
  

Chapter 10Chapter 10 Scattering and Diffraction

 Approaches for the topics of scattering and diffraction differ depending on the 
relative length scales involved—the wavelength and the size of the target.

 When the wavelength of the radiation is large compared to the dimensions of 
the target, a simple description in terms of lowest order induced multipoles is 
appropriate.

 When the wavelength and size are comparable, a more systematic treatment 
with multipole fields is required.

 In the limit of very small wavelength compared to the size of the target, semi-
geometric methods can be utilized to obtain the departures from geometrical 
optics.



  

A. Scattering by Dipoles Induced in Small ScatterersA. Scattering by Dipoles Induced in Small Scatterers
 Think of the incident (radiation) fields as inducing electric and magnetic 

multipoles that oscillate in definite phase relationship with the incident wave and 
radiate energy in directions other than the direction of incidence.

 The exact form of the angular distribution of radiated energy is governed by 
the coherent superposition of multipoles induced by the incident fields and in 
general depends on the state of polarization of the incident wave.

 If the wavelength of the radiation is long compared to the size of the scatterer, 
only the lowest multipoles, usually electric and magnetic dipoles, are important.

 In these circumstances the induced dipoles can be calculated from static or 
quasi-static boundary-value problems, just as for the small apertures in Chap. 9.

 Consider a plane monochromatic wave to be incident on a scatterer,

 These fields induce dipole moments p and m in the small scatterer and these 
dipoles radiate energy in all directions
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 Differential scattering cross sectionDifferential scattering cross section: the power radiated in the direction 
with polarization   , per unit solid angle, per unit incident flux (power per unit 
area) in the direction      with polarization

The dependence of the cross section on      &     is implicitly contained in p & m. 

 Rayleigh's lawRayleigh's law: the variation of the differential (and total) scattering cross 
section with wave number as k 4 (or λ−4) is an almost universal characteristic of 
the scattering of long-wavelength radiation by any finite system.

 Only if both static dipole moments vanish does the scattering fail to obey 
Rayleigh's law; the scattering is then via quadrupole or higher multipoles (or 
frequency-dependent dipole moments) and varies as ω 6 or higher.

 Rayleigh scatteringRayleigh scattering is usually for the incoherent scattering by a collection of 
dipole scatterers. 
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|ê 
⋅Esc|

2

1
2 Z0

|ê0
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B. Scattering by a Small Dielectric SphereB. Scattering by a Small Dielectric Sphere 

The scattered radiation is linearly polarized in the plane by      and    .

 The incident radiation is unpolarized. So we would like to know the angular 
distribution of scattered radiation of a definite state of linear polarization. The 
cross section (9) is averaged over initial polarization     for a fixed choice of   .

 The scattering plane is defined by       and    . The differential cross sections for 
an unpolarizedunpolarized incident radiation is averaged to be

y
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 The polarization  has its max at           . At this angle the scattered radiation is 

100% linearly polarized ⊥ to the scattering plane, and for an appreciable range 

of angles on either side of        is quite significantly polarized.

 The polarization characteristics of the blue sky are an illustration of this 
phenomenon, and can be verified on a sunny day with a linear polarizer or 
suitable sunglasses. 
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. Scattering by a Small Perfectly Conducting SphereС. Scattering by a Small Perfectly Conducting SphereС  

 The cross section has a strong backward 
peaking caused by electric dipole-magnetic 
dipole interference.

 The polarization reaches =1 at            

and is positive through the whole angular range.
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 Dipole scattering with its ω 4 dependence on frequency is the lowest order 
approximation in an expansion in k d. 

 In the domain kd~1, more than the lowest order multipoles must be considered.

 When k d ≫1, approximation methods of a different sort can be employed, as in 
Sec. 10.10. 



  

D. Collection of ScatterersD. Collection of Scatterers 
 Consider the scattering system consists of a number of small scatters with fixed 

spatial separations. The scattering cross section results from a coherent 
superposition of the individual amplitudes.

 Because the induced dipoles are proportional to the incident fields, evaluated 
at the position rj of the j th scatterer, its moments will possess a phase factor,        .

 If the observation point is far from the whole scattering system, the fields for 
the j th scatterer will have a phase factor

 The presence of the phase factors means that the scattering depends 
sensitively on the exact distribution of the scatterers in space.

