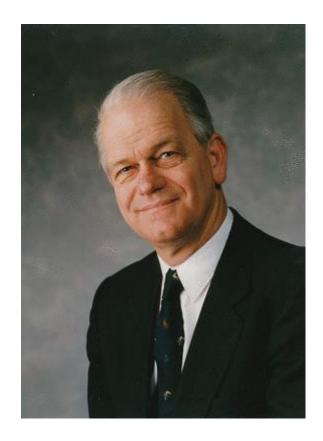

Race-specific or raceneutral: That's the (lung function) question!

> D2 Chih-Wei Tseng APR 9 2025




#### Is Taiwan in Northeast Asia or Southeast Asia?

#### What's your answer?

## Why Global Lung Function Initiative (GLI) is Needed

- In the past (1960), lung function reference values were primarily established based on specific populations (e.g., European Caucasians Male coal workers).
- For other ethnic groups, adjustments were commonly applied using 'correction factors.'
- For example, lung function values for <u>African Americans were typically set</u> <u>around 15% lower than those for</u> <u>Caucasians</u>.



#### Philip Quanjer 1936-2017

In memoriam: Professor Philip H. Quanjer Janet Stocks, Irene Steenbruggen European Respiratory Journal 2017 50(3): 1701660

#### **Modelling lung function**

Until very recently regression equations for lung function were based on simple additive linear regression techniques. The by far most popular models had the following form:

 $Y = a + b \bullet height + c \bullet age + error (adults)$  $log(Y) = a + b \bullet log(height) + error (children)$ 

for capturing non-linear curves is by adding a "spline" to a linear relationship:

$$log(Y) = a + b \cdot log(height) + c \cdot log(age) + spline + error$$

$$log(Y) = a + b \cdot log(height) + c \cdot log(age) + d \cdot Ethn + spline + error$$

Philip Quanjer 1936-2017 Born in Pontianak (now Indonesia) -> Netherlands

In memoriam: Professor Philip H. Quanjer Janet Stocks Irene Steenbruggen European Respiratory Journal 2017 50(3): 1701660

## Importance of Ethnicity in Lung Function Interpretation

- Ethnicity significantly influences lung volumes (such as FVC):
  - Normal lung function reference values differ among ethnic groups, impacting the interpretation of measurements.
  - Using inappropriate standards can result in misclassification.
- Incorrect ethnicity references lead to diagnostic inaccuracies:
  - Applying standards derived from one ethnic group to another can falsely indicate lung disease (false-positive) or incorrectly suggest normal function (false-negative), emphasizing the necessity of ethnicity-specific standards.

#### Datasets used in final analyses

|           |      |             |       |              | ~ ~ ~ |
|-----------|------|-------------|-------|--------------|-------|
| Country   | Ν    | Country     | N     | Country      | Ν     |
| Algeria   | 273  | Netherlands | 3319  | China        | 3483  |
| Australia | 982  | Norway      | 1535  | France       | 63376 |
| Austria   | 333  | Poland      | 220   | India        | 2548  |
| Brazil    | 178  | Portugal    | 137   | Iran         | 6137  |
| Canada    | 329  | Sweden      | 123   | Oman         | 1256  |
| Chile     | 102  | Switzerland | 11756 | Pakistan     | 2928  |
| China     | 5114 | Taiwan      | 2806  | Philippines  | 316   |
| Germany   | 4708 | Thailand    | 3262  | South Africa | 146   |
| Iceland   | 164  | Tunisia     | 870   | Total        | 80190 |
| Israel    | 124  | UK          | 16888 |              |       |
| Italy     | 1818 | Uruguay     | 156   |              |       |
| Korea     | 2252 | USA         | 18212 |              |       |
| Mexico    | 4236 | Venezuela   | 243   |              |       |
| Total     |      |             | 80140 |              |       |
|           |      |             |       |              |       |

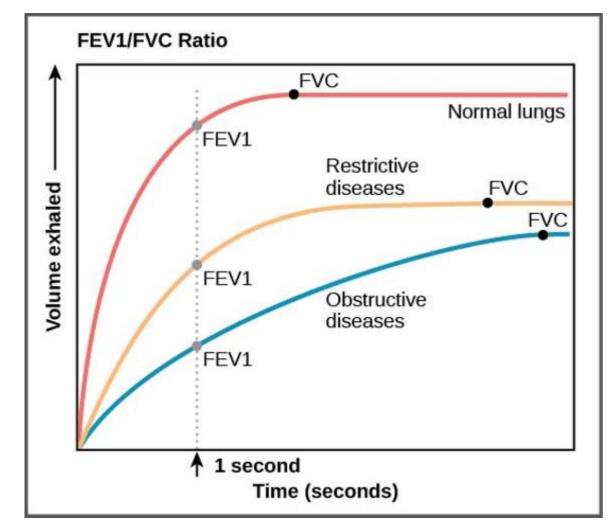
Table E2 – Number of subjects that could not be included in the final analyses for reasons delineated in the printed manuscript.

| Data submitted               | 160,330 |
|------------------------------|---------|
| Unknown ethnicity            | 63,865  |
| Suspected asthma             | 805     |
| Forced expiratory time < 1 s | 123     |
| Cannot be fitted in groups   |         |
| Indian and Pakistani         | 5,476   |
| Omani                        | 1,256   |
| South African                | 146     |
| Philippino                   | 316     |
| Mexico City                  | 4,009   |
| Iran                         | 6,137   |
| No permission to publish     | 3,483   |
| Outliers                     | 527     |
| Remaining data               | 74,187  |

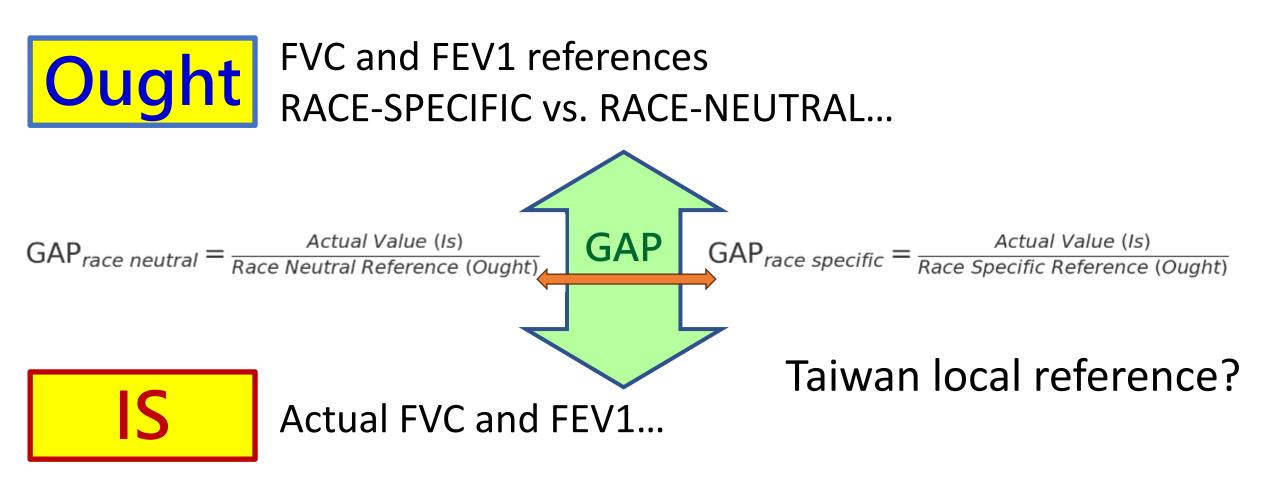
OLS-2

ERS Global Lung Function Initiative - Supplement Eur Repir J vol 39, 2012

Datasets not used in


final analyses

## Why Precise Ethnicity-Specific Models Are Crucial for ILD. That's my question for research!


- Interstitial lung diseases (ILDs) rely heavily on the accurate interpretation of restrictive ventilatory impairments (e.g., reduced FVC, TLC, and DLco).
- Because normal lung volumes vary significantly by ethnicity, employing an inappropriate ethnic reference model can lead to inaccurate severity assessments.
- COPD diagnosis mainly relies on the FEV1/FVC ratio, , which is relatively consistent across ethnic groups

#### Vocabularies

- FVC: The total amount of air exhaled during a forced breath-out
- FEV1: Forced expiratory volume in one second- the volume of air exhaled during the first second of a forced exhalation
- FVC pred: actual FVC/expected FVC
- LLN: LLN is statistically defined as the value below which only 5% of healthy, non-smoking individuals fall.



