
  

Chapter 13Chapter 13 Collisions, Energy Loss, and Scattering of 
Charged Particles; Cherenkov and Transition Radiation

 Consider collisions between swiftly moving, charged particles, with special 
emphasis on the exchange of energy between collision partners and on the 
accompanying deflections from the incident direction as well as Cherenkov 
radiation and transition radiation.

 If the fast incident charged particle is heavier than an electron, the collisions 
with electrons and with nuclei have different consequences.

 The electrons can take up appreciable amounts of energy from the incident 
particle without causing significant deflections, whereas the massive nuclei 
absorb very little energy but because of their greater charge cause scattering of 
the incident particle.

 Loss of energy by the incident particle occurs almost entirely in collisions with 
electrons. The deflection of the particle from its incident direction results from 
essentially elastic collisions with the atomic nuclei.

 A full quantum-mechanical treatment is needed to obtain exact results, even 
though all the essential features are classical or semi-classical in origin.



  

 The incident beam is characterized by specifying its flux intensity I, which gives 
the number of particles/normal area/time.

 The (differential scattering) cross section for scattering in a given direction is

 If v0 is the incident speed of the particle

 The number of particles scattered into a solid angle with azimuthal symmetry
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m ṙ2
+
ℓ2

2 m r2 +
k
r
=constant ⇐ V (r )=

k
r
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 A swift particle of charge z e and mass M (energy E = γ M c 2, momentum           

P = γ β M c) collides with an atomic electron of charge −e and mass m.

 For energetic collisions the binding of the electron in the atom is neglected; the 
electron can be considered free and initially at rest in the laboratory.

 For M≫m, the collision is best viewed as elastic Coulomb scattering in the rest 
frame of the incident particle.

 The Rutherford scattering formula                                          where p = γ β m c 

and v = β c are the momentum and speed of the electron in the rest frame of the 

heavy particle ( exact in the limit M ∕ m  ∞).

 The cross section can be given a Lorentz-invariant form by relating the 
scattering angle to the 4-momentum transfer squared,                         ,

 The cross section for a given energy loss T by the incident particle is 
proportional to the above equation.

Energy Transfer in a Coulomb Collision Between Heavy Incident 
Particle & Stationary Free Electron; Energy Loss in Hard Collisions 
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 In the electron's rest frame, the invariant

the cross section/energy for energy loss T by the massive incident particle in a 
Coulomb collision with a free stationary electron.

 Find Tmax by recognizing that the most energetic collision in the rest frame of 
the incident particle occurs when the electron reverses its direction.

 In the LAB frame, after the collision the electron has

 The exact answer for Tmax has a factor in the denominator

 For equal masses, Tmax
 = (γ −1) M c2.

 When the spin of the electron is taken into account, there is a quantum-
mechanical correction to the energy loss cross section,   
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 The energy loss/distance in collisions with energy transfer > ε (≪Tmax) for a 

heavy particle passing through matter with N atoms/volume, with Z electrons,

 The term with −β 2  is the relativistic spin contribution.

 The equation represents the energy loss in close collisions, valid provided 
ε≫ℏ〈ω〉 because binding has been ignored.

 Classically, in the rest frame of the heavy particle the incident electron 
approaches at impact parameter b. There is a one-to-one correspondence 
between b and the scattering angle θ (see Problem 13.1).

 The energy 
        transfer

 If the energy transfer is greater than ε, the impact 
              parameter must be less than the maximum:

 When the heavy particle passes through matter it sees electrons at all possible 
impact parameters, with weighting according to the area of an annulus, 2 π b d b.
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  The classical energy loss/distance for collisions with transfer greater than ε is

 Same result (for a spinless particle) quantum mechanically and classically is a 
consequence of the validity of the Rutherford cross section in both regimes.

 To find a classical result for the total energy loss/distance, we must address the 
influence of atomic binding.

 The incident heavy particle produces appreciable time-varying electromagnetic 

fields at the atom for a time

 If the characteristic time Δ t is long compared to the atomic period         , the 

atom responds adiabatically—it stretches slowly during the encounter and 
returns to normal, without appreciable energy being transferred.