 Assume that all the scatterers are identical. Then the cross section is the 
product of the cross section for one scatterer times a structure factor,

 If the scatterers are randomly distributed, the terms with j ≠ ℓ give a negligible 

contribution. Only the terms with j = ℓ are significant 
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 If the scatterers are numerous and have a regular distribution in space, the 
structure factor effectively vanishes everywhere except in the forward direction.

 There is therefore no scattering by a very large regular array of scatterers, of 
which single crystals of transparent solids like rock salt or quartz are examples.

 For a simple cubic array 
        of scattering centers

 At short wavelengths k a > π, ℱ has peaks when the Bragg scattering conditionBragg scattering condition, 

qi
  a = 0, 2 π, 4 π,..., is obeyed. This is the situation familiar in x-ray diffraction.

 At long wavelengths only the peak at qi
 a=0 is relevant because (qi

 a)max=2ka≪1

 The scattering is thus confined to the region                , corresponding to angle

smaller than     , where L is a typical overall dimension of the scattering array. 
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A. General TheoryA. General Theory
 If there are spatial/temporal variations in the EM properties of the medium, the 

wave is scattered. Some of the energy is deviated from its original course.

 If the variations in the properties are small in magnitude, the scattering is 
slight and perturbative methods can be employed.

  

Perturbation Theory of Scattering, Rayleigh's Explanation of the 
Blue Sky, Scattering by Gases and Liquids, Attenuation in Optical 
Fibers
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 Compared with with the scattered dipole field ($), the polarization dependence 
of the contribution from (                       ) is that of an electric dipole p, from (                          ) 

a magnetic dipole m.

 With the expression of scattering amplitude, a systematic scheme of successive 
approximations can be developed in the same way as the Born approximation 
series of quantum-mechanical scattering.
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B. Born ApproximationB. Born Approximation
 (First) Born approximation(First) Born approximation: lowest order approximation for the scattering 

amplitude.

 Suppose the scattering region is a uniform dielectric sphere of radius a and δ ϵ 
is constant inside the spherical volume

 At very low frequencies or in the forward direction at all frequencies, the Born 
approximation to the differential cross section for scattering by a dielectric 

sphere of radius a is    
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A uniform dielectric sphere of radius a  and δ ϵ=const , δ μ=0

⇒
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ê 
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C. Blue Sky: Elementary ArgumentC. Blue Sky: Elementary Argument 
 Since the magnetic moments of most gas molecules are negligible compared to 

the electric dipole moments, the scattering is purely electric dipole in character.

 The treatment is in 2 parts:
(1) Elementary argument is adequate for a dilute ideal gas, where the molecules 
     are truly randomly distributed in space relative to each other;
(2) Based on density fluctuations in the gas, which is of more general validity.

 For a random distribution of scattering centers ℱ is an incoherent sum, and the 
cross section is that for one molecule, times the number of molecules.

 For a dilute gas

represents the power scattered per molecule for a unit incident energy flux.

 In traversing a thickness d x of the gas, the fractional loss of flux is N σ d x.  
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 These results describe the Rayleigh scattering, the incoherent scattering by 
randomly distributed dipoles, each scattering according to Rayleigh's ω 4 law. 
 
 The k 4 dependence means that in the visible spectrum the red is scattered least 

and the violet most.

 Light received away from the direction of the incident beam is more heavily 
weighted in blue components than the spectral distribution of the incident beam, 
while the transmitted beam becomes increasingly red in its spectral composition, 
as well as diminishing in overall intensity.

 The blue sky, the red sunset, the waneness of the winter sun, and the easy 
sunburning at midday in summer are all consequences of Rayleigh scattering in 
the atmosphere.

 With an isothermal model of the atmosphere in which the density varies 
exponentially with height, the intensities at the earth's surface relative to those 
incident on the top of the atmosphere.

