Chnziptar 1 Introduction to Electrostatics

® Electrostatics — phenomena involving time-independent distributions of charge
and fields.

® Electrostatics developed as a science of macroscopic phenomena. Some
idealizations like point charge may fail to have meaning microscopically.

Coulomb's Law

® The force between 2 small charged bodies separated in a distance
- varies directly as the magnitude of each charge,
- varies inversely as the square of the distance,
- is directed along the line joining the charges,
- attractive if oppositely charged and repulsive if the same type of charge,
- the vector summation rule applies.

Electric Field
® Electric field: force/(unit charge) at a given point in a limiting process F = g E

r,—r
® Coulomb's Law: F(rl,rz)qul q, S

r—r,

® the electric field: E (r) =k q, | |
r—r,




1 _ 1077 o2 free space permittivity

@ In the SI system: k = = _19
4 e, €,=8.854X10 “F/M

@® The linear superposition law:
T4n €, ; &

where Ag=p(r')AX Ay A7, &®x'=dx'dyd7

E(r)=—— [ p(r) T d's

r — r| 4 7€, r—r|

@ Dirac delta function: a mathematically improper function with the properties

1. 6(x—a)=0 for x#a in 1d

/ §(x=a) O otherwise
3. /f<x)5<x—a>dx=f<a>

4. /f(x)g—é(x—a)dxz—ﬂ(a) < using integration by parts
X

dx
. 5(f(x) =3 2=

1 1f the region of integration includes x =a

where x,'s are roots of f (x).

i df

d x




Definition of the Dirac delta function: / f (x) ) (x — y) dx=f ( y)

/iwg(x)5(f(X))dx=/g5(f>§—;df - jl;fxf:?;(u):fl(f)

_ [ d x " gd(f)
—/_g5(f)df df= / VIR
dx

df / 31 dx

f(x)=0 if x=z, theroot = /

dx dx
+ 00 + 00 5(X_Zl) .
S / g(x>5(f<x>>dx:/ g (x) X dr i more than 1 oot
= §(f(x))=D, 17 where z,'s are roots.
dx|..




6. 6(r—R)=6(x,—X,)d(x,—X,)8(x,— X,) with Cartesian coordinates in 3d

1 ifAV constainsr =R . [5(r—R)] 1

7./ (r—R)d’x= ==
AV O 1if AV does not constainr =R

® A discrete set of point charges can be described with delta functions

p<r>:§qia<r—ri>



Gauss's Law
® Gauss's law is sometimes more useful

and leads to a differential eqn for E.

Eda=—1 costa

47‘(’60 r

Ldﬂ = r*dQ=cosfda

4 e,

R 607{ E-dag=4 %f qmszaﬁe S
S O if g outside S
® For a set of charges,
1
% E-da=— Z q,

< €, — 1,
the sum is over 9o~
only those charges inside the
surface S, da=nda q outside S

. n

® For a continuous charge density: i{ E-da=— / d x @insideS

® The equation is one of the basic equations of electrostatics. It depends upon
(a) the inverse square law for the force between charges; (b) the central nature
of the force; (c) the linear superposition of the effects of different charges.



Differential Form of Gauss's Law

® The divergence theorem: for any well-behaved vector field defined within a

volume surrounded by the closed surface 7{ A-da= / V-Adx
s Y

1
éApplythedivergencetheoremj{ E-da:/ V-Edgxz—/ p(r)d’x
s Y € J v

:>/ <V.E—ﬁ)d3x:0 for an arbitrary volume V = V'E—izo
v

€ €o

the differential form of Gauss's law of electrostatics.



Another Equation of Electrostatics and the Scalar Potential

® A vector field can be specified almost completely if its divergence and curl are
given everywhere in space.

r-r
eV xV =0 for all ¥ ¢ ——=-V

r—r’’ |1' r|
® Look for an equation specifying curl E as a function of position,

VXE:O — E(r):— 1 v/ P(l'? d3x/: 1 /p(r/>r;r/3d3x/
4 e, r—r| 4 e, r—r|

® Note that VXE=0 depends on the central nature of the force, and on the fact

that the force is a function of relative distances only, but does not depend on the
inverse square nature.