 If Δ t is very short compared to the characteristic period, the electron can be 
treated as almost free.

 The dividing line is                                              , beyond which no significant 

energy transfer is possible.
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 With many different electronic frequencies, 〈ω〉 is the geometric mean of all the 

frequencies ω i, weighted with the oscillator strength f i: 
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 The energy loss in collisions with energy transfers less than ε really can be 
treated properly only by quantum mechanics. We can "explain" the result in 
semiclassical language afterwards.

 For low energies ( γ β < 1) the main 

dependence is as      , while at high 
energies ∝ ln γ.

        has its minimum at γ β ≈ 3.

 Explain semiclassically why

in the soft collision increases more 
slowly than the total as ln γ rather 

than ln γ
 2.

Energy Loss from Soft Collisions; Total Energy Loss
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 In calculating energy loss, the larger of the 2 minimum impact parameters 
should be used. When η > 1, the classical lower limit applies; for η < 1, the 

quantum low limit applies for B q
 the correct expression for B.

 The soft collisions contributing to ($) come semiclassically from the more 
distant collisions. The momentum transfer to the struck electron is

 To be certain that the collision produces an energy transfer < ε,

 At high energies the dominant energy dependence is through
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 For the total energy loss, the maximum impact parameter is proportional to γ, 
while the quantum-mechanical minimum impact parameter          is inversely 
proportional to γ. The ratio varies as γ 2.

 For energy loss restricted to energy transfers < ε, the minimum impact 
parameter                is independent of γ                            .

 The semiclassical description in terms of impact parameters contains a 
conceptual difficulty. The energy transfer T in each collision is related directly to 

the impact parameter b. When                                                  [Problem 13.1].

 With increasing b the energy transfer decreases rapidly until at

 Since energy must be transferred to the atom in discrete quantum jumps. A 
tiny amount of energy such as T(bmax) simply cannot be absorbed by the atom.

 So the classical expression for T(b) should be used only if it is large enough. 
But this requirement would set a different upper limit on the impact parameters 
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 The classical concept of the transfer of a small amount of energy in every 
collision is incorrect quantum-mechanically. Instead, while on the average over 
many collisions, a small energy is transferred, the small average results from 
appreciable amounts of energy transferred in a very small fraction of those 
collisions.

 A meaningful semiclassical description requires 
(a) the statistical interpretation;
(b) use the uncertainty principle to set appropriate minimum impact parameters.

 For electrons ( M = m ) instead of a heavy particle of mass ( M ≫ m ), kinematic 
modifications occur in the energy loss in hard collisions.

 The expressions for         represent the average collisional energy loss per unit

distance by a particle traversing matter. With Poisson statistics for the number of 
collisions producing a given energy transfer T, it can be shown that the mean 
square deviation in energy from the mean is

 This result holds provided 
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 For particles that are not relativistic, the observed energy loss is given by (#) 
for particles of all kinds in media of all types. For ultra-relativistic particles, the 
observed energy loss < the predicted by (#), especially for dense substancesdense substances.

 From the figure in page 9, the observed energy loss increases beyond the 
minimum with a slope of roughly ½ that of the theoretical curve, corresponding 
to only one power γ of  in (#) instead of 2. 

 This reduction in energy loss, known as the density effect, by Fermi (1940).

 Assumed that it is ok to calculate the effect of the incident particle's fields on 
one electron in one atom at a time, and then sum up incoherently the energy 
transfers to all the electrons in all the atoms with bmin < b < bmax.

 Since bmax is large compared to atomic dimensions. So in dense media there are 
many atoms lying between the incident particle's trajectory and the typical atom 
if b is comparable to bmax.

 These atoms, influenced by the fast particle, will produce perturbing fields at 
its position, modifying its response to the fields of the fast particle.

 So in dense media the dielectric polarization of the material alters the particle's 
fields from their free-space values to those characteristic of macroscopic fields in 
a dielectric.

