a dx \int_0^b dy V(x, y) \sin(\alpha_n x) \sin(\beta_m y)$$



- If the rectangular box has potentials different from 0 on all 6 sides, the required solution for the potential inside the box can be obtained by a linear superposition of 6 solutions, one for each side.
- The problem of the solution of the Poisson equation, ie, the potential inside the box with a charge distribution inside, as well as prescribed boundary conditions on the surface, requires the construction of the appropriate Green function.

A 2d Potential Problem; Summation of a Fourier Series

- Consider the solution by separation of variables of the 2d Laplace equation in Cartesian coordinates, in which the potential is independent of z ,

$$\Phi \sim e^{\pm i \alpha x} e^{\pm \alpha y} \Leftarrow \alpha \in \mathbb{R} \text{ or } \mathbb{C}$$

- Boundary conditions:

$$\Phi(0, y) = \Phi(a, y) = 0$$

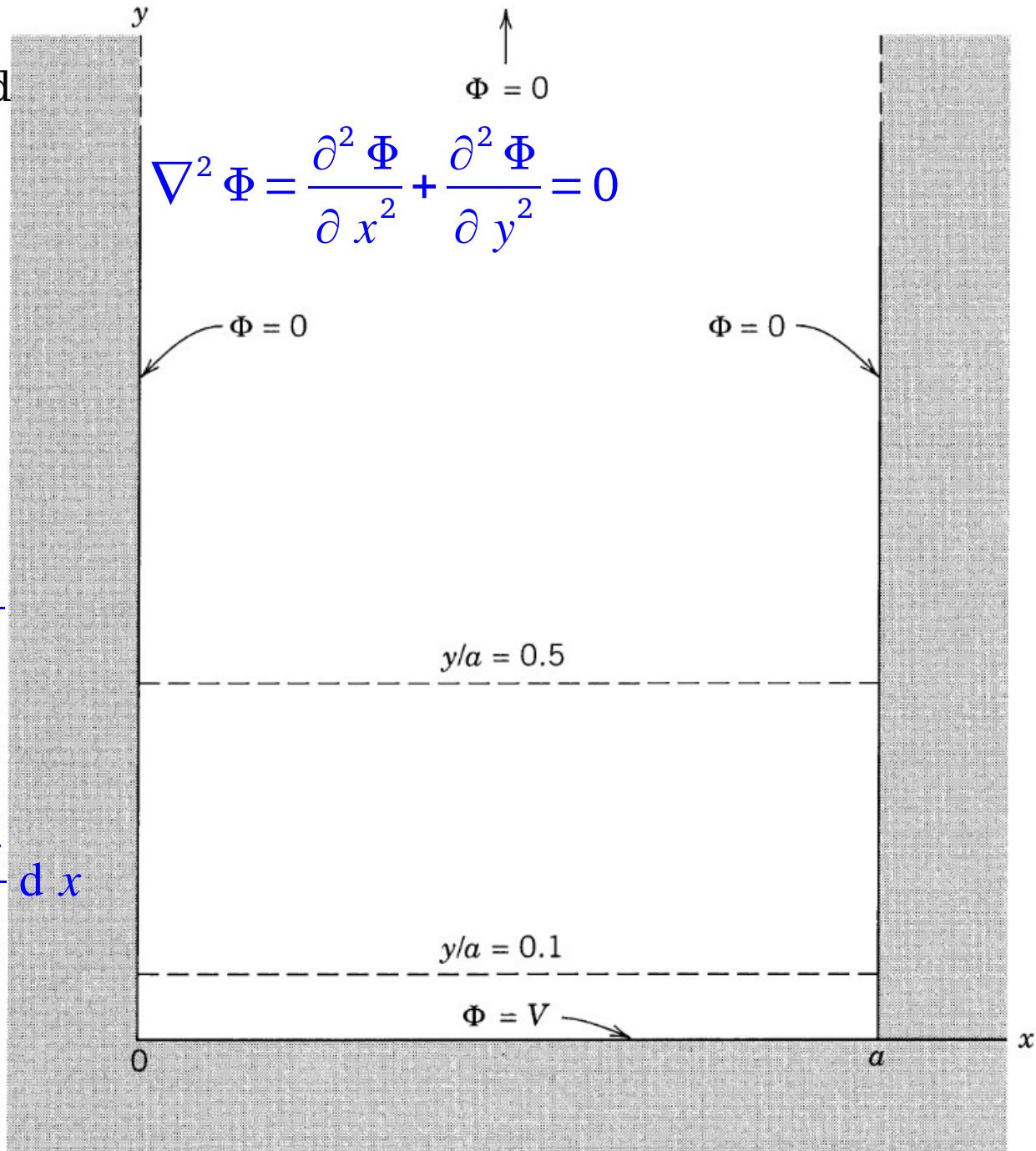
$$\Phi(x, \infty) = 0, \quad \Phi(x, 0) = V$$