® Since a scalar is easier to deal with than a vector, define the scalar potential

B
-Vé = &(r / E
47 €, |r—

® The work done in moving the charge from A to B is dl_ o

B B q

q

WZ—/ F-d£=—q/ E-d!{ « F=qgE -

A A A

B B
=g V<I>-d£:q/ dd=¢qg(®,—P,)
A

A



® g ® can be interpreted as the potential energy of the test charge in the
electrostatic field.

® The line integral of the electric field between 2 points is independent of the
path and is the negative of the potential difference between the points:

B .
/ Edé=—(®,-9,) = ]{E-dKZO (%) = Ifthf:pa.thlsclo.sed,
A the line integral 1s 0.

® Stokes's theorem: 7{ A-d£=/ VXA-da
C 5

® With the line integral of the electric field being independent of the path and the
application of the Stokes’s theorem = V XE=0

/
r—r

fr-r

_ . . . — A E:
® A shorthand definition: F=r—r' = r=[r-r| = f=—
Ir



Surface Distributions of Charges & Dipoles and Discontinuities in
the Electric Field & Potential Side 2

® Gauss's law tells Ezi_Eu:g < E,=E'n
0

B>

® This does not determine E, and E,. The equation
means that there is a discontinuity in the Side 1
normal component of E in crossing a surface.

E;

® The tangential component of E is continuous
across a boundary surface from equation (*): E, = E 1

@ In this case @(r)ZL/ mda/ <r=r—r|
4me, ) s T

® For volume or surface distributions of charge, the potential is continuous,

®,=®, even within the charge distribution. E is bounded, even if discontinuous

across a surface distribution of charge. S
g

® With point or line charges, or dipole layers, the

potential is no longer continuous.

® The dipole-layer distribution of strength is formed by

letting S" approach infinitesimally close to S while the

surface-charge density becomes infinite such that their

product approaches the limit: lim o (r)d (r)=D (r)
d(r)—0 1%



/ ﬁ,\b /
= D(r)—- D(r
471'60/5 ( )rz 4#60/5 r) r’

The — sign comes from that the
angle 1s viewed by the observer.

S / D(r')dQ < cosf@da'=r*dQ
4me, ) s

—>—AQD if D = const a -
4 e, = —



® d () has a + sign if 8 is an acute angle, ie, when the observation point views the
"inner" side of the dipole layer.

® For a constant surface-dipole-moment density, the potential is the product of

the moment divided by 4 ¢, and the solid angle subtended at the observation
point by the surface, regardless of its shape.

@ In the integrand we notice that it is the sum of the potential of a point dipole
1 I

with dipole moment dp=Dda = &(r)=

® There is a discontinuity in potential in crossing a double layer. The total
potential jump in crossing the surface is: ¢, — &, = 2 - 2mD — | — 2mD
€ 0 4 T €

4 e,

® The potential has a discontinuity of P in crossing from the inner to the outer
0

: : D : : D
side, being ——— on the inner side and + —— on the outer.
2 €, 2€,



Poisson and Laplace Equations

oV E= L :, Vid=— L. Poisson equation

€ €

VXE=0 = E=- VfI) Vié= 0 <= Laplace equation (for p=0)

/ d° x for ®(0)=0
47‘(‘60 r — r|

@ To verify the result directly and av01d being singular in the \ i /
resulting integrand: v = V — —2 is directed radially outward \ /

r
- ® > >

it is likely to have a large p031tlve divergence from it. But = / \

oy lol 0 (110
Vo=-vii=L L (P)=tZm=0 2 ) 1 N

r r
Y
® If we integrate over a sphere of radius R, centered at the origin, the surface

N T 2
integral/v-daz %°stin9d9dq§f':/ sin@d@/ dé¢=4n ($)

0 0

= ®(r)=

® But the volume integral, —/V ~“d’x= /V-Vd3x=O < V-v=0 < (7



3 : : :
e Since/ V-vd x= 7{ v-d @. Does this mean that the divergence theorem is
% S false?