Density Effect in Collisional Energy Loss 



  

 For close collisions the incident particle interacts with only one atom at a time. 
Then the free-particle calculation without polarization effects will apply.

 The dividing impact parameter between close and distant collisions is of atomic 
dimensions. Since the joining of 2 logarithms is involved in calculating the sum, 
the dividing value of b need not be specified with great precision.

 To determine the energy loss in distant collisions ( b ≥ a ), assuming that the 
fields in the medium can be calculated in the continuum approximation of ϵ(ω).

 This approximation will not be good for the closest of the distant collisions, but 
will be valid for the great bulk of the collisions.

 To find the electric field in the medium due to the incident fast particle can be 

solved by Fourier transforms:
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 Consider E at a perpendicular distance b from the path of the particle moving 

along the x axis, ie, at (0,b,0) 
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 The energy loss per unit distance in collisions with impact parameter b ≥ a

 This result can be also obtained by calculating the EM energy flow through a 
cylinder of radius a around the path of the incident particle. By conservation of 
energy this is the energy lost/time by the incident particle.
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 Under conditions where polarization effects are unimportant, (!) yields the 
same results as before.

 For nonrelativistic particles

 Assuming that the 2nd term is small, its imaginary part can be substituted into 
(!). Then the integral can be performed in the narrow-resonance approximation.

 If the small-argument limits of the Bessel functions are used, the nonrelativistic 

form of (@) emerges, with                   . Let 

 The density effect comes from the presence of complex arguments in the 
modified Bessel functions, corresponding to taking into account ϵ(ω) in λ2.

 Since ϵ(ω) there is multiplied by β 2, the density effect can is really important 
only at high energies.
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 The argument of the 2nd logarithm is actually 1−β 2 ϵ(ω). In the limit ϵ =1, this 
term gives a factor γ in the logarithm, corresponding to the old result (@).

 Provided ϵ ≠1, we can write this factor as 1− ϵ to remove γ from the logarithm, 
in agreement with experiment.

 The integral can be performed by using Cauchy's theorem over over a quarter-
circle at infinity to get

 If no density effect

 The density effect produces a simplification in that the asymptotic energy loss 
no longer depends on the details of atomic structure through 〈ω〉, but only on the 
number of electrons per unit volume through ω p.

 2 substances having very different atomic structures will produce the same 
energy loss for ultrarelativistic particles provided their densities are such that 
the density of electrons is the same in each.

 The decrease in energy loss 
        due to the density effect 
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 For photographic emulsions with the density correction, this becomes constant 

at high energies with the value

 For silver bromide, ℏ ω p = 48 eV. Then for singly charged particles (13.44), 

divided by the density, has the value of approximately 1.02 MeV · (cm2 /g), agreed 
with the experiment, and corresponds to an increase above the minimum value of 
less than 10%. 
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 The density effect in energy loss is intimately connected to the coherent 
response of a medium to the passage of a relativistic particle that causes the 
emission of Cherenkov radiation. They are the same phenomenon in different 
limiting circumstances.

 Now in (✶) we take the opposite limit, ∣λ a∣≫1, the modified Bessel functions 
can be approximated by their asymptotic forms.

The real part of this expression, with the integral of (%), gives the energy 
deposited far from the path of the particle.

 If λ is positive real (usually true), the exponential factor causes the expression 
to vanish rapidly at large distances. All the energy is deposited near the path.

 This is not true only when λ is purely imaginary. Then the exponential is unity; 
the expression is independent of a; some energy escapes to infinity as radiation.

 From the definition, λ can be purely imaginary if ϵ(ω) is real ( no absorption) 
and β 2ϵ(ω) > 1.

Cherenkov Radiation 
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                                    ie, the speed of the particle must be larger than the phase
                                    velocity of the EM fields at frequency ω in order to have  

                                      emission of Cherenkov radiation of that frequency.

 Consider the phase of λ as β 2ϵ changes from less than unity to greater than 

unity, assuming that ϵ has an infinitesimal positive imaginary part when ω > 0,

 The Frank-Tamm result shows 
that the radiation is evidently not 
emitted uniformly in frequency. It 
tends to be emitted in bands situated 
somewhat below regions of anomalous 
dispersion, where β 2ϵ(ω) > 1.