 It shows strikingly the shift to the red of the surviving sunlight at sunrise and 
sunset.

nair−1≃2.78×10−4 in the visible region (4100−6500 Å) & NTP

⇒ attenuation
length
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1
α
=

30 km for violet (4100 Å)

77 km for green (5200 Å)

188 km for     red (6500 Å)

with N =2.69×1019
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Rayleigh scattering by an 
isothermal, exponential 
atmosphere 

spectrum at sea 
level with the sun 
directly overhead

power spectrum 
of solar radiation 
incident on earth

the sunrise-sunset 
spectrum at sea level

Color Zenith Sunrise – Sunset
Red (6500 Å) 0.96 0.21

Green (5200 Å) 0.90 0.024
Violet (4100 Å) 0.76 0.000065



  

 The real attenuation is greater because of the presence of water vapor, which 
has strong absorption bands in the infrared, and ozone, which causes absorption 
of the ultraviolet, as well as other molecular species and dust.

 At 90° the polarization of the scattered light is a function of wavelength and 
reaches a maximum of approximately 75% at 5500Å.

 From (1) if there were no atomicity ( N 
 ∞ ), there would be no attenuation. 

Conversely, the observed attenuation can be used to determine N.



  

D. Density Fluctuations; Critical OpalescenceD. Density Fluctuations; Critical Opalescence 
 A more general approach to the scattering & attenuation of light in gases and 

liquids is to consider fluctuations in the density and so the index of refraction.

 The volume V of fluid is imagined to be divided into cells small compared to a 

wavelength. Each cell has volume v with an average number Nv=v N of molecules

⇒ δ ϵ j=
Δ N j

v
∂ ϵ

∂ N
=
(ϵr −1) (ϵr+2)

3 N v
Δ N j ⇐ Clausius-Mossotti relation

⇒
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 As the critical point is approached, βT becomes infinite, the scattering and 

attenuation thus become large — critical opalescencecritical opalescence.

 The large scattering is related to the large fluctuations in density near the 
critical point. Near the critical point our treatment fails because the correlation 
length for the density fluctuations becomes greater than a wavelength.

 For large correlation length  we must retain the exponential phase factors. 
The absolute square of the scattering amplitude then involves a sum

 If a correlation function of Yukawa form            is assumed

 The frequency dependence as ω 4 away from the critical point is altered to 
roughly ω 2; the scattered light appears ''whiter" close to the critical point. 
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E. Attenuation in Optical Fibers E. Attenuation in Optical Fibers  
 The factor for the max distance in optical fiber transmission is the attenuation 

caused by Rayleigh scattering, and by infrared absorption at longer wavelengths. 

by water

α (dB /km)≈0.85 [λ (μ m )]
−4

absorption
mean free path

=22 km

αmin=0.2 dB / km



  

 For a scalar field satisfying the wave equation, the expansion can be obtained 
by using the orthogonality properties of the spherical solutions jℓ ( k r ) Yℓm ( θ , ϕ ).

 An alternative derivation makes use of the spherical wave expansion of the 
Green function

 Wish to make an equivalent expansion for a circularly polarized plane wave 
with helicity ± incident along the z-axis, from (9.122)
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
)Y ℓ

m
(θ , ϕ)

⇒ ei k r̂ ′⋅r
=4 π ∑ iℓ jℓ (k r ) Y ℓ

 m
(θ , ϕ) Y ℓ

m
(θ

 , ϕ

) ⇐  complex conjugate

=∑ iℓ
(2 ℓ+1) j ℓ (k r ) Pℓ (cos γ ) ⇐ addition theorem (3.62)

=∑ iℓ √4 π (2 ℓ+1) j ℓ (k r )Y ℓ
0
(γ ) (4) ⇐ r̂ 

⋅r̂=cos γ



  

∫ [ f ℓ (k r ) X ℓ

m

]

⋅g ℓ (k r )X ℓ

m d Ω= f ℓ

 gℓ ∫ X ℓ

 m

⋅X ℓ
m d Ω= f ℓ

 g ℓ δℓ ℓ δm m

∇= r̂ ( r̂⋅∇)+∇− r̂ ( r̂⋅∇)= r̂ ( r̂⋅∇)+( r̂⋅r̂ ) ∇ − r̂ ( r̂⋅∇)= r̂
∂

∂ r
− r̂×( r̂ ×∇)