## Applying David Hume's law



## Paper 1 from NEJM Paper 2 from AJRCCM

#### Paper 1 NEJM June 13, 2024

The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL ARTICLE

#### Implications of Race Adjustment in Lung-Function Equations

J.A. Diao, Y. He, R. Khazanchi, M.J. Nguemeni Tiako, J.I. Witonsky, E. Pierson, P. Rajpurkar, J.R. Elhawary, L. Melas-Kyriazi, A. Yen, A.R. Martin, S. Levy, C.J. Patel, M. Farhat, L.N. Borrell, M.H. Cho, E.K. Silverman, E.G. Burchard, and A.K. Manrai

## Background: Spirometry and the Shift to Race-Neutral Equations

- Spirometry is essential for diagnosing and monitoring lung diseases such as COPD.
- Predicted normal values are typically based on age, sex, height, and historically, race.
- Race-based reference equations (e.g., GLI-2012) have been criticized for reinforcing outdated racial assumptions and inequities.
- In 2022, the GLI-Global equations were introduced as race-neutral alternatives, endorsed by ATS/ERS in 2024.
- This study quantifies the clinical, social, and economic impacts.

#### Method

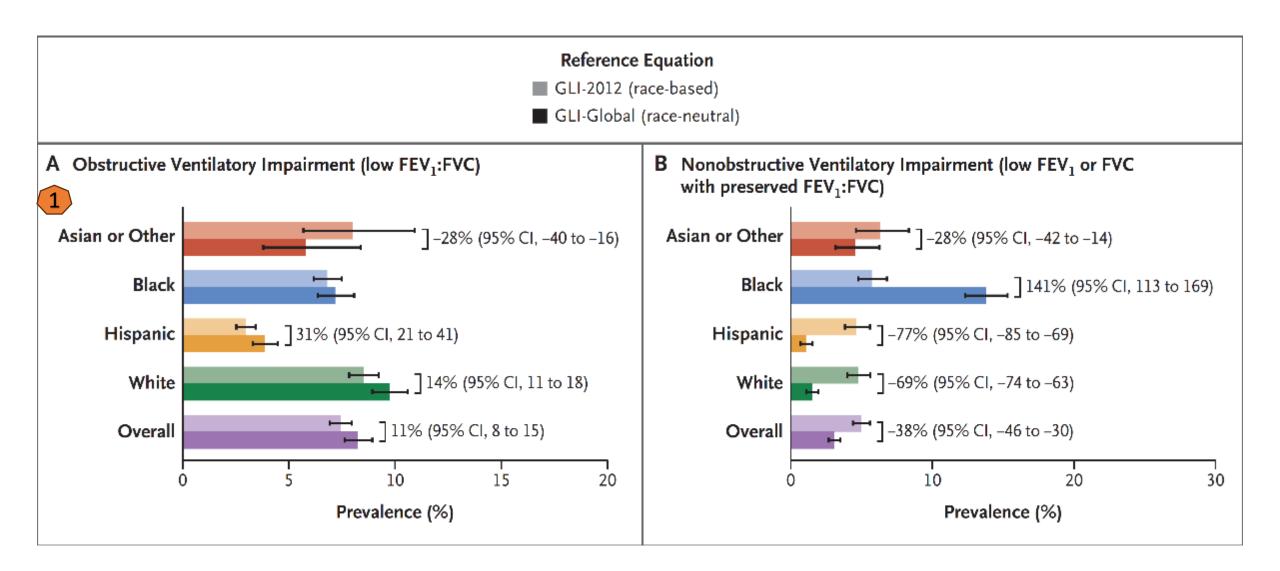
- Study Design: Cross-sectional and retrospective analysis using 5 large cohorts to evaluate the impact on classification and clinical/policy outcomes
- Data source:
  - NHANES III (1988–1994): general U.S. population
  - NHANES IV (2007–2012): general U.S. population
  - MESA: Multi-Ethnic Study of Atherosclerosis
  - UK Biobank: large, predominantly White cohort
  - OPTN: 2020 U.S. lung transplant waiting list

