
  

Chapter 1Chapter 1 Introduction to Electrostatics

 Electrostatics — phenomena involving time-independent distributions of charge 
and fields.

 Electrostatics developed as a science of macroscopic phenomena. Some 
idealizations like point charge may fail to have meaning microscopically. 

 The force between 2 small charged bodies separated in a distance
      - varies directly as the magnitude of each charge, 
      - varies inversely as the square of the distance, 
      - is directed along the line joining the charges,
      - attractive if oppositely charged and repulsive if the same type of charge,
      - the vector summation rule applies.

 Electric field: force/(unit charge) at a given point in a limiting process

 Coulomb's Law:

 the electric field:  

Electric Field

Coulomb's Law

E (r )=k q1

r−r1

|r−r1|
3

F=q E

F (r1 , r2)= k q1 q2

r 1−r 2

|r 1−r2|
3

r1

r



  

 In the SI system:

 The linear superposition law:

 Dirac delta functionDirac delta function: a mathematically improper function with the properties

E (r )= 1
4 π ϵ0
∑
i=1

n

qi

r−r i

|r−r i|
3 ⇒ E (r )= 1

4 π ϵ0

∫ ρ (r )
r−r 

|r−r |3
d3 x 

where Δ q=ρ (r ) Δ x Δ y Δ z , d3 x =d x d y d z

1. δ (x−a)=0   for x≠a  in 1d

2. ∫ δ (x−a) d x= [ 1  if the region of integration includes x=a
0  otherwise

3. ∫ f (x ) δ (x−a) d x= f (a)

4. ∫ f (x )
d δ

d x
(x−a) d x=−

d f
d x
(a) ⇐ using integration by parts

5. δ ( f (x ))=∑
i

δ (x− x i)

|d f
d x |x= x i

 where x i 's are roots of f (x ) .

k=
1

4 π ϵ0

=10−7 c2
⇐

free space permittivity
ϵ0=8.854×10−12 F /M



  

Definition of the Dirac delta function: ∫
−∞

+∞

f ( x) δ ( x− y) d x= f (y )

∫
−∞

+∞

g ( x ) δ ( f ( x )) d x=∫ g δ ( f )
d x
d f

d f ⇐ if u= f (x ) ,
then x= f −1

(u)= f −1
( f )

= ∫
–



g δ ( f )|d x
d f |d f = ∫

–

 g δ ( f )

|d f
d x |

d f

f ( x )=0  if x= z i  the root ⇒ ∫
–

 g δ ( f )

|d f
d x |

d f = ∫
z i− ϵ

z i+ ϵ g (x ) δ (x− z i)

|d f
d x |x= zi

d x

⇒ ∫
−∞

+∞

g ( x) δ ( f ( x)) d x= ∫
−∞

+∞

g (x )∑
i

δ (x− z i)

|d f
d x |x= z i

d x ⇐ if more than 1 root

⇒ δ ( f ( x ))=∑
i

δ ( x− z i)

|d f
d x |x= zi

 where z i 's are roots.



  

 A discrete set of point charges can be described with delta functions

6. δ (r−R )=δ ( x1− X1) δ ( x2− X 2) δ (x3−X 3)  with Cartesian coordinates in 3d

7. ∫
Δ V

δ (r−R ) d3 x= [1 if Δ V constains r=R
0 if Δ V does not constain r=R

⇒ [δ (r−R )]= 1
V

ρ (r )=∑
i=1

n

qi δ (r−r i)



  

 Gauss's law is sometimes more useful 

and leads to a differential eqn for E.

 For a set of charges,

the sum is over
only those charges inside the 
surface S,

 For a continuous charge density:

 The equation is one of the basic equations of electrostatics. It depends upon 
(a) the inverse square law for the force between charges; (b) the central nature 
of the force; (c) the linear superposition of the effects of different charges. 