 If β ≃1, the regions where β 2ϵ(ω) > 1 
may be quite extensive.

⇒ λ=− i|λ| for β
2

ϵ>1 ⇒ √
λ



λ
= i ⇒ (%1)  is real and independent of a

⇒ (%) 
d �
d x ∣rad

=
�2 e2

c2 ∫
β

2
ϵ (ω )>1

β
2

ϵ−1
β

2
ϵ

ω d ω ⇒ gives the differential
spectrum in frequency

the energy radiated as Cherenkov radiation/distance along the path of the particle

β
2

ϵ>1 ⇒ v>
c
√ϵ



  

 Another characteristic feature of Cherenkov 
radiation is its angle of emission. At large 
distances from the path the fields become 
transverse radiation fields. The direction of 
propagation is given by E  B

 So β 2ϵ> 1 can now be rephrased as the 
requirement that the emission angle θC 

be a physical angle with cos θC  < 1.

 Cherenkov radiation is completely linearly polarized in the plane containing the 
direction of observation and the path of the particle.

 The emission angle θC can be interpreted in terms of a "shock" wave front akin 
to the shock wave (sonic boom) produced by an aircraft in supersonic flight.

 The “shock wave” behavior can be given quantitative treatment by examining 
the potentials Φ ( x , t ) or A ( x , t ), eg,

A (r , t )=
2 � e
(2 π )

2
β ∫ ei k x (x− v t ) ei k⋅ρ

k x
2
(1−β

2
ϵ)+ k

2
d3 k ⇐

ϵ=ϵ (k x v)

ρ  & k : transverse
coordinates

⇒ tan θC=−
E x

E y

⇒ cos θC=
1

β √ϵ
⇐ (%2)



  



  

 In the Cherenkov regime (β 2ϵ > 1) the denominator has poles on the path of 
integration. Choosing the contour for the kx integration so that the potential 

vanishes for points ahead of the particle ( x − v t > 0), the result is

 A is singular along the shock front, as suggested by the wavelets in the figure.

 In fact the dielectric constant vary with ω = kx
 v. This functional dependence will 

remove the mathematical singularity in the expression.

 The properties of Cherenkov radiation can be utilized to measure velocities of 
fast particles.

 If the particles of a given velocity pass through a medium of known ϵ, the light 
is emitted at the Cherenkov angle θC. Thus a measurement of the angle allows 
determination of the velocity.

 Since ϵ in general varies with frequency, light of different colors is emitted at 
different angles. Narrow-band filters may be employed to select a small interval 
of frequency and so improve the precision of velocity measurement.

A (r , t )= [
2 � e

√(x−v t )2−(β
2

ϵ−1) ρ
2
β inside

0 outside

 the Cherenkov cone



  

 For very fast particles (β ≤1) a gas may be used to provide a dielectric constant 

differing only slightly from unity and having ϵ − 1 variable over wide limits by 
varying the gas pressure.

 Counting devices using Cherenkov radiation are employed in high-energy 
physics, as instruments for velocity measurements, as mass analyzers when 
combined with momentum analysis, and as discriminators against unwanted slow 
particles.



  

 Incident charged particles are elastically scattered by the time-averaged 
potential created by the atomic nucleus and its associated electrons.

 The potential is Coulombic but is modified at large distances by the screening 
effect of the electrons and at short distances by the finite size of the nucleus.

 For a pure Coulomb field, the scattering cross section is given by the 
Rutherford formula, modified at large angles by spin-dependent corrections.

 At small angles, all particles, regardless of spin, scatters according to the small-

angle Rutherford expression

 Even at           , the small-angle result is within 30% of the exact Rutherford

formula. Such accuracy is sufficient for present purposes.

 Because of electronic screening, the differential scattering cross section is 
finite, not infinite as a pure Coulomb potential, at θ = 0.