® The source of the problem is at =0, where v blows up. It is true that V - v=0
everywhere except the origin, but right af the origin the situation is complicated.

® The surface integral ($) is independent of R; if the divergence theorem is right
(and it is), we should get / Vvd’x=4r for any sphere centered at the origin,
no matter how small. So the entire contribution must come from the point r=0.

® Thus, V - v has the property that it vanishes everywhere except at one point,
and yet its integral (over any volume containing that point) is 4.

® This is where the Dirac delta function comes in.

r
® The divergence of - is 0 everywhere except at the origin, and yet its integral

r

over any volume containing the origin is a constant (4m). These are precisely the
defining conditions for the Dirac delta function;
2 1

V? 1,=—4w5(r—r/) oo V'==—476(F)
r—r| r




1.5
The time-averaged potential of a neutral hydrogen atom is given by

q e ar
b = 1+ —
dmey 1 ( 2 )
where ¢ is the magnitude of the electronic charge, and o' = ay/2, a, being the

Bohr radius. Find the distribution of charge (both continuous and discrete) that will
give this potential and interpret your result physically.

The corresponding electric field are
E— V-0 1" [a2+2—“+ QIeT.
or ’ep
Since @ is singular at r = 0, we divide the calculation of the charge density p into two parts,
i.e., one for r # 0 and the other for » — 0. And then these two parts are combined after
the calculation to have p for the whole space.

For r # 0, the Poisson equation of ® gives

r r2

1 92 qo®
= — V2P = —¢g— — (r®) = ———e7 9",
P1 €0 €052 (r®) 3r C
For » — 0, the Gauss’s law gives
L& —ar 1 2,.2 9

lim pod®z = lim Eg%E -nda = lim ae oar EO{ r’/ X Arr?
r—0 0 r—0 r—0 m r

. a’r?|

— ¢ lim [1+oz’r‘+ ]em:q.
r—0 2



This leads pg = ¢é(r). Therefore, combining the two parts gives

(}53 e—ar

p=po+p1=qi(r) —qo—e™™" =qi(r) —q promg
Physically, we identify pg as the charge density of proton, the nucleus of a hydrogen, and
p1 as the charge density of the electron cloud of the hydrogen.
Remark: the charge at r = 0 can be obtained alternatively by
lim pod’z = lim [eo j{ E - nda — /pldS:c] =0—(—q) =q.
r—0 0 r— 00

In the calculation it also indicates that the total charge is zero for a neutral hydrogen.




Green's Theorem

® To handle the boundary conditions it is necessary to develop some new
mathematical tools. The divergence theorem:

Vi(oVi)=¢V? V 6V
/V'Adgx:j{ A-daand A=¢Vy = (6Ve)=¢ Vig+V -V

¢V¢-ﬁ:¢ﬂ, da=nda
on

=>/ (¢V2¢+V¢-V¢)d3x=]{ qﬁﬂda < Green's Istidentity = ¢ <> ¢
Y s On

:>/ (¢V2¢_¢Vz¢)d3x:]{ (‘75%_‘”2_25)‘1“  Green's 2nd identiy

on Green theorem

® Convert the Poisson differential equation into an integral equation

Vie=-L y=l_ > Viy=Vii=-47i(f)  F=r-r
0

- [ (~ameris@e ) ex= f (82 1-122) 4,
Y €@ T s onr ron

__ 1 /p<r>d3x’+i (1“’—@8 1>da’«=
V I

r 41 J) g ron on




®ForreV,if S—w, E(S) 1l ®(r)= 1 /p<r)d3x/

]T’1+A _47'('60 I
/ 1 10 o 1 /
crtri=o = wir= f (22021
S

- 0d\ .
‘i'{sf(q”an’)d“

® This result is not a solution to a boundary-value problem, but only an integral

statement, since the arbitrary specification of both ® and 0 ® (Cauchy boundary
conditions) is an overspecification of the problem.