⇒ ∇= r̂ ∂

∂ r
−

i
r

r̂× L̂ ⇐ L̂ =
r×∇

i

i r ∇× L̂= i r ( r̂
∂

∂ r
−

i
r

r̂ × L̂ )× L̂ =( r̂× L̂ )× L̂=∑ ϵ j k ℓ ê j ϵk m p nm L̂ p L̂ ℓ

=∑ ê j (δ j p δ ℓ m−δ j m δ ℓ p) nm L̂ p L̂ ℓ=∑ ê j nm L̂ j L̂m− r̂ L̂2

=∑ ê j nm ( L̂m L̂ j+ i ϵ j m k L̂ k)− r̂ L̂2
⇐ [ L̂ j , L̂m]= i ϵ j m k L̂k

=∑ ê j ( r̂⋅ L̂ ) L̂ j+ i r̂ × L̂− r̂ L̂2
⇒ ∇× L̂=

r̂× L̂
r

+ i
r̂
r

L̂2

⇒ ∇× gℓ X ℓ
m
=( ∂ gℓ

∂ r
+

gℓ

r
) r̂ ×X ℓ

m
+ i

gℓ

r
r̂ ( L̂⋅X ℓ

m
)

=
1
r
( ∂

∂ r
(r g ℓ) r̂ ×X ℓ

m
+ i g ℓ ( L̂⋅X ℓ

m
) r̂ )

⇒ ∫ ( f ℓ X ℓ

m

)

⋅∇×gℓ X ℓ

m d Ω=0 ⇐ r̂⋅X ℓ
m
=0 , ∫ X ℓ

 m

⋅r̂×X ℓ
m d Ω=0



  

∫ (∇ × f ℓ X ℓ

m

)

⋅∇×g ℓ X ℓ

m d Ω=
δℓ ℓ δm m

r2
( ℓ (ℓ+1) f ℓ

 gℓ+
∂

∂ r
(r f ℓ


)

∂

∂ r
(r gℓ))

∫ (∇ × f ℓ X ℓ

m

)

⋅∇×g ℓ X ℓ

m d Ω=
1
r2
∫ [∂r (r f ℓ) r̂×X ℓ

m

+ i f ℓ ( L̂⋅X ℓ

m

) r̂ ]

⋅[∂r (r gℓ) r̂×X ℓ
m
+ i gℓ ( L̂⋅X ℓ

m
) r̂ ] d Ω=

δ ℓ ℓ δ m m

r2
[ ℓ (ℓ+1) f ℓ

 g ℓ+∂r (r f ℓ

) ∂r (r gℓ)]

⇒

a ℓ m
± jℓ (k r)= ∫ X ℓ

 m
⋅E d Ω=∫ X ℓ

 m
⋅( x̂± i ŷ ) ei k z d Ω ⇐ (3)

=∫ ei k z (L∓ Y ℓ
m
)


√ℓ (ℓ+1)
d Ω= √

(ℓ±m) (ℓ∓m+1)
ℓ (ℓ+1)

∫ Y ℓ
 m∓1 ei k z d Ω

bℓ m
± jℓ (k r )=c ∫ X ℓ

 m
⋅B d Ω=∓ i ∫ X ℓ

 m
⋅E d Ω

⇒ a ℓ m
±

=2 iℓ √π (2 ℓ+1) δm
±1

⇐ (4)
bℓ m
±

=∓ i aℓ m
±

⇒

E (r )=2∑ iℓ √π (2 ℓ+1)(+ jℓ (k r ) X ℓ
±1
±

1
k
∇× j ℓ (k r ) X ℓ

±1)
c B (r )=2∑ i ℓ−1 √π (2 ℓ+1)(± jℓ (k r ) X ℓ

±1
+

1
k
∇× jℓ (k r ) X ℓ

±1)
plane
wave

 For such a circularly polarized wave  m=±1 have the obvious interpretation of 
±1 unit of angular momentum per photon parallel to the propagation direction.



  

 If a plane EM wave is incident on a 
spherical obstacle, it is scattered, so that 
far away from the scatterer the fields 
are represented by a plane wave 
plus outgoing spherical waves.

 There may be absorption by the obstacle 
as well as scattering. The total energy 
flow away from the obstacle will be less 
than the total energy flow towards it, the difference being absorbed.

 The coefficients α±
ℓ and β±

ℓ will be determined by the boundary conditions on 
the surface of the scatterer.

 For the spherically symmetric problems considered here, only m = ±1 occurs. 

 The scattered power is the outward component of the Poynting vector formed 
from the scattered fields, integrated over the spherical surface.