$$\Rightarrow \Phi \sim e^{-\alpha y} \sin \alpha x \Leftarrow \alpha = \frac{n \pi}{a}$$

$$\Rightarrow \Phi = \sum_{n=1}^{\infty} A_n e^{-\frac{n \pi y}{a}} \sin \frac{n \pi x}{a}$$

$$\Leftarrow A_n = \frac{2}{a} \int_0^a \Phi(x, 0) \sin \frac{n \pi x}{a} dx$$

$$= \begin{cases} \frac{4V}{n \pi} & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases}$$



$$\Rightarrow \Phi(x, y) = \sum_{n \text{ odd}} \frac{4V}{n\pi} e^{-\frac{n\pi y}{a}} \sin \frac{n\pi x}{a} \Rightarrow \Phi \rightarrow \frac{4V}{\pi} e^{-\frac{\pi y}{a}} \sin \frac{\pi x}{a} \text{ for } y \geq \frac{a}{\pi}$$

- The smooth behavior in x of the asymptotic solution sets in for $y \geq a$, regardless of the complexities of $\Phi(x, 0)$.

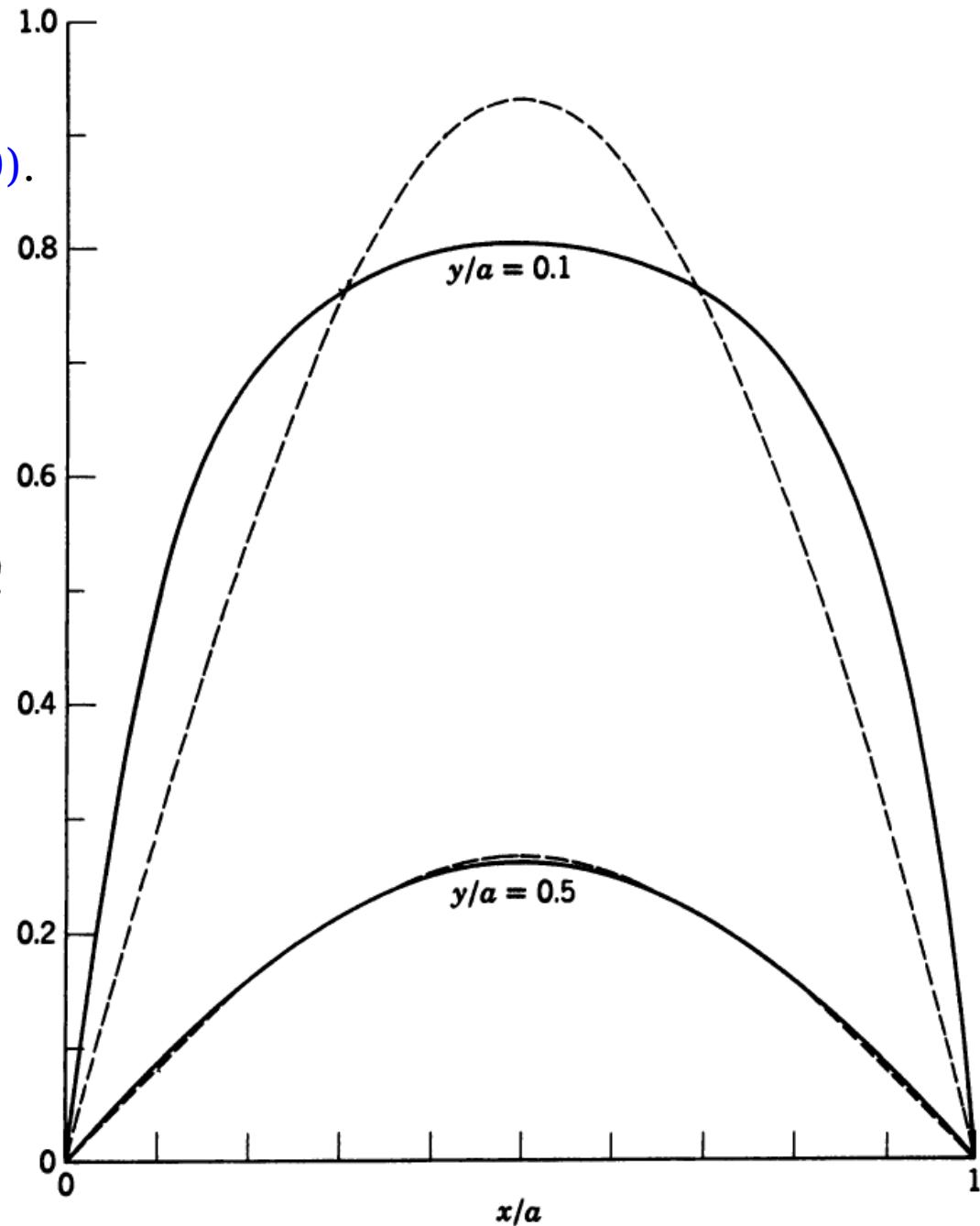
$$\sin \theta = \Im [e^{i\theta}]$$

$$\Rightarrow \Phi = \Im \left[\sum_{n \text{ odd}} \frac{4V}{n\pi} e^{\frac{i n \pi}{a} (x + iy)} \right] = \frac{4V}{\pi} \Im \left[\sum_{n \text{ odd}} \frac{Z^n}{n} \right] \Leftarrow Z \equiv e^{\frac{i\pi}{a} (x + iy)} \frac{\Phi(x, y)}{V}$$

$$\ln(1+Z) = Z - \frac{Z^2}{2} + \frac{Z^3}{3} - \frac{Z^4}{4} + \dots$$

$$\Rightarrow \sum_{n \text{ odd}} \frac{Z^n}{n} = \frac{1}{2} \ln \frac{1+Z}{1-Z} = \ln \sqrt{\frac{1+Z}{1-Z}}$$

$$\Rightarrow \Phi(x, y) = \frac{2V}{\pi} \Im \left[\ln \frac{1+Z}{1-Z} \right]$$