 A simple classical impact parameter calculation [Problem 13.l] with a Coulomb 
force cutoff sharply at r = a gives a small-angle cross section 

Elastic Scattering of Fast Charged Particles by Atoms 

θ=
π

2

d σ

d Ω
≈( 2 � Z e2

p v
)2

⋅
1

(θ
2
+θmin

2
)
2 ($1) ⇐

cutoff
angle

θmin  θmin
c

=
2 � Z e2

p v a

d σ

d Ω
≈( 2 � Z e2

p v
)2

⋅
1
θ

4



  

 A better form of screened 
           Coulomb interaction
                                                a rough fit to the Thomas-Fermi atomic potential.

 The quantum-mechanical cutoff angle

 The ratio of classical to quantum-mechanical angles θmin is                   , in 

agreement with the corresponding ratio of minimum impact parameters.

 For fast particles, η < 1; the quantum-mechanical cutoff angle should be used.

 At comparatively large angles the scattering cross section departs from ($1) 
because of the finite size of the nucleus.

 For charged leptons ( e, μ, τ ) the influence of the finite size is an EM effect, for 

hadrons ( π, K, p, α, ...) specifically strong-interaction effects also arise.

 Since the gross overall effect is to lower the cross section below ($1) at larger 
angles for whatever reason, we examine only the EM aspect.

 The charge distribution of an atomic nucleus can be approximated by a uniform 
volume distribution inside a sphere of radius R, falling sharply to zero outside.

Φ (r )=
� Z e2

r
e
−

r
a

⇐ a=1.4 a0
3
√Z

η=
� Z e2

ℏ v

θmin
q

=
ℏ

p a
≈

3
√Z
192

m c
p

⇐ p=γ M v



  

 The electrostatic potential

 The classical scattering cross section from such a potential exhibits singular 

behavior at a maximum angle given by the classical formula θ
c
min, but with aR.

 It is a consequence of the scattering angle                           vanishing at b = 0, 

rising to a maximum at just less than b = R and falling again for larger b. The 

maxi translates into a vanishing        and so an infinite differential cross section.

 Quantum mechanically, the wave nature of the incident particle makes the 
nuclear scattering much like the scattering of EM waves by localized scatterers.

 At short wavelengths, the scattering is diffractive, confined to an angular range

 The scattering cross section will basically fall rapidly below the point Coulomb 
result at larger angle. Or the scattering amplitude is the product of the Coulomb 
amplitude for a point charge and a form factor F( Q 2 ), the spatial Fourier 

transform of the charge distribution, where F( 0 )=1, and F ≫1 for Q R > 1

Φ (r )=

� Z e2

R
( 3

2
−

r2

2 R2 ) for r ≤R

� Z e2

r
for r > R

d θ

d b

Δ θ=
1

k R
⇐ k=

p
ℏ

θ (b)=
Δ p (b)

p



  

 The finite nuclear size sets an effective upper           limit of the scattering

 θmax≫θmin for all physical values of Z and A.

 p small ⇒ θmax
 ≥ 1 ⇒ the nuclear size has no

appreciable effect on the scattering. Only at 
higher energies are nuclear-sized effects 
important.

 For an aluminum 
                    target,

 At p=50 MeV/c, θmin= 10–4
 radian in aluminum.

 The total scattering cross section can be obtained by integrating ($1), 

σ=∫ d σ

d Ω
sin θ d θ d ϕ=2 π ( 2 � Z e2

p v
)2

∫
0

∞
θ d θ

(θ
2
+θmin

2
)
2 ≈

π

θmin
q 2 ( 2 � Z e2

p v
)2

=π a2( 2 � Z e2

ℏ v
)2

⇒

At high velocities the total scattering cross section can
be far smaller than the classical geometrical area π a2

of the atom.

θmax≈
ℏ

p R
≈

274
3
√A

m c
p

⇐ R=1.4×10−15
⋅

3
√ A

θmax=1 ⇒ p≈50 MeV / c

⇒ T ≈50 MeV for electrons
1.3 MeV for protons



  

 Rutherford scattering is confined to very small angles even for a point Coulomb 
field, and for fast particles θmax is small compared to 1. There is a very large 
probability for small-angle scattering.