Uniqueness of the Solution with Dirichlet or Neumann Boundary
Conditions

® Dirichlet problem/Dirichlet boundary condition: specification of the potential ® g
on a closed surface defines a unique potential problem.

® Neumann boundary condition: specification of the electric field E s (normal
derivative of the potential) everywhere on the surface defines a unique problem.

® To show the uniqueness of the solution of the Poisson equation inside a volume
subject to Dirichlet/Neumann boundary conditions on the closed bounding
surface.

® Assume 2 solutions satisfy the same boundary conditions and ¥ =& — &,

= V?’¥=0 in V, and \Ifl ¢=0 (Dirichlet), or Z_\p =0 (Neumann)

n s
:/ (W \If+V\If-V\If)d3x:]{ \Ifa‘:da = p=¢h=T :/ 'V o[d’x=0
V S %

=0  (Dirichlet) = & =&,

= VU¥=0inside V = P¥=const =
¥ =const (Neumann) = &, =&,+const

® There is also a unique solution to a problem with mixed boundary conditions.

@ A solution to the Poisson equation doesn't necessarily exist with arbitrary ® and
0 @ specified on a closed boundary.



Formal Solution of Electrostatic Boundary-Value Problem with
Green Function

/ 1 - . . . T — - '
eV'?==—47§(F) < the potential of a unit point source <« r=r-r /
r r=jr—r|
® The function is only one of a class of functions depending on the variables r and

r, and called Green functions, which satisfy V'*G (r ,r')=—4 7 § (T

= G(r,r/):%+F(r,r/) = V?F(r,r')=0

® With the generalized concept of a Green function and its additional freedom
F(r, r'), there arises the possibility that we can use Green's theorem and choose

F(r, r’) to eliminate one or the other of the 2 surface integrals, obtaining a result
that involves only Dirichlet or Neumann boundary conditions.

& (r)=—" /(r’)G(rr)de/

® )= . 4 e,
/ a G b / /
¥=Glr.r) +_]{ )22 g ()20 T) 4,
0 n on
® For Dirichlet boundary conditions we demand: G, =0 for r on S

& B (r)= 4;60/;)(1-)(; 2,17 x——]{



0G

® Gauss's theorem gives

_y{ VG-da/Z/ VGd’x'=—4nr
S %

S
® For Neumann boundary conditions, the simplest allowable one is

0G /
]/V(r,r/):——47r for ¥ on § instead of
on S

where § is the total area of the boundary surface

5 B ()= (D) +— /p( NG, (1 dx+_]{ O

4 1 e, 5”

~(r,r')=0 forr' on S

® The customary Neumann problem is the so-called exterior problem in which the
volume is bounded by 2 surfaces, one closed and finite, the other at infinity. Then
the surface area is infinite; the average value vanishes.

® The mathematical symmetry property G (r, r)=G(r,r) merely represents the
physical interchangeability of the source and the observation points.
F(r,r
@® For the physical meaning of i ) , it is a solution of the Laplace equation
€,

inside V and represents the potential of charges external to the volume V.



1.10

Prove the mean value theorem: For charge-free space the value of the electrostatic
potential at any point is equal to the average of the potential over the surface of
any sphere centered on that point.

With Green’s theorem

2 2 3 ?7D adﬁ
/V(‘W b — pV28)da jé {%n (%] da.

let ¢ = @, the scalar electric potential, 1 = G(x,x’), a Green function, then

/(@VQGGVQ@)dS f 3¢ _ 0% da,
vV on on

where ® and G satisty the following Poisson equations

V2(x') = _px ), V?2G(x,x') = —4md(x — x').