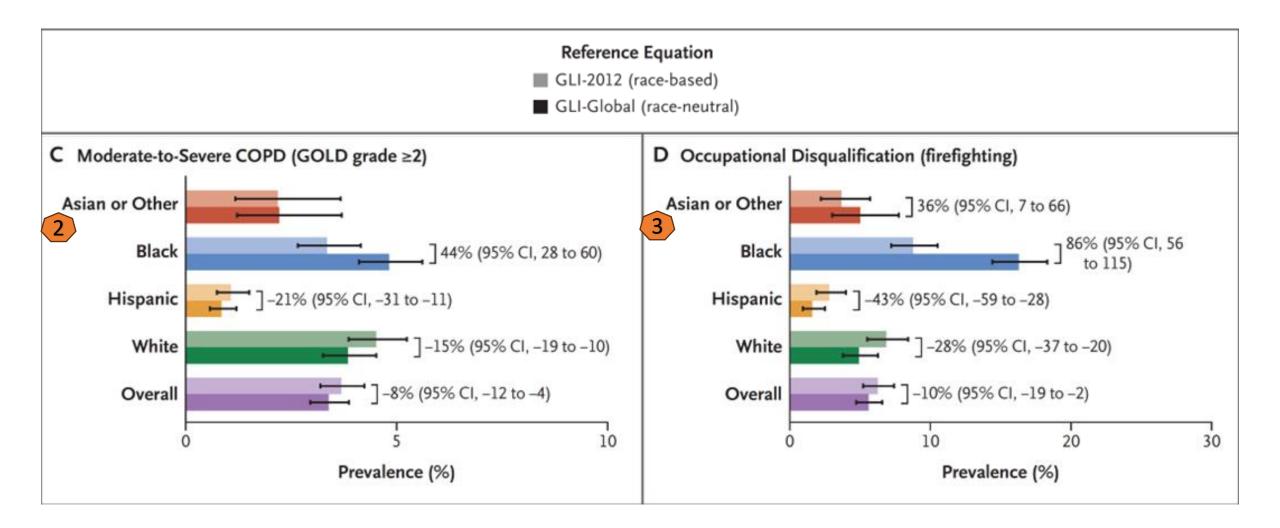
| Table 2. Criteria for Assessing Clinical, Occupational, and Financial Outcomes.* |                                                                                                                                                                                                                                  |              |                                    |                             |  |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|-----------------------------|--|--|--|
| 1 tcome                                                                          | Spirometric Criteria†                                                                                                                                                                                                            | Age Criteria | Other Criteria                     | Source                      |  |  |  |
| Ventilatory impairment                                                           |                                                                                                                                                                                                                                  | 6–79 yr      | None                               | ERS-ATS (2021) <sup>2</sup> |  |  |  |
| Obstructive                                                                      | FEV <sub>1</sub> :FVC <lln< td=""><td></td><td></td><td></td></lln<>                                                                                                                                                             |              |                                    |                             |  |  |  |
| Nonobstructive                                                                   | FEV, or FVC <lln and="" fev,="" fvc="">LLN</lln>                                                                                                                                                                                 |              |                                    |                             |  |  |  |
| COPD severity                                                                    |                                                                                                                                                                                                                                  | 6–79 yr      | None                               | GOLD (2023) <sup>3</sup>    |  |  |  |
| <b>2</b> Grade 1 (least severe)                                                  | $FEV_1$ :FVC <0.70 and $FEV_1 \ge 80\%$ of predicted                                                                                                                                                                             |              |                                    |                             |  |  |  |
| Grade 2                                                                          | $FEV_1\!\!:\!FVC<\!\!0.70$ and $FEV_1$ 50–79% of predicted                                                                                                                                                                       |              |                                    |                             |  |  |  |
| Grade 3                                                                          | FEV <sub>1</sub> :FVC <0.70 and FEV <sub>1</sub> 30–49% of predicted                                                                                                                                                             |              |                                    |                             |  |  |  |
| Grade 4 (most severe)                                                            | $FEV_1$ :FVC <0.70 and $FEV_1$ <30% of predicted                                                                                                                                                                                 |              |                                    |                             |  |  |  |
| Occupational disqualification<br>from firefighting                               | FEV <sub>1</sub> or FVC <70% of predicted, <i>or</i><br>FEV <sub>1</sub> or FVC <80% of predicted and FEV <sub>1</sub> :FVC<br><0.75, <i>or</i><br>FEV <sub>1</sub> or FVC <90% of predicted and previous<br>diagnosis of asthma | 18–65 yr     | Work exposure to<br>dust or fumes  | NFPA (2007) <sup>23</sup>   |  |  |  |
| Medical impairment ratings                                                       |                                                                                                                                                                                                                                  | 18–79 yr     | Work exposure to<br>dust or furnes | AMA (2008) <sup>24</sup>    |  |  |  |
| Class 1 (least severe)                                                           | FEV, 65–79% of predicted or FVC 70–79%<br>of predicted                                                                                                                                                                           |              |                                    |                             |  |  |  |
| Class 2                                                                          | FEV <sub>1</sub> 55–64% of predicted or FVC 60–69% of predicted                                                                                                                                                                  |              |                                    |                             |  |  |  |
| Class 3                                                                          | FEV <sub>1</sub> 45–54% of predicted or FVC 50–59%<br>of predicted                                                                                                                                                               |              |                                    |                             |  |  |  |
| Class 4 (most severe)                                                            | FEV, <45% of predicted or FVC <50%<br>of predicted                                                                                                                                                                               |              |                                    |                             |  |  |  |
| VA disability ratings                                                            |                                                                                                                                                                                                                                  | 18–79 yr     | Served in the U.S.<br>Armed Forces | VA (2023) <sup>25,26</sup>  |  |  |  |
| 5<br>10% (least severe)                                                          | FEV <sub>1</sub> 71-80% of predicted or FEV1:FVC 0.71-0.80                                                                                                                                                                       |              |                                    |                             |  |  |  |
| 30%                                                                              | FEV <sub>1</sub> 56–70% of predicted or FEV1:FVC 0.56–0.70                                                                                                                                                                       |              |                                    |                             |  |  |  |
| 60%                                                                              | FEV, 40-55% of predicted or FEV1:FVC 0.40-0.55                                                                                                                                                                                   |              |                                    |                             |  |  |  |
| 100% (most severe)                                                               | FEV <sub>1</sub> <40% of predicted or FEV1:FVC <0.40                                                                                                                                                                             |              |                                    |                             |  |  |  |

Lung transplant priority

Not in Table 2: clinical outcome prediction (e.g., respiratory symptoms, hospitalization, new-onset disease, mortality)

#### 7 Outcomes


- 1. Ventilator impairment
  - a. Obstructive: asthma/COPD
  - b. Non-obstructive
- 2. COPD severity grading
- 3. Occupational eligibility
- 4. Medical impairment ratings
- 5. Disability compensation
- 6. Lung transplant priority
- 7. Associations with respiratory outcomes


#### Statistical Analysis

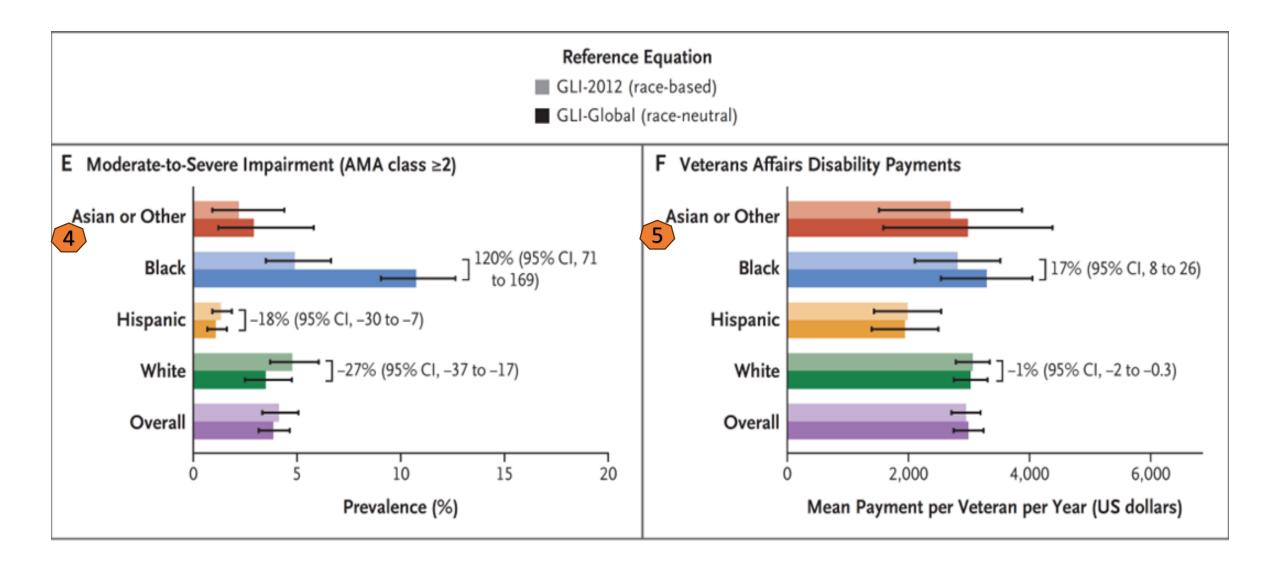
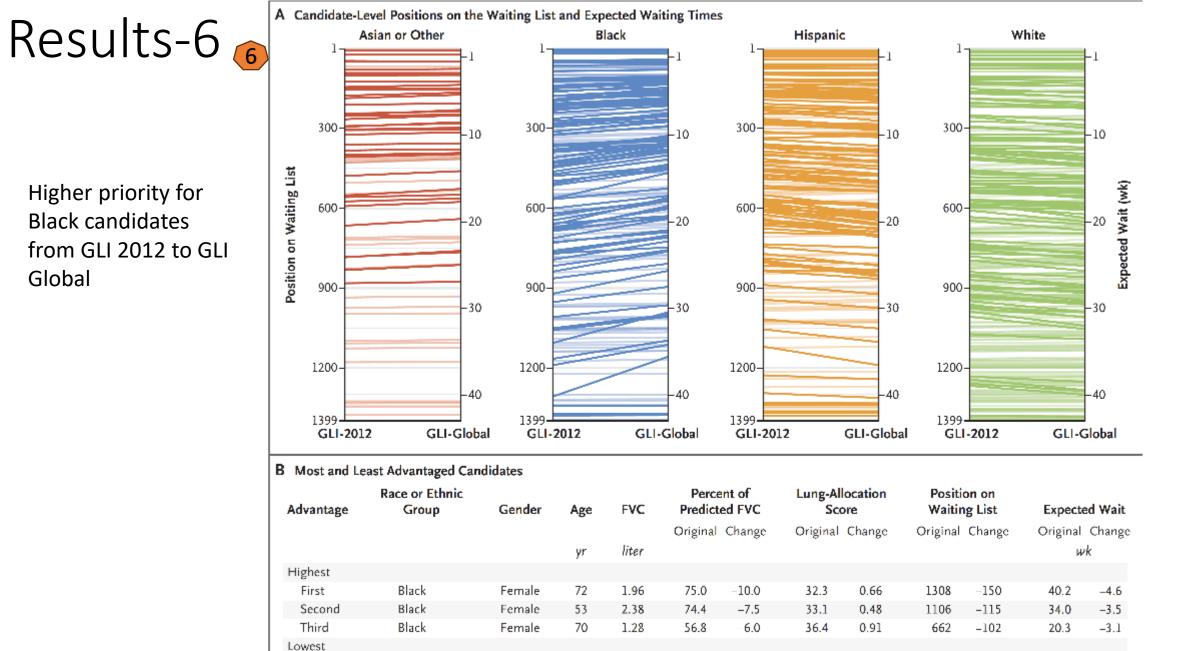