- The imaginary part of a logarithm is equal to the phase of its argument,

$$F = A + i B = S (\cos \phi + i \sin \phi) = S e^{i\phi} \Rightarrow \ln F = \ln (S e^{i\phi}) = \ln S + i \phi$$

- $\frac{1+Z}{1-Z} = \frac{1-|Z|^2 + 2i \Im[Z]}{|1-Z|^2} \Rightarrow \cos \Theta \propto 1-|Z|^2, \sin \Theta \propto 2 \Im[Z]$

$$\Rightarrow \text{the phase of the argument of } \ln \frac{1+Z}{1-Z} = \tan^{-1} \frac{2 \Im[Z]}{1-|Z|^2} \Leftarrow \tan \Theta = \frac{\sin \Theta}{\cos \Theta}$$

$$Z = e^{\frac{i\pi}{a}(x+iy)} \Rightarrow \Im[Z] = e^{-\frac{\pi y}{a}} \sin \frac{\pi x}{a}, \quad 1-|Z|^2 = 1 - e^{-2\frac{\pi y}{a}}$$

$$\Rightarrow \Phi(x, y) = \frac{2V}{\pi} \tan^{-1} \frac{\sin \frac{\pi x}{a}}{\sinh \frac{\pi y}{a}} \Leftarrow 0 \leq \tan^{-1} \frac{\sin \frac{\pi x}{a}}{\sinh \frac{\pi y}{a}} \leq \frac{\pi}{2} \Leftarrow \frac{\sinh \beta}{e^\beta - e^{-\beta}}$$

- The infinite series has now been transformed into the explicit closed form.
- The real or the imaginary part of an analytic function satisfies the Laplace equation in two dimensions as a result of the Cauchy-Riemann equations.

Fields and Charge Densities in 2d Corners and Along Edges

- The geometry suggests use of polar rather than Cartesian coordinates.