 A particle traversing a finite thickness of matter will undergo very many small-
angle deflections and will generally emerge at a small angle that is the 
cumulative statistical superposition of a large number of deflections.

 Thus divide the angular range into 2 regions: one region at comparatively large 
angles, which contains only the single scatterings, and one region at very small 
angles, which contains the multiple or compound scatterings.

 The complete distribution in angle can be approximated by considering the 2 
regions separately. The intermediate region of the plural scattering must allow a 
smooth transition from small to large angles.

 The important quantity in the multiple-scattering region, a large succession of 
small-angle deflections symmetrically distributed about the incident direction, is 
the mean square angle for a single scattering

Mean Square Angle of Scattering; 
Angular Distribution of Multiple Scattering 

⟨θ
2
⟩≡

∫ θ
2 d σ

d Ω
d Ω

∫ d σ

d Ω
d Ω

⇒ ⟨θ
2
⟩=2 θmin

2 ln
θmax

θmin
⇐ the approximations

of last section



  

z

 If nuclear size is unimportant (only of interest 
for electrons),

 It is desirable to use the projected angle of 
scattering θ , the projection being made on some 
convenient plane for photographic emulsion or a 
bubble chamber.

 For small angles

 In each collision the angular deflections obey the small-angle Rutherford 
formula suitably cut off at θmin & θmax, with average value 0 and mean square 

angle ⟨θ 2⟩.

 Since the successive collisions are independent events, the central-limit 
theorem of statistics can be used to show that for a large number n of such 
collisions the distribution will be Gaussian around the forward direction with a 
mean square angle ⟨Θ2⟩ = n ⟨θ 2⟩.

θmin≈

3
√Z
192

m c
p

, θmax≈
274
3
√A

m c
p

⇒ ⟨θ
2
⟩≃4 θmin

2 ln 204
3
√Z

⇐ A≃2 Z

⟨θ
 2
⟩=

⟨θ
2
⟩

2

x
y

θmax≃1 ⇒ ⟨θ
2
⟩≃2 θmin

2 ln
192 p

3
√Z m c



  

 The number of collisions occurring as the particle traverses a thickness t of 

material containing N atoms/volume is

 For reasonable thicknesses without losing appreciable energy, the Gaussian will 
still be peaked at very small forward angles.

 The multiple-scattering distribution for the projected angle of scattering is

valid only for angles                and contributes a tail to the Gaussian distribution.

 Express angles in terms of 
the relative projected angle: α≡

θ


√⟨Θ2
⟩

⇒

PM (α) d α=
1
√π

e−α
2

d α

PS ( α) d α=
1

8 (ln 204− ln 3
√Z )

d α

α
3

P M (θ

) d θ


=

e
−

θ
 2

⟨Θ2
⟩

√π ⟨Θ2
⟩

d θ
  for θ


=±|θ

| ⇒
d σ

d θ
 =

π

2 θ
 3 ( 2 � Z e2

p v
)2

small-angle Rutherford formula

⇒ single-scattering
distribution

PS (θ

) d θ


=N t

d σ

d θ
 d θ


=

π N t
2
( 2 � Z e2

p v
)2 d θ



θ
 3

n= N σ t≃π N ( 2 � Z e2

p v
)2 t

θmin
2

⇒ ⟨Θ2
⟩≃2 π N ( 2 � Z e2

p v
)2

t ln
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θmin

or ⟨Θ2
⟩≃4 π N ( 2 � Z e2

p v
)2

t ln
204
3
√Z

≥√⟨Θ2
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 The relative amounts of multiple and single scatterings are independent of 
thickness, and depend only on Z.

 The transition from multiple to single scattering occurs around α ≃ 2.5. There 
the Gaussian has a value of 1/600 times its peak value. Thus the single-scattering 
distribution gives only a very small tail on the multiple-scattering curve.