- Calculated predicted values & LLN using GLI-2012 and GLI-Global
- Derived % predicted
- Used NHANES IV weights for national projections
- Assessed predictive accuracy using Harrell's C-statistic
- Conducted secondary analyses of sensitivity/specificity at z = -1.645 (5th percentile)

 Table 1. Demographic Characteristics, Spirometric Measurements, and Respiratory Conditions.\*

| Characteristic                           | NHANES III<br>(N=31,311) | NHANES IV<br>(N=30,442) | MESA<br>(N = 6814) | U.K. Biobank<br>(N = 501,723) | OPTN<br>(N = 42,751)     |
|------------------------------------------|--------------------------|-------------------------|--------------------|-------------------------------|--------------------------|
| Data-collection period                   | 1988–1994                | 2007–2012               | 2005-2007          | 2006–2010                     | 2005-2023                |
| Participants included — no. (%)†         | 15,861 (50.7)            | 17,067 (56.1)           | 3262 (47.8)        | 290,136 (57.8)                | 42,751 (100)             |
| Female sex or gender — %‡                | 51.2                     | 50.0                    | 53.1               | 57.2                          | 43.5                     |
| Race or ethnic group — %∬                |                          |                         |                    |                               |                          |
| Asian                                    | _                        | 4.4                     | 16.5               | 2.0                           | 2.6                      |
| Black                                    | 28.7                     | 21.9                    | 25.0               | 1.3                           | 9.8                      |
| Hispanic                                 | 28.5                     | 29.6                    | 11.3               | —                             | 8.8                      |
| White                                    | 38.9                     | 39.6                    | 35.2               | 95.1                          | 78.2                     |
| Multiracial, other race, or un-<br>known | 3.9                      | 4.5                     | —                  | 1.1                           | 0.7                      |
| Median age (IQR) — yr                    | 35 (20–54)               | 33 (16–52)              | 65 (57–73)         | 57 (50–63)                    | 59 <mark>(49–65</mark> ) |
| Median height (IQR) — cm                 | 165 (157–173)            | 165 (156–173)           | 165 (158–173)      | 167 (161–175)                 | 170 (161–177)            |
| Median spirometric values (IQR)          |                          |                         |                    |                               |                          |
| FEV <sub>1</sub> — liters                | 2.91 (2.29–3.56)         | 2.92 (2.23–3.61)        | 2.30 (1.87–2.83)   | 2.71 (2.26–3.26)              | —                        |
| FVC — liters                             | 3.60 (2.90-4.42)         | 3.62 (2.81-4.48)        | 3.06 (2.48-3.81)   | 3.55 (2.99–4.29)              | 1.82 (1.37–2.38)         |
| FEV <sub>1</sub> :FVC                    | 0.81 (0.76-0.86)         | 0.82 (0.77–0.86)        | 0.76 (0.71–0.80)   | 0.77 (0.73–0.80)              | —                        |
| Respiratory factors — %¶                 |                          |                         |                    |                               |                          |
| Smoking history                          | 41.4                     | 33.9                    | 49.8               | 21.1                          | 44.1                     |
| Respiratory symptoms                     | 24.0                     | 15.5                    | 14.3               | 22.0                          | 100                      |
| Respiratory disease                      | 20.1                     | 16.1                    | 32.1               | 23.3                          | <b>100</b> <sup>17</sup> |








#### In terms of numbers affected; national projections based on NHANES data with survey weights

Table 3. Extrapolated Changes in Outcomes Calculated from Race-Based and Race-Neutral Lung-Function Equations, According to Persons Affected and Disability Payments in the United States.\*

| Outcome                                                                 | Net Change                |                        |                         |                          | Total Change              |                           |                         |                                       |
|-------------------------------------------------------------------------|---------------------------|------------------------|-------------------------|--------------------------|---------------------------|---------------------------|-------------------------|---------------------------------------|
|                                                                         | Overall                   | Asian or Other         | Black                   | Hispanic                 | White                     | Overall                   | Newly Classified        | No Longer<br>Classified               |
| Persons affected — no.,<br>in thousands (95% CI)                        |                           |                        |                         |                          |                           |                           |                         |                                       |
| Obstructive impairment                                                  | 2070<br>(1330 to 2820)    | -392<br>(-608 to -177) | 110<br>(-17 to 237)     | 349<br>(231 to 466)      | 2010<br>(1360 to 2650)    | 3200<br>(2630 to 3860)    | 2640<br>(2080 to 3290)  | 565<br>(338 to 884)                   |
| Nonobstructive impairment                                               | -4700<br>(-6140 to -3270) | -304<br>(-498 to -110) | 2340<br>(1930 to 2750)  | -1370<br>(-1800 to -942) | -5370<br>(-6550 to -4190) | 9620<br>(8570 to 10,800)  | 2460<br>(1960 to 3040)  | 7 <mark>1</mark> 60<br>(6130 to 8320) |
| Moderate-to-severe COPD:<br>GOLD grade ≥2                               | -749<br>(-1180 to -316)   | 6<br>(-15 to 27)       | 428<br>(300 to 556)     | -85<br>(-139 to -32)     | -1100<br>(-1480 to -715)  | 1660<br>(1300 to 2070)    | 453<br>(324 to 617)     | 1200<br>(857 to 1640)                 |
| Occupational disqualification<br>from firefighting                      | -624<br>(-1200 to -48)    | 72<br>(10 to 135)      | 754<br>(540 to 969)     | -181<br>(-262 to -100)   | -1270<br>(-1730 to -809)  | 2280<br>(1840 to 2780)    | 826<br>(601 to 1110)    | 1450<br>(1030 to 1980)                |
| Moderate-to-severe impair-<br>ment: AMA class ≥2                        | -297<br>(-725 to 131)     | 41<br>(-9 to 92)       | 638<br>(478 to 797)     | -38<br>(-59 to -16)      | -938<br>(-1310 to -570)   | 1580<br>(1250 to 1960)    | 646<br>(481 to 849)     | 929<br>(632 to 1320)                  |
| Annual VA disability pay-<br>ments — U.S. \$, in mil-<br>lions (95% CI) | 806<br>(–42 to 1,650)     | 279<br>(–268 to 825)   | 1,100<br>(585 to 1,610) | 46<br>(-99 to 7)         | -524<br>(-917 to -131)    | 1,940<br>(1,100 to 2,790) | 1,380<br>(627 to 2,120) | 570<br>(173 to 966)                   |
| 4                                                                       |                           |                        |                         |                          |                           |                           |                         |                                       |