Gauss's Law 

E⋅d a=
q

4 π ϵ0

cos θ

r2 d a

=
q

4 π ϵ0

d Ω ⇐ r2 d Ω=cos θ d a

⇒ ϵ0 ∮
S

E⋅d a= [q   if q inside S
0   if q outside S

d a≡ n̂ d a

∮
S

E⋅d a= 1
ϵ0
∫
V

ρ (r ) d3 x

n̂

∮
S

E⋅d a= 1
ϵ0
∑

i
qi

n̂

n̂

n̂

n̂



  

 The divergence theorem: for any well-behaved vector field defined within a 

volume surrounded by the closed surface

 Apply the divergence theorem

the differential form of Gauss's law of electrostatics.

∮
S

A⋅d a= ∫
V

∇⋅A d3 x

Differential Form of Gauss's Law

∮
S

E⋅d a= ∫
V

∇⋅E d3 x=
1
ϵ0

∫
V

ρ (r ) d3 x

⇒ ∫
V

( ∇⋅E− ρ

ϵ0

) d3 x=0  for an arbitrary volume V ⇒ ∇⋅E−
ρ

ϵ0

=0



  

 A vector field can be specified almost completely if its divergence and curl are 
given everywhere in space.

 
 Look for an equation specifying curl E as a function of position,

 Note that ∇×E=0 depends on the central nature of the force, and on the fact 
that the force is a function of relative distances only, but does not depend on the 
inverse square nature.

 Since a scalar is easier to deal with than a vector, define the scalar potential

 The work done in moving the charge from A to B is  

∇×∇ ψ=0  for  all ψ

Another Equation of Electrostatics and the Scalar Potential

W=−∫
A

B

F⋅d ℓ=−q ∫
A

B

E⋅d ℓ ⇐ F=q E

= q ∫
A

B

∇ Φ⋅d ℓ= q ∫
A

B

d Φ=q (ΦB−ΦA)


r−r 

|r−r |3
=−∇

1
|r−r |

E=−∇ Φ ⇒ Φ (r )= 1
4 π ϵ0

∫ ρ (r )
|r−r |

d3 x

∇×E=0 ⇐ E (r )=− 1
4 π ϵ0

∇ ∫ ρ (r )
|r−r |

d3 x = 1
4 π ϵ0

∫ ρ (r )
r−r 

|r−r |3
d3 x 



  

 q  can be interpreted as the potential energy of the test charge in the 
electrostatic field.

 The line integral of the electric field between 2 points is independent of the 
path and is the negative of the potential difference between the points:

 Stokes's theorem:

 With the line integral of the electric field being independent of the path and the 
application of the Stokes’s theorem

 A shorthand definition: �⃗≡r−r  ⇒ �=|r−r | ⇒ �̂= �⃗
�
=

r−r 

|r−r |

∫
A

B

E⋅d ℓ=−(ΦB−ΦA) ⇒ ∮ E⋅d ℓ=0 () ⇒ If the path is closed,
the line integral is 0.

∮
C

A⋅d ℓ= ∫
S

∇×A⋅d a

⇒ ∇×E=0



  

 Gauss's law tells

 This does not determine E 1 and E 2. The equation
means that there is a discontinuity in the 
normal component of E in crossing a surface.

 The tangential component of  E  is continuous
across a boundary surface from equation (*):

 In this case

 For volume or surface distributions of charge, the potential is continuous, 
Φ2=Φ1, even within the charge distribution. E is bounded, even if discontinuous 
across a surface distribution of charge.

 With point or line charges, or dipole layers, the 
potential is no longer continuous.

 The dipole-layer distribution of strength is formed by 
letting S approach infinitesimally close to S while the 
surface-charge density becomes infinite such that their 
product approaches the limit:

E2∥=E1∥

Surface Distributions of Charges & Dipoles and Discontinuities in 
the Electric Field & Potential

lim
d (r ) 0

σ (r ) d (r )=D (r )

Φ (r )= 1
4 π ϵ0

∫
S

σ (r )
�

d a ⇐ �=|r−r |

E 2−E1=
σ
ϵ0
⇐ E≡E⋅n̂ n̂



  

|r− r |

n̂

Φ (r )= 1
4 π ϵ0

∫
S

σ (r )
�

d a+ 1
4 π ϵ0

∫
S
′

−σ (r )
|�⃗+ n̂ d|

d a″ ⇐ �⃗=r−r  , �=|r−r |

≈−
1

4 π ϵ0

∫
S

σ d n̂⋅∇ 1
�

d a ⇐ 1
|�⃗+a|

=
1
�
+a⋅∇ 1

�
+⋯ , ∇ 1

�
=−

�̂

�2

=
1

4 π ϵ0

∫
S

D (r ) �̂
�2
⋅n̂ d a=− 1

4 π ϵ0

∫
S

D (r ) cos θ

�2
d a

The−sign comes from that the
angle is viewed by the observer.