- The Laplace equation in 2d:

$$\nabla^2 \Phi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \Phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

- Separation of variables:

$$\Phi(\rho, \phi) = R(\rho) \Psi(\phi)$$

$$\Rightarrow \frac{\rho}{R} \frac{d}{d\rho} \left(\rho \frac{dR}{d\rho} \right) + \frac{1}{\Psi} \frac{d^2 \Psi}{d\phi^2} = 0$$

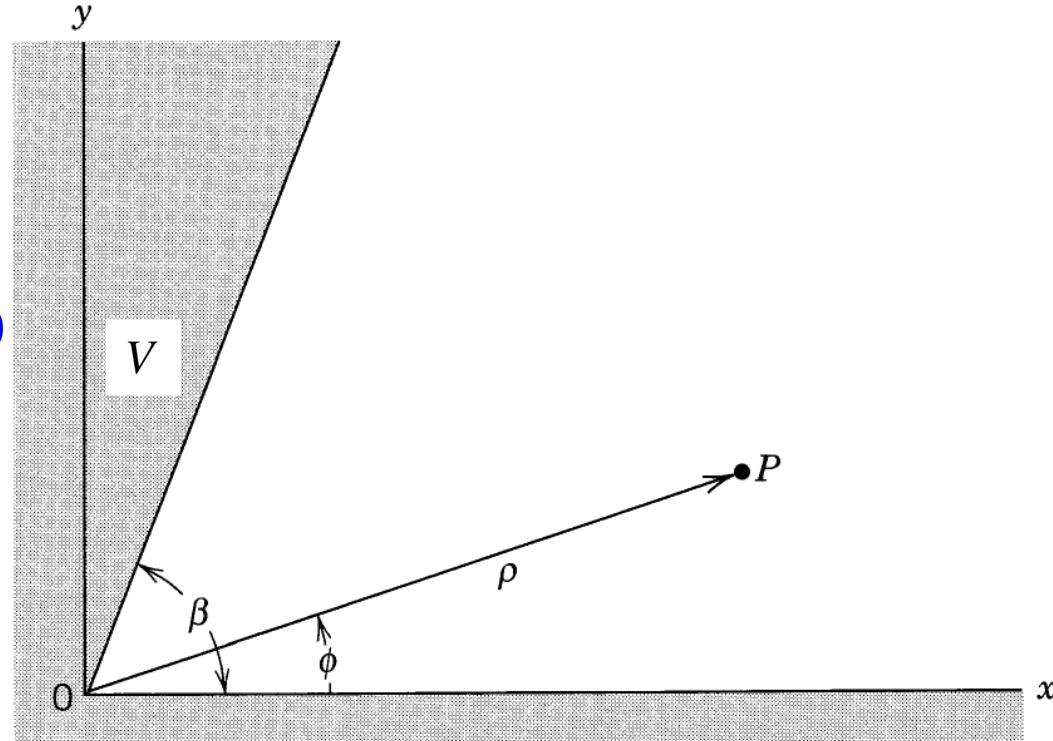
$$\Rightarrow \frac{\rho}{R} \frac{d}{d\rho} \left(\rho \frac{dR}{d\rho} \right) = \nu^2, \quad \frac{1}{\Psi} \frac{d^2 \Psi}{d\phi^2} = -\nu^2$$

$$\Rightarrow \begin{cases} R(\rho) = a \rho^\nu + b \rho^{-\nu} \\ \Psi(\phi) = A \cos(\nu \phi) + B \sin(\nu \phi) \end{cases} \quad \text{but for } \nu = 0 \Rightarrow \begin{cases} R(\rho) = a_0 + b_0 \ln \rho \\ \Psi(\phi) = A_0 + B_0 \phi \end{cases}$$

- If there is no restriction on ϕ , it is necessary that ν be a positive or negative integer or 0 to ensure that the potential is single-valued $\Rightarrow B_0 = 0$.

- The general solution:

$$\Phi(\rho, \phi) = a_0 + b_0 \ln \rho + \sum_{n=1}^{\infty} \left(a_n \rho^n \sin(n\phi + \alpha_n) + \frac{b_n}{\rho^n} \sin(n\phi + \beta_n) \right)$$



- If there is no charge at the origin, all the b_n are 0. If the origin is excluded, the b_n can be different from 0.
- The logarithmic term is equivalent to a line charge on the axis with charge density per unit length $\lambda = -2\pi\epsilon_0 b_0$.
- $\Phi(\rho, 0) = \Phi(\rho, \beta) = V$

$$\Rightarrow b_0 = b_n = \alpha_n = 0, a_0 = V, \sin(\nu\beta) = 0 \Leftarrow \nu = \frac{m\pi}{\beta}, m = 1, 2, \dots$$