With the subsitution of the Poisson equations, it gives

O(x) = — / o(x)G (x, X' )32 + [G(X,X’)a—@(){')@(X’)a—G(X,X’)] da’
Amey Jyv A on’ on/

— i ’8_q) " _ / 8_G / /

= = f [G0ex) g ) — 86) S0 )| d'



for p = 0 in a charge-free space. Let’s choose the point x where the potential is to be
evaluated to be the origin of the coordinate. Choose G(x,x’) = |x —x/|~! where x’ belongs
to the surface S of a spherical boundary of radius R centered at the point x = 0. With

1 G 1 0P ,

B / N —  — YE N N — .
G(0,x") = = ——(0,x") =V'G(0,x") ' n 72’ an,(x) V'®(x') n E-n’,
we have
1 (1. 1
<I>(O)——47T S[RE-H — d(x )R2]da
_ 1 - / 3.0 _ 1 ?{ / ; /
— 471'R2j§ ¢ (x")da’ —471'R/ V' - Ed R ¢(x")da" = (P(x'))s,

where the Gauss theorem is applied in the above equation and V - E = 0 in a charge-free
space. Therefore, for charge-free space the value of the electrostatic potential at any point
is equal to the average of the potential over the surface of any sphere centered on that point.



Electrostatic Potential Energy & Energy Density; Capacitance

® If a point charge is brought from infinity to a point in a scalar potential (which

vanishes at infinity), the work done on the charge is
n—1 n—1

W q, E qi 1 2: q;
i::Qiq>(rJ-_ ’ = Q§(r)-_ |r _jr|
I J

4 me, = |l'l.—l'j| 4 e, =
1N i4; 1 i4d; . _
o W= Z 49:49; _ Z 1449 ¢ i#j DO self-energy
4re, =~ |r.—r| 8me,~ “~|r,—r, term
0 i=1 j<i l J 0 j ! J

- W= 1 // P(I')P(/l'/) 4 x d° x/zl/p(r)éb(r)d3x fOI‘aCOIl.tiIll.lOU.S.
8 e, r—r| 2 charge distribution

With the integral form, the self-energy 1s usually included.

® Expresses the electrostatic potential energy in terms of the positions of the
charges and emphasize the interactions between charges via Coulomb forces.

® An alternative approach is to emphasize the electric field and to interpret the
energy as being stored in the electric field surrounding the charges
1 €
= WZE/p(r)CI)(r)d?’x:—EO dV’'®@d’x « 8V’®e=V-(2Vd)- (V&)
€ € €
:EO /| d*d’ x= EO / Efd’x = w:EO IE’>0 < energy density



® The energy density is positive definite. This contradicts our impression that the
potential energy of 2 charges of opposite sign is negative. This apparent
contradiction comes from "self-energy" contributions to the energy density. Ex:

g-_N r-r, 4 r—r
= ] 3
4mey r—r, 47€e r—r,
2 2 5
r—r,) \r—r
= 327TZGOWZ d ;T 12 4"'2 1 2( 1)3< 23>
|£—r1| |r_r2L o |l'—r1| |r—ri )
self energy w. q
r—r . r.—r A r—r
Define p = L na=——2 = p+n= 2 .
v, —r,| v, —r,| r-r| T
r,
r—r.)-\r—r +ll
= 1671'260Wmt:q1q2/( 1)3( 23) 3 4919, (p P
qd. 49 g, q
- 172 /Vp 'V, & p=— D%
LI p |p+ll| r,—r, |p+n|
53
LW, =1 N (p) o 1 014 s expected

dmer—r ) Jpral P T ame, I, x)



® Forces acting between charged bodies can be obtained by calculating the
change in the total electrostatic energy of the system under small virtual
displacements.

® To calculate the force/area on the surface of a conductor with a (fixed) surface-

charge density, imagine a small outward displacement of an elemental

2 2
o

€
area of the surface w=—0|E|2=— > AW=—-"2—AaAx
2 2 €, 2 €,

an outward force/area (pressure) equal to w at the surface of the conductor.