=−
1

4 π ϵ0

∫
S

D (r ) d Ω ⇐ cos θ d a=�2 d Ω

−
Δ Ω D
4 π ϵ0

  if D=const

d (r)
r

r− n̂ d (r
 )

n̂



  

 d Ω has a + sign if θ is an acute angle, ie, when the observation point views the 
"inner" side of the dipole layer.

 For a constant surface-dipole-moment density, the potential is the product of 
the moment divided by 4 π ϵ0 and the solid angle subtended at the observation 
point by the surface, regardless of its shape.

 In the integrand we notice that it is the sum of the potential of a point dipole 

with dipole moment

 There is a discontinuity in potential in crossing a double layer. The total 

potential jump in crossing the surface is:

 The potential has a discontinuity of       in crossing from the inner to the outer 

side, being             on the inner side and             on the outer.   

d p=D d a  ⇒ Φ (r )= 1
4 π ϵ0

∫
S

�̂

�2⋅d p

Φ2−Φ1=
D
ϵ 0

=−
−2 π D
4 π ϵ0

−(− 2 π D
4 π ϵ0

)


D

2 ϵ0

D
ϵ0

−
D

2 ϵ0



  

 To verify the result directly and avoid being singular in the 

resulting integrand:                            is directed radially outward; 

it is likely to have a large positive divergence from it. But

 If we integrate over a sphere of radius R, centered at the origin, the surface 

integral

 But the volume integral, 

 The singular nature of            can be showed as     

∇
 
⋅ E=

ρ

ϵ0

∇×E=0 ⇒ E=−∇ Φ
⇒
∇

2Φ=−
ρ

ϵ0
⇐ Poisson equation

∇
2Φ= 0 ⇐ Laplace equation (for ρ=0 )

⇒ Φ (r )= 1
4 π ϵ0

∫ ρ (r )
|r−r |

d3 x for  Φ (∞)=0

Poisson and Laplace Equations 

v≡−∇ 1
r
=

r̂
r2

∇⋅v=−∇2 1
r
=

1
r2

∂

∂ r
( r2 1

r2 )= 1
r2

∂

∂ r
(1)=0 ? (?)

∫ v⋅d a=∫ r̂
R2
⋅R2 sin θ d θ d ϕ r̂= ∫

0

π

sin θ d θ ∫
0

2 π

d ϕ=4 π ($)

−∫ ∇ 2 1
r

d3 x=∫ ∇⋅v d3 x=0 ⇐ ∇⋅v=0 ⇐ (?)



  

 Since                                         . Does this mean that the divergence theorem is 
                                                       false?

 The source of the problem is at r=0, where v blows up. It is true that ∇⋅v=0 

everywhere except the origin, but right at the origin the situation is complicated.

 The surface integral ($) is independent of R; if the divergence theorem is right 

(and it is), we should get                               for any sphere centered at the origin, 

no matter how small. So the entire contribution must come from the point r=0.

 Thus, ∇⋅v has the property that it vanishes everywhere except at one point, 
and yet its integral (over any volume containing that point) is 4π.

 This is where the Dirac delta function comes in.

 The divergence of       is 0 everywhere except at the origin, and yet its integral 

over any volume containing the origin is a constant (4π). These are precisely the 
defining conditions for the Dirac delta function;

∫ ∇⋅v d3 x=4 π

∫
V

∇⋅v d3 x= ∮
S

v⋅d a

r̂
r2

∇
2 1
|r−r |

=−4 π δ (r−r ) or ∇
2 1
�
=−4 π δ (�⃗)
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 To handle the boundary conditions it is necessary to develop some new 
mathematical tools. The divergence theorem:

 Convert the Poisson differential equation into an integral equation 

Green's Theorem 

∫
V

∇⋅A d3 x= ∮
S

A⋅d a  and A=ϕ ∇ ψ ⇒
∇⋅(ϕ ∇ ψ )=ϕ ∇

2
ψ+∇ ϕ⋅∇ ψ

ϕ ∇ ψ⋅n̂=ϕ
∂ ψ

∂ n
, d a= n̂ d a

⇒ ∫
V

(ϕ ∇
2

ψ+∇ ϕ⋅∇ ψ ) d3 x= ∮
S

ϕ
∂ ψ

∂ n
d a ⇐ Green's 1st identity ⇒ ϕ↔ ψ

⇒ ∫
V

(ϕ ∇
2

ψ−ψ ∇
2

ϕ) d3 x= ∮
S

( ϕ
∂ ψ

∂ n
−ψ
∂ ϕ

∂ n
) d a ⇐ Green's 2nd identiy

Green theorem

∇
2Φ=−

ρ
ϵ0

, ψ=
1
�
=

1
|r−r |

⇒ ∇
2

ψ=∇
2 1
�
=−4 π δ (�⃗) ⇐ �⃗=r−r 

⇒ ∫
V

(−4 π Φ (r ) δ (�⃗)+
ρ (r )

ϵ0

1
�
) d3 x = ∮

S

( Φ ∂
∂ n

1
�
−

1
�
∂ Φ
∂ n
) d a

⇒ [Φ (r )0 ]=
1

4 π ϵ0

∫
V

ρ (r )
�

d3 x+
1

4 π
∮
S

( 1
�
∂ Φ
∂ n
−Φ

∂

∂ n
1
�
) d a ⇐ [r∈V

r∉V ]



  

 This result is not a solution to a boundary-value problem, but only an integral 
statement, since the arbitrary specification of both  and ∂  (Cauchy boundary 
conditions) is an overspecification of the problem. 

ρ (r )=0 ⇒ Φ (r )= 1
4 π
∮
S

( 1
�
∂ Φ
∂ n
−Φ

∂

∂ n
1
�
) d a

= ∮
S

f ( Φ ,
∂ Φ
∂ n
) d a

For r∈V ,  if S ∞ , E (S ) ∝ 1
�1+Δ

⇒ Φ (r )= 1
4 π ϵ0

∫ ρ (r )
�

d3 x



  

 Dirichlet problem/Dirichlet boundary conditionDirichlet problem/Dirichlet boundary condition: specification of the potential Φ 
∣S 

on a closed surface defines a unique potential problem.

 Neumann boundary conditionNeumann boundary condition: specification of the electric field E 
∣S (normal 

derivative of the potential) everywhere on the surface defines a unique problem.

 To show the uniqueness of the solution of the Poisson equation inside a volume 
subject to Dirichlet/Neumann boundary conditions on the closed bounding 
surface.

 Assume 2 solutions satisfy the same boundary conditions and

 There is also a unique solution to a problem with mixed boundary conditions.

 A solution to the Poisson equation doesn't necessarily exist with arbitrary  and 
∂  specified on a closed boundary.

Uniqueness of the Solution with Dirichlet or Neumann Boundary 
Conditions 

⇒ ∇
2Ψ=0   in V ,  and Ψ|S=0  (Dirichlet),  or  

∂Ψ
∂ n ∣S

=0  (Neumann)

⇒ ∫
V

(Ψ∇ 2Ψ+∇ Ψ⋅∇ Ψ) d3 x= ∮
S

Ψ
∂Ψ
∂ n

d a ⇐ ϕ=ψ=Ψ ⇒ ∫
V

|∇ Ψ|2 d3 x=0

⇒ ∇ Ψ=0  inside V ⇒ Ψ= const ⇒ Ψ=0 (Dirichlet) ⇒ Φ1=Φ2

Ψ= const (Neumann) ⇒ Φ1=Φ2+ const

Ψ=Φ1−Φ2



  

 The function is only one of a class of functions depending on the variables r and 

r, and called Green functions, which satisfy

 With the generalized concept of a Green function and its additional freedom
F(r, r), there arises the possibility that we can use Green's theorem and choose 

F(r, r) to eliminate one or the other of the 2 surface integrals, obtaining a result 
that involves only Dirichlet or Neumann boundary conditions. 