 The Gaussian shape is the limiting form of the angular distribution for very 
large n. If the thickness t makes n not very large (ie, n ≤ 200), the distribution 

follows the single-scattering curve to smaller angles than α ≃ 2.5, and is more 
sharply peaked at 0 angle than a Gaussian.

 If the thickness is great enough, ⟨Θ2⟩ becomes comparable with θmax which 
limits the angular width of the single-scattering distribution.

 For greater thicknesses the multiple-scattering curve extends in angle beyond 
the single-scattering region, so that there is no single-scattering tail on the 
distribution [Problem 13.8].



  

 A charged particle in uniform motion in a straight line in vacuum won’t radiate.

 A particle moving at constant velocity can radiate if it is in a material medium 
and is moving with a speed > the phase velocity of light in that medium, ie, the 
Cherenkov radiation, with its characteristic angle of emission,                      .

 There is another type of radiation, transition 
radiation, that is emitted whenever a charged particle 
passes suddenly from one medium into another.

 Even if the motion is uniform throughout the 2 
media, the initial and final fields are different if 
the 2 media have different EM properties. In this 
process of reorganization some pieces of the 
fields are shaken off as transition radiation.

 The moving fields of the charged particle induce 
a time-dependent polarization P ( x , t ) in the 
medium. The polarization emits radiation.

 The radiated fields from different points in 
space combine coherently in the neighborhood 
of the path and for a certain depth in the medium, 
giving rise to transition radiation with a characteristic 
angular distribution and intensity.

Transition Radiation 

sec θC=β √ϵ

z

x



  

 The angular distribution and the formation length D are a direct consequence of 
the requirement of coherence for appreciable radiated intensity.

 The dependence at x  and on       implies a Fourier component of frequency ω

(a) move in the z direction with v and so have an amplitude proportional to         ;
(b) have significant magnitude radially from the path only out to distances of the 

      order of                   .

 The time-dependent polarization at x  generates a wave whose form in the 

radiation zone is 

assume that the radiation is observed in the x z plane and in the forward 
hemisphere.

E
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� e
[ρ

 2
+(z

−v t )2]3/2 [
ρ
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ρ
 sin ϕ
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⇐ Chapter 11
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 Appreciable coherent superposition from different points in the medium will 
occur provided the product of the driving fields of the particle and the generated 
wave does not change its phase significantly over the region

 In the radial direction coherence will be maintained only if the phase involving 
ρ is unity or less in the region 0 < ρ ≤ ρ

max where the exciting field is appreciable.

The angular distribution is therefore confined to the forward cone,  γ θ ≤ 1.

 The z -dependent factor:
  Depth of coherence d(ω):

 density≃1 ⇒ ω p≃3×1016
/ s ⇒ ℏ ω p≃20 eV ⇒

c
ω p

≃10−6 cm

⇒ D≃10 μ m ⇐ γ≥103
⇒ Dair≃30 D  for the reduced density

⇒
ω

c
n (ω)

γ v
ω

sin θ≤1 ⇒ n (ω) γ θ≤1   for  γ ≫ 1

⇒ e
i

ω z ′

v e
− i ω

c
n (ω) z ′ cos θ

e
− i ω

c
n (ω) ρ

′ sin θ cos ϕ
′

=e
i ω

c
( z ′

β
− n ( z′ cos θ+ ρ

′ sin θ cos ϕ
′
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e
i ω

c
( 1

β
− n cos θ ) z ′
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( 1
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1
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ν +ν
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 The coherence volume adjacent to the particle's path and the surface from 
which transition radiation of frequency ω comes

 In the absence of compensating factors, the spectrum of transition radiation 
will extend up to, but not appreciably beyond, ν ≃ 1.

 The radiation is confined to small angles in the forward direction γ θ ≤ 1. It is 
produced by coherent radiation of the time-varying polarization in a small volume 
adjacent to the particle's path and at depths into the medium up to D. Its 
spectrum extends up to frequencies of the order of ω ∼ γ ω 

p.

 For frequencies above the optical resonance region, the index of refraction~1. 
The incident particle's fields at such frequencies are not significantly different in 

the medium and in vacuum

 The propagation of the wave radiated by the polarization must be described 

properly with the wave number                     appropriate to the medium.