@ This result is normally derived by taking the product of the surface-charge
density and the electric field, with care taken to eliminate the electric field due to
the element of surface-charge density itself.

® For a system of n conductors, the electrostatic potential energy can be

expressed in terms of the potentials alone and certain geometrical quantities
called coefficients of capacity

V=X p,0Q,, i=1,2,--,n = Q=X C,,V,, i=1,2,-,n
j=1

j=1
C,,: capacities or capacitances , C,, (i # j): coefficients of induction

® The capacitance of a conductor is the total charge on the conductor when it is
maintained at unit potential, all other conductors being held at zero potential.



Surface Charge and the Force on a Conductor
® The field inside a conductor is 0, so the field immediatel

o o ~ oP
outsideis: E=—mn = oc=—¢,—
€9 on

® In the presence of an electric
field, a surface charge will experience

a force; the force/area, f= 0o E. Patch

® But the electric field is discontinuous at a 2 surface charge, so we

should use the average of the two: f =0 E =—0 (EaboVe +Ebelow>

average

@ The discontinuity is due entirely to the charge on the patch, which puts out a

field (L ) on either side, pointing away from the surface

€
0 g -
Eabove Eother 2 € i 1
0 - —
= Eother (E above T below) — *average
E..=E,.—-Zn 2
below — *“other n

0
® Averaging is a device for removing the contribution of the patch itself.

® The argument applies to any surface charge, especially, to a conductor,

2
E ——nE g

o A
O = f o Eaverage E <E0utside + Einside) _ 2 n
€y

outside inside ~



® The capacitance of 2 conductors carrying equal and opposite charges in the
presence of other grounded conductors is defined as the ratio of the charge on
one conductor to the potential difference between them.

® The potential energy for _ 1 _1 ¢
the system of conductors: W= 2 El QVi=2 ]2:1 Ci; ViV,

® The expression of the energy in terms of the potentials and the C, , or in terms

i j2
of the charges (), and the coefficients p;; permits the application of variational

methods to obtain approximate values of capacitances.

Selected problems: 3, 6, 9, 13, 17



1.15
Prove Thomson’s theorem: If a number of surfaces are fixed in position and a given

total charge is placed on each surface, then the electrostatic energy in the region
bounded by the surfaces is an absolute minimum when the charges are placed so
that every surface is an equipotential, as happens when they are conductors.

Let E = —V® be the electric field from the charge distribution that the total charge in the
1th conductor with its surface S; is q;, where 7+ = 1, 2, ..., and with which every surface
S; is an equipotential, i.e., ®|g. = ®;, a constant potential on S;. The total electrostatic
energy £ related to E in the region V' bounded by S;’s is

£ = E—U/ E|2d%a.
2 Jy

Now let E’ be the electric field from an arbitrary charge distribution that the total charge in
the 1th conductor is still ¢;, but with which each surface \S; is not necessarily an equipotential
surface. The total electrostatic energy £’ related to E’ in V' bounded by S;’s is

g = %’/ Eds.
v

The difference between these two total electrostatic energies is

g =2 [ (B2 - EP)dPz =2 (E’E)2d3x+eo/(E’-E|E|2)d3:c.
2 Jv 2 Jv v



The second integral in the RHS of the above equation vanishes,
/(E’ E — |[E|*)d%z :/ E. (E' —E)d’x = / (-V®) - (E —E)d*x
1% 1% 1%

_ ) o AN R N i nl SZE: —E) - nda
_/V[v (PE — ®E') - ®(V-E -V -E')|d ;jéi@(]a E') - nd

:Z(I)i (?{ E-ndaj{ E’-nda) ZZ‘I’i(Q’i—Q’i):Oa

where V- E =V - E’ = 0 is used since there is not any charge density in V. Then

€
g-e==2 [ (E —E)*d*z >0,
2 Jv
and thus & > £. Therefore, the electrostatic energy in the region bounded by the surfaces is
an absolute minimum when the charges are placed so that every surface is an equipotential,
as happens when they are conductors.
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