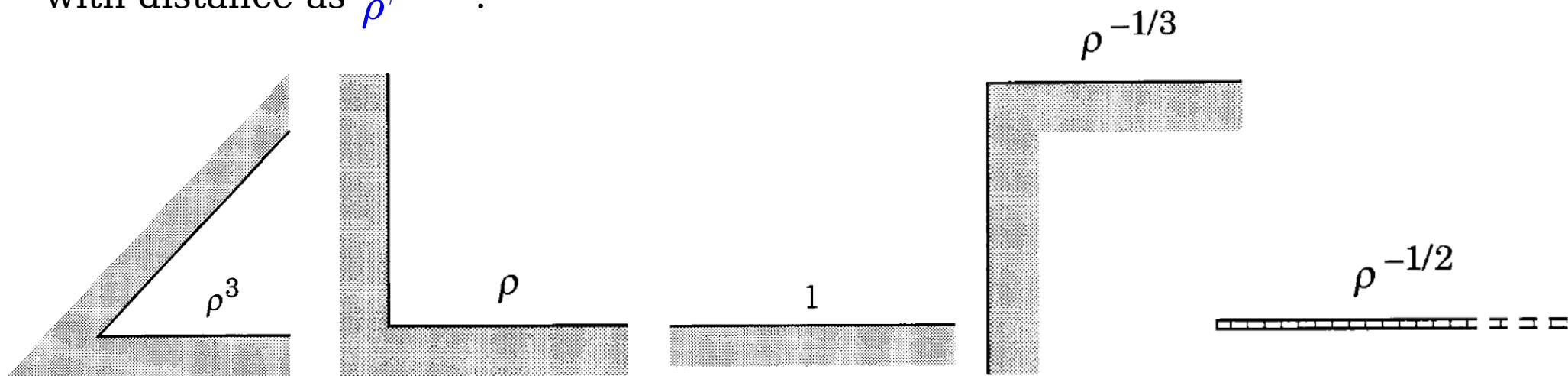
$$\Rightarrow \Phi(\rho, \phi) = V + \sum_{m=1}^{\infty} a_m \rho^{\frac{m\pi}{\beta}} \sin \frac{m\pi\phi}{\beta}$$

- The undetermined coefficients a_m depend on the potential remote from $\rho=0$.
- For small enough ρ only the 1st term in the series will be important.

$$\Phi(\rho, \phi) \simeq V + a_1 \rho^{\frac{\pi}{\beta}} \sin \frac{\pi\phi}{\beta} \Rightarrow \begin{cases} E_{\rho} = -\frac{\partial \Phi}{\partial \rho} \simeq -\frac{a_1\pi}{\beta} \rho^{\frac{\pi}{\beta}-1} \sin \frac{\pi\phi}{\beta} \\ E_{\phi} = -\frac{1}{\rho} \frac{\partial \Phi}{\partial \phi} \simeq -\frac{a_1\pi}{\beta} \rho^{\frac{\pi}{\beta}-1} \cos \frac{\pi\phi}{\beta} \end{cases}$$

$$\Rightarrow \sigma(\rho, 0) = \sigma(\rho, \beta) = \epsilon_0 E_{\phi}(\rho, 0) \simeq -\frac{\epsilon_0 a_1 \pi}{\beta} \rho^{\frac{\pi}{\beta}-1} \Leftarrow \text{surface charge density}$$

- The components of the field and the surface-charge density near $\rho=0$ all vary with distance as $\rho^{\frac{\pi}{\beta}-1}$.



- For a very deep corner (small β) the power of ρ becomes very large, and no charge accumulates in such a corner.
- When $\beta>\pi$, the 2d corner becomes an edge and the field and the surface-charge density become singular as $\rho\rightarrow 0$.
- The 2d electrostatic considerations apply to many 3d situations, even with time-varying fields.
- The singular behavior of the fields near sharp edges is the reason for the effectiveness of lightning rods.