 The dipole radiation field from the polarization P ( r , ω ) d3 x  in d3 x  at r  is

(9.18) ⇒ d E rad=
ei k �

�
(k×P )× k d3 x 

⇐ �= r− k̂⋅r 

V (ω)∼π ρmax
2

(ω) d (ω)∼
2 π γ

ν (ν
2
+1)
( c

ω p
)3

⇒ V  decrease in size rapidly for ν >1

k=
n (ω) ω

c

⇒ P (r  , ω)≃
ϵ (ω)−1

4 π
E i (r

 , ω)



  

⇒ E rad=∫ d E rad=
ϵ (ω)−1

4 π

ei k r

r
k2 ∫

z
′
>0

( k̂×E i)× k̂ e− i k⋅r ′ d3 x 

≃
−ω p

2

4 π c2

ei k r

r
k2 ∫

z ′>0

( k̂×E i)× k̂ e− i k⋅r ′ d3 x 
⇐ ϵ≃1−

ω p
2

ω
2

, ω>ω p

⇒
d2 I

d ω d Ω
=

c
32 π

3

ω p
4

c4 |∫ z >0

[ k̂×E i (r , ω)]× k̂ e−i k⋅r d3 x|
2

⇐ Chapter 14

Eρ=√
π

2
� e ω

γ v2
e

i
ω z
v K 1( ω ρ

γ v
) , E z=− i √

π

2
� e ω

γ v2
e

i
ω z
v K 0( ω ρ

γ v
)

⇒ F≡ ∫
z>0

[ k̂×E i (r , ω)]× k̂ e− i k⋅r d3 x

=∬ [ k̂×E i ]z=0× k̂ e− i k x sin θ d y d x ∫
0

∞

e
i z

ω−k v cos θ

v d z

= i v
1−e

i Z
ω−k v cos θ

v

ω−k v cos θ
∬ [ k̂×E i]z=0× k̂ e− i k x sin θ d y d x ⇐ Z ≥D

For a single
interface

F=
i v

ω− k v cos θ
∬ [ k̂×E i]z=0× k̂ e− i k x sin θ d y d x



  

( k̂×E i)× k̂=(E ρ cos θ cos ϕ−E z sin θ) ê a+E ρ sin ϕ ê b ⇐ figure
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d Ω=d ϕ d cos θ≃
d ϕ d η
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 At low frequencies the 
spectrum peaks at η ≃ 1 and 

then falls as     until the 

value             is reached. 

Then it falls off as      .

 For ν ≥ 1, the spectrum peaks

at           and falls at       for η ≫ 1.

 At η = 0 the denominator is 

(1 + ν 2)2, so for ν ≫ 1 there is 
negligible intensity at any angle.
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 The energy spectrum is

 The spectrum diverges logarithmically 
at low frequencies, where our approximate 
treatment fails in any event, but it 
has a finite integral.

 The total energy emitted in transition
radiation per interface

 From the figure, about half the energy 
is emitted in the range 0.1 ≤  ν  ≤  l.

 It means that an appreciable fraction 
of the energy appears as energetic 
photons.
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 With γ = 10 3 & ℏ ω 
p
 = 20 eV, these quanta are in the soft x-ray region of 2-20keV.

 The presence of the factor of γ in the result makes transition radiationtransition radiation 
attractive as a mechanism for the identification of particles, and perhaps even 
measurement of their energies, at very high energies where other means are 
unavailable.

 The numerical factor                indicates that the probability of energetic

photon emission per transit of an interface is very small.

 So it needs to utilize a stack of many foils with gaps between. The foils can be 
quite thin, compared to a formation length D. Then a particle traversing each foil 
will emit twice in transition radiation.

 A typical set-up might involve 200 Mylar foils of thickness 20 μm, with spacings 
150-300 μm. The coherent superposition of the fields from the different 
interfaces, 2 for each foil, causes a modulation of the energy and angular 
distributions.

1
3×137
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