First

Second

Third

White

White

Hispanic

Male

Male

Female

61

62

59

2.78

1.94

2.72

67.6

69.6

62.6

5.3

5.3

4.8

33.5

33.4

33.1

-0.35

-0.31

-0.22

1029

1030

1120

80

75

70

22

2.5

2.3

2.1

31.6

31.6

34.4

Results-7<sup>Table 4.</sup> Accuracy of Reference-Adjusted Spirometry for Discriminating Respiratory Symptoms, Health Care Utilization, New-Onset Disease, and Death.\*

| Outcome and Cohort                                          | Best Spirometric<br>Predictor | Discriminative Accuracy<br>(95% CI)† |                        |                         |  |
|-------------------------------------------------------------|-------------------------------|--------------------------------------|------------------------|-------------------------|--|
|                                                             |                               | GLI-2012                             | GLI-Global             | Difference              |  |
|                                                             |                               |                                      | C statistic            |                         |  |
| Concurrent respiratory symptoms,<br>NHANES IV               |                               |                                      |                        |                         |  |
| Dyspnea on exertion                                         | FEV <sub>1</sub> z score      | 0.634 (0.619 to 0.649)               | 0.632 (0.616 to 0.647) | -0.002 (-0.009 to 0.004 |  |
| Wheezing that limits activity                               | $FEV_1$ z score               | 0.685 (0.655 to 0.714)               | 0.689 (0.661 to 0.718) | 0.005 (-0.008 to 0.017  |  |
| Lung or breathing problem that limits activity              | $FEV_1 z score$               | 0.737 (0.695 to 0.780)               | 0.746 (0.705 to 0.787) | 0.009 (-0.008 to 0.025  |  |
| Recent health care utilization, NHANES IV                   |                               |                                      |                        |                         |  |
| Medical visit for wheezing in past yr                       | $FEV_1 z score$               | 0.676 (0.644 to 0.708)               | 0.676 (0.644 to 0.707) | -0.001 (-0.013 to 0.012 |  |
| Overnight hospital admission in past yr                     | FEV <sub>1</sub> z score      | 0.573 (0.548 to 0.598)               | 0.584 (0.559 to 0.609) | 0.011 (0.001 to 0.021)  |  |
| New-onset respiratory disease, U.K.<br>Biobank              |                               |                                      |                        |                         |  |
| Asthma ≤10 yr                                               | FEV <sub>1</sub> :FVC z score | 0.587 (0.559 to 0.616)               | 0.588 (0.559 to 0.617) | 0.001 (-0.002 to 0.003  |  |
| COPD ≤10 yr                                                 | FEV <sub>1</sub> :FVC z score | 0.786 (0.750 to 0.823)               | 0.792 (0.755 to 0.828) | 0.005 (0.002 to 0.008)  |  |
| Death, NHANES III                                           |                               |                                      |                        |                         |  |
| 30-yr incidence from chronic lower respi-<br>ratory disease | FEV <sub>1</sub> :FVC z score | 0.838 (0.628 to 0.981)               | 0.833 (0.601 to 0.981) | -0.004 (-0.037 to 0.013 |  |
| 10-yr incidence from any cause                              | FEV <sub>1</sub> z score      | 0.620 (0.530 to 0.705)               | 0.620 (0.528 to 0.706) | -0.001 (-0.022 to 0.022 |  |
| Death while on transplant waiting list,<br>OPTN             |                               |                                      |                        |                         |  |
| 45-day incidence                                            | FVC z score                   | 0.573 (0.545 to 0.598)               | 0.564 (0.538 to 0.590) | -0.008 (-0.013 to -0.00 |  |
| 365-day incidence                                           | FVC z score                   | 0.573 (0.547 to 0.599)               | 0.568 (0.542 to 0.594) | -0.005 (-0.011 to 0.001 |  |
|                                                             |                               |                                      |                        |                         |  |

23

#### Discussion-1

- Reclassification affects real-world decisions
  - Switching to race-neutral equations (GLI-Global) leads to major reclassifications of lung impairment, which can influence medical, occupational, and financial outcomes
- Race-neutral vs. race-specific impact varies by group
  - Black participants were more likely to be classified as impaired or severely impaired.
- Trade-offs between sensitivity and specificity
  - Using GLI-Global increased sensitivity (more true positives) among Black individuals but also increased false positives. Overall discriminative accuracy (C-statistic) remained similar (Table 4)

#### Discussion-2

- Population-level impact could obscure or reveal disparities
  - Race-based equations may "normalize" lower lung function in Black and Asian populations, potentially hiding subclinical disease.
  - Race-neutral models might uncover these disparities, but also risk overdiagnosis
- Consequences extend beyond diagnosis
  - Reclassifications can influence COPD trial eligibility, insurance premiums, worker compensation, transplant waiting lists, and surgery decisions.
  - —they have broad policy and ethical implications
- Removing race helps move beyond outdated biological assumptions, but deeper inequities in healthcare access, social conditions, and environmental exposure remain unaddressed

#### Limitations

- Physiologic data only, not full clinical assessment
- Lung allocation model may not apply to current practice
  - "Lung allocation score modeling (for transplant) used 2020 data; newer systems (since 2021) do not rely on spirometry"
- U.S.-centric outcome projections
  - international generalizability may be limited
- No gold standard to validate reclassification accuracy
- GLI datasets may embed racial biases

## Paper 2 Blue Journal AJRCCM Jan 1, 2024

## **ORIGINAL ARTICLE**



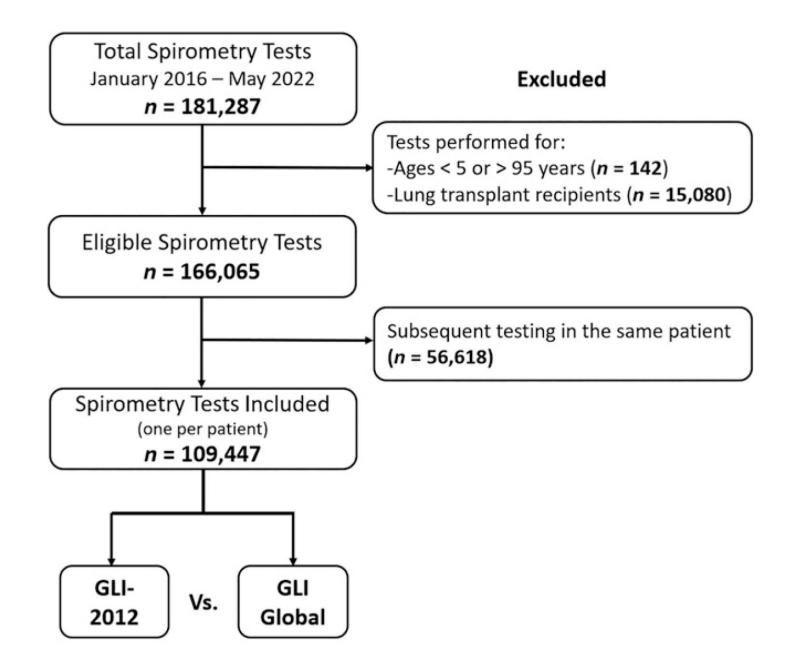
#### Application of Global Lung Function Initiative Global Spirometry Reference Equations across a Large, Multicenter Pulmonary Function Lab Population