 For Dirichlet boundary conditions we demand:   

Formal Solution of Electrostatic Boundary-Value Problem with        
Green Function 

⇒ Φ (r )= 1
4 π ϵ0

∫
V

ρ (r )GD (r , r ) d3 x − 1
4 π
∮
S

Φ (r )
∂G D

∂ n
d a

∇
 2 G (r , r )=−4 π δ ( �⃗)

⇒ G (r , r )= 1
�
+F (r , r ) ⇒ ∇

2 F (r , r )=0

G D (r , r )=0   for r   on S

∇
2 1
�
=−4 π δ ( �⃗) ⇐ the potential of a unit point source ⇐

�⃗=r−r 

�=|r−r |

ϕ=Φ
ψ=G (r , r )

⇒

Φ (r )= 1
4 π ϵ0

∫ ρ (r )G (r , r ) d3 x

+
1

4 π
∮
S

( G (r , r ) ∂ Φ
∂ n
−Φ (r )

∂ G (r , r )
∂ n

) d a



  

 Gauss's theorem gives

 For Neumann boundary conditions, the simplest allowable one is

where S is the total area of the boundary surface

 The customary Neumann problem is the so-called exterior problem in which the 
volume is bounded by 2 surfaces, one closed and finite, the other at infinity. Then 
the surface area is infinite; the average value vanishes.

 The mathematical symmetry property G ( r , r) = G ( r, r ) merely represents the 
physical interchangeability of the source and the observation points.

 For the physical meaning of                 , it is a solution of the Laplace equation

inside V and represents the potential of charges external to the volume V.  

∮
S

∂ G
∂ n

d a= ∮
S

∇ G⋅d a= ∫
V

∇
2 G d3 x =−4 π

∂ G N

∂ n
(r , r )=− 4 π

S
  for r   on S  instead of 

∂ G N

∂ n
(r , r )=0  for r   on S

⇒ Φ (r )=⟨Φ⟩S+
1

4 π ϵ0

∫
V

ρ (r )G N (r , r ) d3 x+
1

4 π
∮
S

G N
∂ Φ
∂ n

d a

F (r , r )
4 π ϵ0
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 If a point charge is brought from infinity to a point in a scalar potential (which 
vanishes at infinity), the work done on the charge is

 Expresses the electrostatic potential energy in terms of the positions of the 
charges and emphasize the interactions between charges via Coulomb forces.

 An alternative approach is to emphasize the electric field and to interpret the 
energy as being stored in the electric field surrounding the charges  

Electrostatic Potential Energy & Energy Density; Capacitance  

W i=qi Φ (r i)=
qi

4 π ϵ0
∑
j=1

n−1
q j

|r i−r j|
⇐ Φ (r i)=

1
4 π ϵ0
∑
j=1

n−1
q j

|r i−r j|

⇒ W= 1
4 π ϵ0
∑
i=1

n

∑
j < i

qi q j

|r i−r j|
=

1
8 π ϵ0
∑

i
∑

j

qi q j

|r i−r j|
 for i≠ j no self-energy

term

⇒ W= 1
8 π ϵ0

∬ ρ (r ) ρ (r )
|r−r |

d3 x d3 x = 1
2
∫ ρ (r )Φ (r ) d3 x for a continuous

charge distribution
With the integral form, the self-energy is usually included.

⇒ W=
1
2
∫ ρ (r )Φ (r ) d3 x=−

ϵ0

2
∫ Φ∇ 2Φ d3 x ⇐ Φ∇ 2Φ=∇⋅(Φ∇ Φ)−(∇ Φ)2

=
ϵ0

2
∫ |∇ Φ|2 d3 x=

ϵ0

2
∫ |E|2 d3 x ⇒ w=

ϵ0

2
|E|2≥0 ⇐ energy density



  

 The energy density is positive definite. This contradicts our impression that the 
potential energy of 2 charges of opposite sign is negative. This apparent 
contradiction comes from "self-energy" contributions to the energy density. Ex: 