Selected problems: 3, 7, 13, 15, 23, 26

Starting with the series solution (2.71) for the two-dimensional potential problem with the potential specified on the surface of a cylinder of radius b , evaluate the coefficients formally, substitute them into the series, and sum it to obtain the potential *inside* the cylinder in the form of Poisson's integral:

$$\Phi(\rho, \phi) = \frac{1}{2\pi} \int_0^{2\pi} \Phi(b, \phi') \frac{b^2 - \rho^2}{b^2 + \rho^2 - 2b\rho \cos(\phi' - \phi)} d\phi'$$

What modification is necessary if the potential is desired in the region of space bounded by the cylinder and infinity? [Problem 2.12]

Equation (2.71) reads as

$$\Phi(\rho, \phi) = a_0 + c_0 \ln \rho + \sum_{n=1}^{\infty} [a_n \rho^n \sin(n\phi + \alpha_n) + c_n \rho^{-n} \sin(n\phi + \beta_n)].$$

For the potential inside the cylinder, it requires the potential Φ to be regular for $0 \leq \rho \leq b$ and it indicates $c_0 = c_n = 0$ for all c_n 's. Then the potential becomes

$$\Phi_{\text{in}}(\rho, \phi) = a_0 + \sum_{n=1}^{\infty} a_n \rho^n \sin(n\phi + \alpha_n) = \frac{1}{2} A_0 + \sum_{n=1}^{\infty} \rho^n (A_n \sin n\phi + B_n \cos n\phi),$$

where

$$A_0 = 2a_0 = \frac{1}{\pi} \int_0^{2\pi} \Phi(b, \phi') d\phi', \quad A_n = a_n \cos \alpha_n = \frac{1}{\pi b^n} \int_0^{2\pi} \Phi(b, \phi') \sin n\phi' d\phi',$$

$$B_n = a_n \sin \alpha_n = \frac{1}{\pi b^n} \int_0^{2\pi} \Phi(b, \phi') \cos n\phi' d\phi'.$$

Rewrite the potential by replacing these coefficients with the above expressions

$$\begin{aligned}
\Phi_{\text{in}}(\rho, \phi) &= \frac{1}{2\pi} \int_0^{2\pi} \Phi(b, \phi') d\phi' + \sum_{n=1}^{\infty} \rho^n \left[\left(\frac{1}{\pi b^n} \int_0^{2\pi} \Phi(b, \phi') \sin n\phi' d\phi' \right) \sin n\phi \right. \\
&\quad \left. + \left(\frac{1}{\pi b^n} \int_0^{2\pi} \Phi(b, \phi') \cos n\phi' d\phi' \right) \cos n\phi \right] \\
&= \frac{1}{2\pi} \int_0^{2\pi} \Phi(b, \phi') \left[1 + 2 \sum_{n=1}^{\infty} \frac{\rho^n}{b^n} \cos n(\phi - \phi') \right] d\phi' \\
&= \frac{1}{2\pi} \int_0^{2\pi} \Phi(b, \phi') \left[\sum_{n=0}^{\infty} \frac{\rho^n}{b^n} [e^{in(\phi-\phi')} + e^{-in(\phi-\phi')}] - 1 \right] d\phi' \\
&= \frac{1}{2\pi} \int_0^{2\pi} \Phi(b, \phi') \left[\frac{1}{1 - \rho e^{i(\phi-\phi')}/b} + \frac{1}{1 - \rho e^{-i(\phi-\phi')}/b} - 1 \right] d\phi' \\
&= \frac{1}{2\pi} \int_0^{2\pi} \Phi(b, \phi') \frac{b^2 - \rho^2}{b^2 + \rho^2 - 2b\rho \cos(\phi - \phi')} d\phi'.
\end{aligned}$$

For the potential outside the cylinder, it requires the potential Φ to be finite for $b \leq \rho < \infty$ and it indicates $c_0 = a_n = 0$ for all a_n 's. Then the potential becomes

$$\Phi_{\text{out}}(\rho, \phi) = a_0 + \sum_{n=1}^{\infty} c_n \rho^{-n} \sin(n\phi + \beta_n) = \frac{1}{2} A_0 + \sum_{n=1}^{\infty} \rho^{-n} (C_n \sin n\phi + D_n \cos n\phi),$$

where

$$C_n = c_n \cos \beta_n = \frac{b^n}{\pi} \int_0^{2\pi} \Phi(b, \phi') \sin n\phi' d\phi', \quad D_n = c_n \sin \beta_n = \frac{b^n}{\pi} \int_0^{2\pi} \Phi(b, \phi') \cos n\phi' d\phi'.$$

Following the same reasoning, it is easy to find

$$\Phi_{\text{out}}(\rho, \phi) = \frac{1}{2\pi} \int_0^{2\pi} \Phi(b, \phi') \frac{\rho^2 - b^2}{b^2 + \rho^2 - 2b\rho \cos(\phi - \phi')} d\phi'.$$

Therefore, the modification needed from Φ_{in} to Φ_{out} is to swap ρ and b in their expressions.