Amjad N. Kanj<sup>1</sup>, Paul D. Scanlon<sup>1</sup>, Hemang Yadav<sup>1</sup>, William T. Smith<sup>1</sup>, Tyler L. Herzog<sup>1</sup>, Aaron Bungum<sup>1</sup>, Daniel Poliszuk<sup>2</sup>, Edward Fick<sup>1</sup>, Augustine S. Lee<sup>3</sup>, and Alexander S. Niven<sup>1</sup>

<sup>1</sup>Division of Pulmonary and Critical Care Medicine, Department of Medicine, and <sup>2</sup>Information Technology, Mayo Clinic, Rochester, Minnesota; and <sup>3</sup>Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Jacksonville, Florida

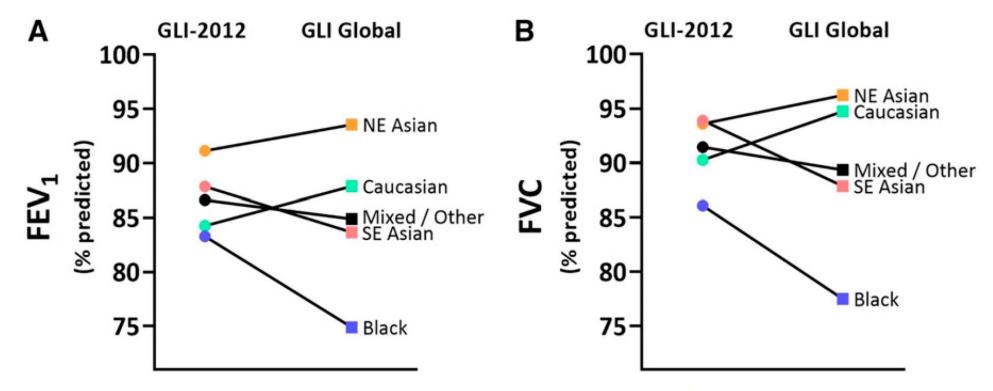
ORCID IDs: 0000-0002-1889-2524 (H.Y.); 0000-0003-0891-9495 (A.S.N.).

## Background

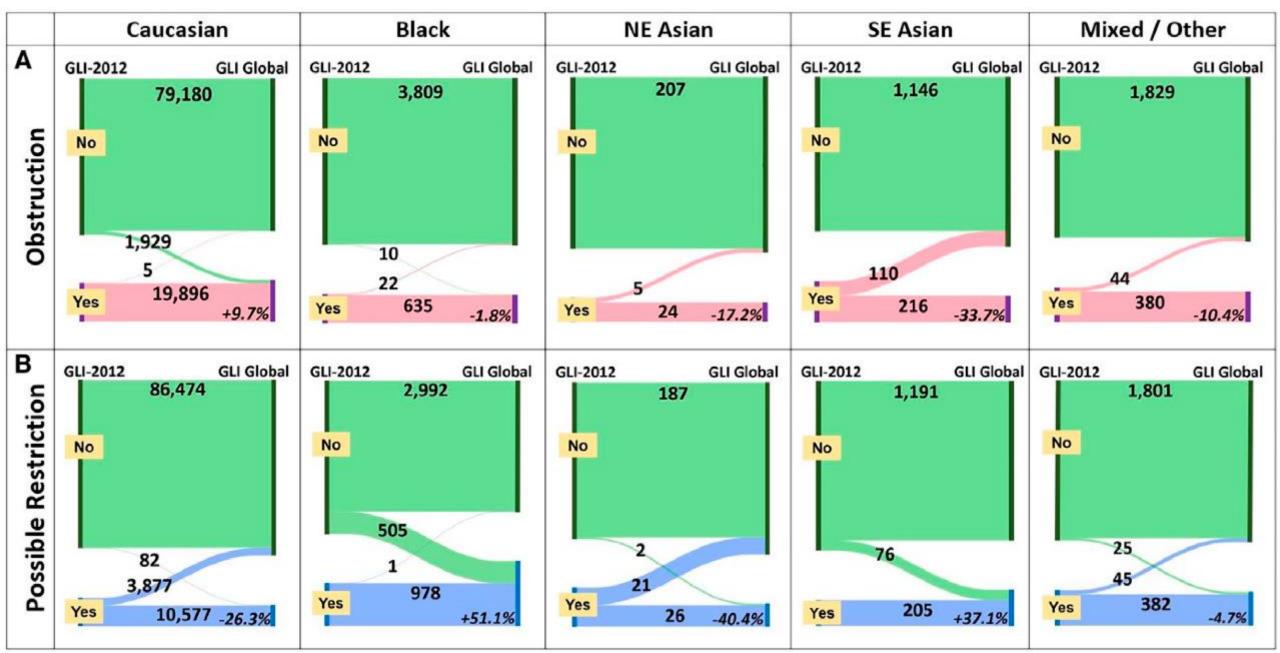

- The GLI Global equations were developed to reduce bias and move away from race-based spirometry interpretation.
- Previous GLI-2012 equations may underestimate lung impairment in non-White populations and delay therapy or referral.
- Race-neutral models aim to reduce inequality, but may lead to new challenges, such as overdiagnosis, occupational disqualification, or insurance issues.
- The 2023 ATS statement recommends minimizing the use of race and emphasizes the importance of careful implementation of new standards.

#### Method

- Study Design
  - Retrospective cross-sectional analysis using data from the Mayo Clinic PFT database (2016–2022)
  - Evaluated changes in spirometry interpretation across self-reported race/ethnicity groups


#### Data & Definitions

- Collected age, sex, height, weight, race/ethnicity, mMRC dyspnea scores
- Spirometry interpretation categorized into:
  - Normal
  - Indeterminate reduction in FEV1
  - Obstruction
  - Possible restriction
- Statistical comparisons were performed using ANOVA, chi-square tests, and t-tests, with significance set at P < 0.05.</li>

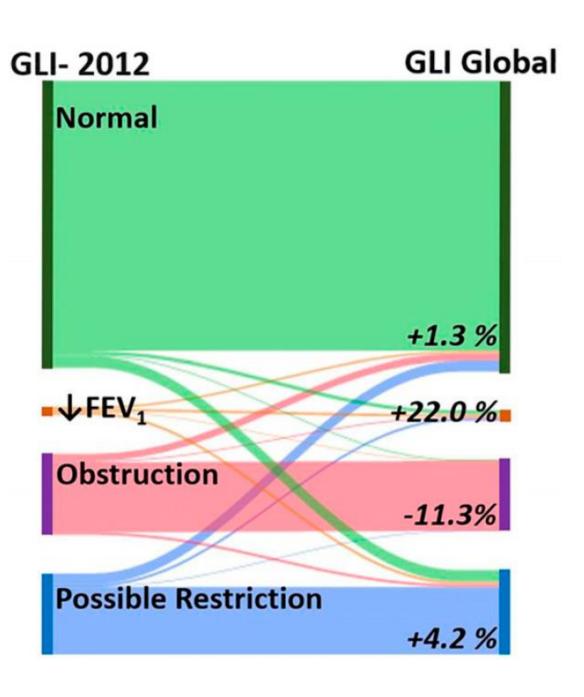



**Table 1.** Patient Characteristics and Lung Function Measures Using GLI-2012 Reference Sets Stratified by Self-Reported Race and Ethnicity (*N* = 109,447)