E=
q1

4 π ϵ0

r−r1

|r−r1|
3
+

q2

4 π ϵ0

r−r 2

|r−r 2|
3

⇒ 32 π
2

ϵ0 w=
q1

2

|r−r1|
4
+

q2
2

|r−r2|
4

⏟
self energy

+2 q1 q2

(r−r 1)⋅(r−r2)

|r−r 1|
3
|r−r 2|

3

⏟
w int

Define ρ≡
r−r1

|r1−r2|
, n̂≡

r1−r2

|r1−r2|
⇒ ρ+ n̂=

r−r2

|r1−r2|

⇒ 16 π
2

ϵ0 W int=q1 q2 ∫ (r−r1)⋅(r−r2)

|r−r1|
3
|r−r2|

3 d3 x=
q1 q2

|r1−r2|
∫ ρ⋅(ρ+ n̂)

ρ
3
|ρ+ n̂|3

d3
ρ

=
q1 q2

|r1−r2|
∫ ∇ ρ

1
ρ
⋅∇ ρ

1
|ρ+ n̂|

d3
ρ=−

q1 q2

|r1−r 2|
∫ d3

ρ

|ρ+ n̂|
∇ ρ

2 1
ρ

⇒ W int=
1

4 π ϵ0

q1 q2

|r1−r2|
∫ δ

3
(ρ)

|ρ+ n̂|
d3

ρ=
1

4 π ϵ0

q1 q2

|r 1−r 2|
⇐ as expected

r 2

r

r 1



  

 Forces acting between charged bodies can be obtained by calculating the 
change in the total electrostatic energy of the system under small virtual 
displacements.

 To calculate the force/area on the surface of a conductor with a (fixed) surface-
charge density, imagine a small outward displacement of an elemental 

area of the surface

an outward force/area (pressure) equal to w at the surface of the conductor.

 This result is normally derived by taking the product of the surface-charge 
density and the electric field, with care taken to eliminate the electric field due to 
the element of surface-charge density itself.

 For a system of n conductors, the electrostatic potential energy can be 
expressed in terms of the potentials alone and certain geometrical quantities 
called coefficients of capacity

 The capacitance of a conductor is the total charge on the conductor when it is 
maintained at unit potential, all other conductors being held at zero potential.

V i= ∑
j=1

n

pi j Q j , i=1, 2 ,⋯ , n ⇒ Qi= ∑
j=1

n

C i j V j , i=1, 2 ,⋯ , n

C i i : capacities or capacitances , C i j (i≠ j) : coefficients of induction

w=
ϵ0

2
|E|2= σ

2

2 ϵ0

⇒ ΔW=− σ
2

2 ϵ0

Δ a Δ x



  

Surface Charge and the Force on a ConductorSurface Charge and the Force on a Conductor
 The field inside a conductor is 0, so the field immediately

 
outside is:

 In the presence of an electric 
field, a surface charge will experience 
a force; the force/area, f = σ E.

 But the electric field is discontinuous at a                        surface charge, so we 

should use the average of the two:

 The discontinuity is due entirely to the charge on the patch, which puts out a 

field (        ) on either side, pointing away from the surface

 Averaging is a device for removing the contribution of the patch itself.

 The argument applies to any surface charge, especially, to a conductor,

E= σ
ϵ0

n̂ ⇒ σ=− ϵ0
∂Φ
∂ n

f =σ E average=
1
2

σ (E above+E below)

σ

2 ϵ0 E above=Eother+
σ

2 ϵ0

n̂

Ebelow=Eother−
σ

2 ϵ0

n̂
⇒ Eother=

1
2
(E above+E below)=E average

Eoutside=
σ
ϵ0

n̂ , E inside=0 ⇒ f =σ E average=
σ

2
(Eoutside+E inside)=

σ
2

2 ϵ0

n̂



  

 The capacitance of 2 conductors carrying equal and opposite charges in the 
presence of other grounded conductors is defined as the ratio of the charge on 
one conductor to the potential difference between them.

 The potential energy for 
 the system of conductors:

 The expression of the energy in terms of the potentials and the Ci j, or in terms 

of the charges Qi and the coefficients pi j permits the application of variational 
methods to obtain approximate values of capacitances.

Selected problems: 3, 6, 9, 13, 17

W=
1
2
∑

i=1

n

Qi V i=
1
2
∑

i , j=1

n

C i j V i V j
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