Scattering of Electromagnetic Waves by a Sphere 

E (r )=E inc+Esc , B (r )=B inc+Bsc

⇒

E sc=∑
ℓ

iℓ √π (2 ℓ+1)(+αℓ
± hℓ


(k r ) X ℓ

±1
±

β ℓ
±

k
∇×hℓ


(k r )X ℓ

±1)
c Bsc=∑

ℓ

iℓ−1 √π (2 ℓ+1)(±β ℓ
± hℓ


(k r )X ℓ

±1
+

αℓ
±

k
∇×h ℓ


(k r ) X ℓ

±1)



  

 The absorbed power is the inward component formed from the total fields

resemble closely the partial wave expansions of quantum-mechanical scattering.

 
 

∇× f ℓ X ℓ
m
= i √

ℓ (ℓ+1)
r

f ℓ Y ℓ
m r̂ + 1

r
∂

∂ r
(r f ℓ) r̂×X ℓ

m used in (4)

gives sums of these forms: X ℓ
 m
⋅X ℓ

m 

, X ℓ
 m
⋅( r̂×X ℓ

m

) , ( r̂ ×X ℓ
 m
)⋅(r̂ ×X ℓ

m

)

⇒

σ sc≡
power scattered

incident flux
=

π

2 k2 ∑ (2 ℓ+1) (|αℓ|
2
+|β ℓ|

2
)  use Wronskians

σ abs≡
power absorbed

incident flux
=

π

2 k2 ∑ (2 ℓ+1) (2−|αℓ+1|2−|β ℓ+1|2)

⇒ total (extinctioin)
cross section

σ total=σsc+σ abs=−
π

k2 ∑ (2 ℓ+1) ℜ [αℓ+β ℓ ]

Psc=−
a2

2 μ0

ℜ ∫ E sc⋅( r̂×Bsc

) d Ω

Pabs=+
a2

2 μ0

ℜ ∫ E ⋅( r̂×B
) d Ω

(4) ⇐ only the transverse parts of
the fields enter these eqns

d σsc

d Ω
≡

d P sc

d Ω
incident

flux

=
π

2 k2 |∑ℓ
√2 ℓ+1 (αℓ

± X ℓ
±1
± i β ℓ

± r̂×X ℓ
±1
)|

2
 for 

incident
polarization

ê1± i ê 2



  

∇×g ℓ X ℓ
m
=

∂r r gℓ

r
r̂×X ℓ

m
+ i

g ℓ

r
( L̂⋅X ℓ

m
) r̂ ⇒ r̂×∇× gℓ X ℓ

m
=−

∂r r gℓ

r
X ℓ

m

⇒
Esc=∑ iℓ √π (2 ℓ+1)( αℓ

± h ℓ
 X ℓ

±1
±β ℓ

±
∂r (r hℓ


) r̂×X ℓ

±1
+ i h ℓ


( L̂⋅X ℓ

±1
) r̂

k r
)

r̂ ×Bsc=∑ iℓ+1 √π (2 ℓ+1)
c

( α ℓ
±

k r
∂r (r hℓ


)X ℓ

±1
∓β ℓ

± h ℓ
 r̂ ×X ℓ

±1)
⇒ Psc=−

a2

2 μ0

ℜ ∫ E sc⋅(r̂ ×Bsc)
 d Ω

=−
a

2 μ0

ℜ [
π

i c k ∑ (2 ℓ+1) [h ℓ

∂r (r hℓ

–
)|αℓ|

2
− hℓ

–
∂r (r hℓ


)|β ℓ|

2
]]r=a

=
i π a2

4 μ0 c k ∑ (2 ℓ+1) [(|α ℓ|
2
+|β ℓ|

2
) (hℓ


∂r hℓ

–
−h ℓ

–
∂r hℓ


)]r= a

=
π

2 μ0 c k2∑ (2 ℓ+1) (|αℓ|
2
+|β ℓ|

2
) ⇐ W (hℓ


(x ) , hℓ

–
(x ))= 2

i x2

E =(x̂± i ŷ ) ei k z , c B= ẑ×E ⇒ S z≡ ẑ⋅
E ×B

2 μ0

=
1

μ0 c

⇒ σ sc≡
Psc

S z

=
π

2 k2∑ (2 ℓ+1) (|α ℓ|
2
+|β ℓ|

2
)



  