| Characteristic                                                                                                                                                                        | White                                                                                                                                                                                           | Black                                                                                                                                                              | Northeast Asian                                                                                                                                                        | Southeast Asian                                                                                                                                            | Mixed/Other                                                                                                                                                                                                                        | Total                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                       | ( <i>n</i> = 101,010)                                                                                                                                                                           | (n = 4,476)                                                                                                                                                        | (n = 236)                                                                                                                                                              | (n = 1,472)                                                                                                                                                | (n = 2,253)                                                                                                                                                                                                                        | ( <i>N</i> = 109,447)                                                                                                                                                                                                                                                                                |
| Age, yr<br>Female sex<br>Height, cm<br>Weight, kg<br>BMI, kg/m <sup>2</sup><br>mMRC score,* <i>n</i> (%)<br>0<br>1<br>2<br>3<br>4<br>Lung function (GLI-2012)<br>FEV <sub>1</sub> , L | $59.5 \pm 18.5$<br>52,089 (51.6)<br>$168.5 \pm 11.3$<br>$84.0 \pm 24.1$<br>$29.4 \pm 7.4$<br>31,618 (35.9)<br>27,151 (30.8)<br>13,897 (15.8)<br>10,370 (11.8)<br>4,964 (5.6)<br>$2.47 \pm 0.97$ | $52.0 \pm 18.1$<br>2,624 (58.6)<br>167.1 ± 11.8<br>86.7 ± 25.9<br>30.8 ± 8.2<br>1,640 (40.9)<br>898 (22.4)<br>557 (13.9)<br>548 (13.7)<br>360 (9.0)<br>2.15 ± 0.81 | $53.9 \pm 20.9$<br>129 (54.7)<br>162.5 $\pm$ 10.9<br>64.4 $\pm$ 14.9<br>24.2 $\pm$ 4.4<br>96 (50.8)<br>57 (30.2)<br>18 (9.5)<br>11 (5.8)<br>7 (3.7)<br>2.51 $\pm$ 0.89 | $51.9 \pm 19.6 \\779 (52.9) \\160.4 \pm 11.6 \\66.3 \pm 18.0 \\25.5 \pm 5.6 \\562 (45.8) \\371 (30.2) \\130 (10.6) \\103 (8.4) \\58 (4.7) \\2.21 \pm 0.86$ | $\begin{array}{c} 48.7 \pm 21.1 \\ 1,151 \ (51.1) \\ 164.2 \pm 13.7 \\ 76.1 \pm 24.5 \\ 27.7 \pm 7.3 \\ \end{array}$ $\begin{array}{c} 639 \ (35.0) \\ 576 \ (31.6) \\ 281 \ (15.4) \\ 193 \ (10.6) \\ 132 \ (7.2) \\ \end{array}$ | $\begin{array}{c} 58.9 \pm 18.7 \\ 56,772 \ (51.9) \\ 168.2 \pm 11.4 \\ 83.7 \pm 24.2 \\ 29.3 \pm 7.4 \\ \end{array}$<br>$\begin{array}{c} 34,555 \ (36.2) \\ 29,053 \ (30.5) \\ 14,883 \ (15.6) \\ 11,225 \ (11.8) \\ 5,521 \ (5.8) \\ \end{array}$<br>$\begin{array}{c} 2.45 \pm 0.96 \end{array}$ |
| FEV <sub>1</sub> , L                                                                                                                                                                  | $2.47 \pm 0.97$                                                                                                                                                                                 | 2.15 ± 0.81                                                                                                                                                        | $2.51 \pm 0.89$                                                                                                                                                        | $2.21 \pm 0.86$                                                                                                                                            | $2.41 \pm 0.95$                                                                                                                                                                                                                    | $2.45 \pm 0.96$                                                                                                                                                                                                                                                                                      |
| FVC, L                                                                                                                                                                                | $3.36 \pm 1.15$                                                                                                                                                                                 | 2.77 ± 0.98                                                                                                                                                        | $3.19 \pm 1.08$                                                                                                                                                        | $2.85 \pm 1.04$                                                                                                                                            | $3.12 \pm 1.17$                                                                                                                                                                                                                    | $3.32 \pm 1.15$                                                                                                                                                                                                                                                                                      |
| FEV <sub>1</sub> /FVC ratio                                                                                                                                                           | $72.9 \pm 12.3$                                                                                                                                                                                 | 77.7 ± 11.0                                                                                                                                                        | $78.8 \pm 9.54$                                                                                                                                                        | $77.4 \pm 10.5$                                                                                                                                            | $77.3 \pm 11.2$                                                                                                                                                                                                                    | $73.2 \pm 12.2$                                                                                                                                                                                                                                                                                      |
| Normal                                                                                                                                                                                | 63,798 (63.2)                                                                                                                                                                                   | 2,756 (61.6)                                                                                                                                                       | 159 (67.4)                                                                                                                                                             | 903 (61.3)                                                                                                                                                 | 1,361 (60.4)                                                                                                                                                                                                                       | 68,977 ( $63.0$ )                                                                                                                                                                                                                                                                                    |
| Indeterminate ↓FEV <sub>1</sub>                                                                                                                                                       | 2,857 (2.8)                                                                                                                                                                                     | 84 (1.9)                                                                                                                                                           | 1 (0.4)                                                                                                                                                                | 28 (2.6)                                                                                                                                                   | 41 (1.8)                                                                                                                                                                                                                           | 3,021 ( $2.8$ )                                                                                                                                                                                                                                                                                      |
| Obstruction                                                                                                                                                                           | 19,901 (19.7)                                                                                                                                                                                   | 657 (14.7)                                                                                                                                                         | 29 (12.3)                                                                                                                                                              | 326 (22.1)                                                                                                                                                 | 424 (18.8)                                                                                                                                                                                                                         | 21,337 ( $19.5$ )                                                                                                                                                                                                                                                                                    |
| Possible restriction                                                                                                                                                                  | 14,454 (14.3)                                                                                                                                                                                   | 979 (21.9)                                                                                                                                                         | 47 (20.0)                                                                                                                                                              | 205 (13.9)                                                                                                                                                 | 427 (19.0)                                                                                                                                                                                                                         | 16,112 ( $14.7$ )                                                                                                                                                                                                                                                                                    |



**Figure 2.** Absolute change in mean (*A*) FEV<sub>1</sub>% predicted and (*B*) FVC% predicted values using Global Lung Function Initiative (GLI)-2012 and GLI Global reference equations. In White and NE Asian groups, mean FEV<sub>1</sub>% predicted increased by 3.6% and 2.4% predicted and mean FVC% predicted increased by 4.5% and 2.6% predicted, respectively. In Black, SE Asian, and mixed/other groups, mean FEV<sub>1</sub>% predicted decreased by 8.4%, 4.2%, and 1.7% predicted and mean FVC% predicted decreased by 8.6%, 6.1%, and 2.1% predicted, respectively. NE = northeast; SE = southeast.



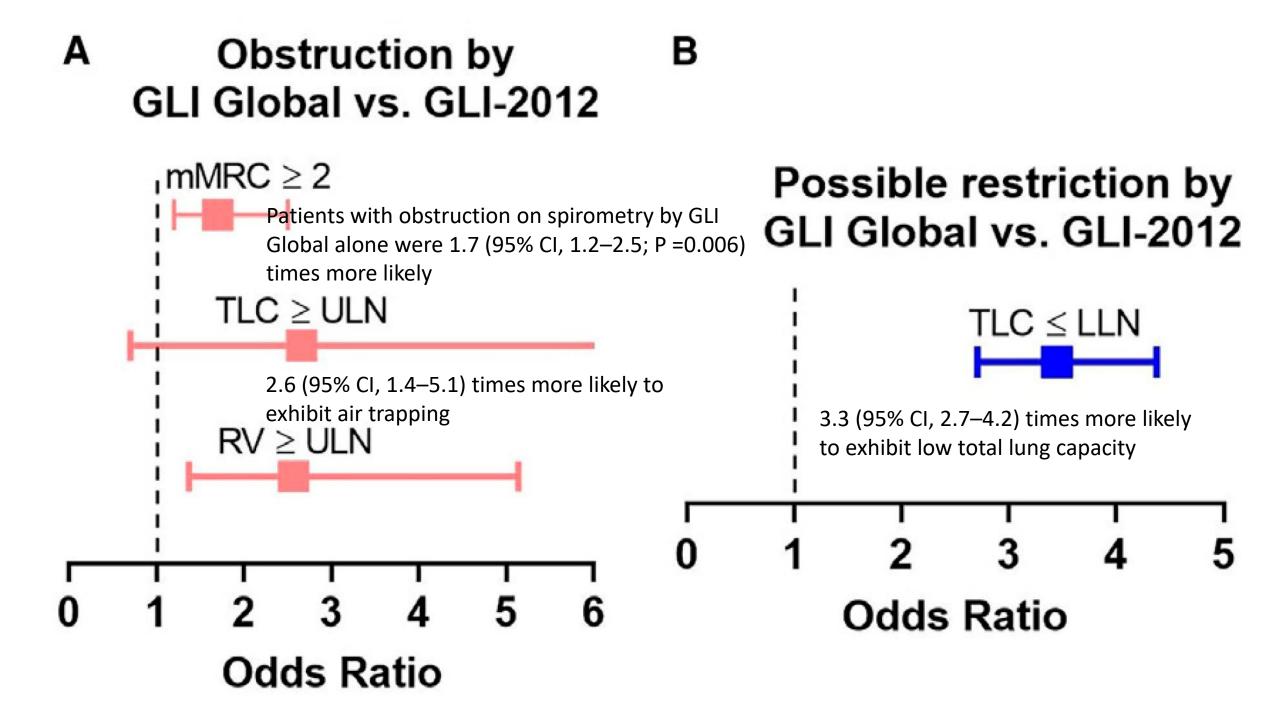


# Not Just 7.6% — It's 10.2% When Everyone Counts Equally

Table 2. Frequency of Change in Lung Function Interpretations and Relative Change in Abnormal Interpretations by Race and Ethnicity

|                                                                                                                                                                                                           |                                                                                               | Change in Abnormal Interpretation (Obstruction, Possible Restriction, $\downarrow FEV_1$ ) <sup>†</sup> |                                                     |                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--|
| Race and Ethnicity                                                                                                                                                                                        | Change in Lung<br>Function Interpretation*                                                    | Abnormal by<br>GLI-2012                                                                                 | Abnormal by<br>GLI Global                           | Relative Change, %                                     |  |
| White $(n = 101,010)$<br>Black $(n = 4,476)$<br>Northeast Asian $(n = 236)$<br>Southeast Asian $(n = 1,472)$<br>Mixed/other $(n = 2,253)$<br>Total $(N = 109,447)$<br>Equally weighed sample <sup>‡</sup> | 7,305 (7.2)<br>667 (14.9)<br>27 (11.4)<br>173 (11.8)<br>124 (5.6)<br>8,296 (7.6)<br>NA (10.2) | 37,212<br>1,720<br>77<br>569<br>892<br>40,470<br>NA                                                     | 34,418<br>2,286<br>54<br>539<br>846<br>38,143<br>NA | -7.5<br>+32.9<br>-29.9<br>-5.3<br>-5.2<br>-5.8<br>-3.0 |  |

10.2% change to a population of equal representation of all five race groups





#### Discussion

- GLI Global offers a "race-neutral" approach
  - Aimed at reducing health disparities and structural racism in medicine
  - Recognizes that self-identified race oversimplifies the complex interplay between genetics, environment, and social factors
- Reclassification affected nearly 1 in 13 tests
  - Greatest change seen in Black and Southeast Asian populations
  - Black patients had a 32.9% relative increase in abnormal interpretation, largely due to decreased % predicted values from higher LLN thresholds
- GLI Global correlates better with clinical findings
- Clinical significance still uncertain
  - No gold standard diagnosis included in the dataset
- Broader disparities in SES remain unresolved for lung health

#### Limitation

- Limited representation of Northeast Asian participants
- Subgroup analysis limitations
- Reference equations for lung volumes were based only on White individuals
- No gold standard clinical diagnosis
- Uncertain clinical significance of interpretation changes

### **Comparison of Research Design**

**Research Aspect** Paper 1 (NEJM, 2024)

Sample size

Population

**Methods** 

369,077 participants (from five large cohorts)

General population, clinical patients, transplant candidates; cohorts include NHANES, UK Biobank, MESA, OPTN Paper 2 (AJRCCM, 2024)

109,447 participants (Mayo Clinic pulmonary labs)

Clinical patients undergoing spirometry at Mayo Clinic (multiple centers)

Retrospective analysis comparingRetrospectGLI-2012 vs. GLI-Global lungcomparingfunction equationsGlobal lung

Retrospective analysis comparing GLI-2012 vs. GLI-Global lung function equations

## **Comparison of Research Design**

**Research Aspect** Paper 1 (NEJM, 2024)

Outcome measurements

Focuses on broader clinical, social, and policy-level outcomes, such as eligibility for employment, medical compensation, transplant prioritization, and mortality prediction.

Concordance statistics (C-statistics), ROC curves, survey-weighted national projections, linear models for transplant prioritization Grouped Bar, paired line plot Paper 2 (AJRCCM, 2024)

**Focuses on direct diagnostic** 

impacts, including changes in spirometry interpretation, symptom burden (mMRC score), and physiologic validation through lung volume measurements.

ANOVA, Chi-square tests, Fisher's exact test, independent t-tests for group comparisons, descriptive statistics Paired line plot; Sankey plot

#### Statistical analysis



## Confounding bias

#### Paper 1 (NEJM, 2024)

- Multiple datasets with different inclusion criteria (e.g., NHANES, transplant list)
- Potential variation in socioeconomic status, comorbidities, access to care not fully adjusted

#### Strategies for future studies:



Use propensity score adjustment or inverse probability weighting

- Stratify or match on key covariates (e.g., SES, comorbidity)
- Include longitudinal outcomes (e.g., symptom progression, hospitalization)

#### Paper 2 (AJRCCM, 2024)

- Single health system
- Differences in referral reasons, disease severity, and race/ethnicity may confound results

## Selection bias

#### Paper 1 (NEJM, 2024)

- Populations drawn from large cohort studies, but may not be representative of general clinical populations
- Selective inclusion (e.g., transplant candidates)

#### Paper 2 (AJRCCM, 2024)

- Only includes patients who were referred for PFTs, may overrepresent symptomatic or high-risk individuals
- Racial/ethnic representation is imbalanced

U Eı Pı Cost?

Use population-based sampling or random sampling of PFTs Ensure proportional representation across race/ethnicity groups Prospectively recruit diverse and unselected participants t?

## Conclusion: from GLI 2012 to GLI global

- Paper 1 in NEJM showed that race-neutral equations can reclassify lung function and may impact medical decisions like COPD grading and transplant eligibility.
- Paper 2 in AJRCCM found that switching to race-neutral equations significantly changes spirometry interpretation, especially in diverse populations.
- Both studies highlight the need for further research to confirm whether these changes reflect true disease or lead to misclassification.
- I think the local data is very important. Taiwan is not part of the US.