E (r )=E inc+Esc , B (r )=B inc+Bsc

⇒ E⋅( r̂×B
)=E inc⋅( r̂×B inc


)+E inc⋅( r̂ ×Bsc


)+Esc⋅( r̂×B inc


)+Esc⋅( r̂ ×Bsc


)

E inc=2∑ iℓ √π (2 ℓ+1)( jℓ X ℓ
±1
±
∂r r j ℓ

k r
r̂ ×X ℓ

±1
+ i

jℓ

k r
( L̂⋅X ℓ

±1
) r̂ )

r̂×B inc=2∑ iℓ+1 √π (2 ℓ+1)
c

( ∂r r j ℓ

k r
X ℓ

±1
∓ j ℓ r̂ ×X ℓ

±1)

⇒

ℜ ∫ E inc⋅( r̂×B inc)
 d Ω=0

ℜ [∫ E inc⋅(r̂ ×Bsc)

+E sc⋅( r̂×B inc)

 d Ω]=−
2 π

c k 2 a2 ∑ (2 ℓ+1) ℜ [αℓ+β ℓ]

ℜ ∫ E sc⋅(r̂ ×Bsc)
 d Ω=−

π

c k2 a2 ∑ (2 ℓ+1) (|αℓ|
2
+|β ℓ|

2
)

⇒ Pabs=
a2

2 μ0

ℜ ∫ E ⋅( r̂ ×B
) d Ω=

π

2 μ0 c k 2 ∑ (2 ℓ+1) (2−|αℓ+1|2−|β ℓ+1|2)

⇒ σ abs≡
Pabs

S z

=
π

2 k2 ∑ (2 ℓ+1) (2−|αℓ+1|2−|β ℓ+1|2)



  

 The scattered radiation is in general elliptically polarized. Only if α±
ℓ = β

±
ℓ for 

all ℓ would it be circularly polarized.

 Therefore if the incident radiation is linearly polarized, the scattered radiation 
will be elliptically polarized; if the incident radiation is unpolarized, the scattered 
radiation will exhibit partial polarization depending on the angle of observation.

 If the scatterer is a sphere of radius a whose EM properties can be described 
by a surface impedance Zs independent of position, the boundary conditions are 

E∥(r =a)=
Z s

μ0
r̂×B (r =a)  where with x=k r

E∥=∑
ℓ , m

i ℓ √π (2 ℓ+1)(+(2 j ℓ+αℓ
± hℓ


)X ℓ

m
±

1
x
∂ x (2 jℓ+ β ℓ

± hℓ

)

∂ x
r̂×X ℓ

m )
c r̂×B=∑

ℓ , m
iℓ−1 √π (2 ℓ+1)(− 1

x
∂ x (2 j ℓ+αℓ

± h ℓ

)

∂ x
X ℓ

m
±(2 jℓ+ β ℓ

± hℓ

) r̂×X ℓ

m )

⇒

2 j ℓ+αℓ
± hℓ


= i

Z s

Z 0

1
x

d
d x

[ x (2 jℓ+αℓ
± h ℓ


)]

2 j ℓ+β ℓ
± hℓ


= i

Z0

Z s

1
x

d
d x

[ x (2 jℓ+β ℓ
± hℓ


)]

2 jℓ= hℓ

+ hℓ

–
⇐ hℓ

±
= jℓ± i nℓ

x= k a



  

For perfect conductors: E∥=0 , B=0

For conductors only: E∥=
1− i
δ σ

n̂ ×H∥ ⇐ (8.11)

For generalization: E∥=Z s n̂ ×H∥=
Z s

μ0
n̂ ×B

2 j ℓ+αℓ
± hℓ


= i

Z s

Z0

1
x

d
d x

[ x (2 jℓ+αℓ
± hℓ


)]  2 j ℓ=hℓ


+hℓ

–

⇒ x h ℓ

+ x hℓ

–
+αℓ

± x hℓ

= i

Z s

Z0

d
d x

(x h ℓ

+ x hℓ

–
+α ℓ

± x h ℓ

)

⇒ αℓ
±( x hℓ


− i

Z s

Z 0

d x h ℓ


d x
)=(− x hℓ


+ i

Z s

Z0

d x hℓ


d x
− x hℓ

–
+ i

Z s

Z0

d x hℓ
–

d x
)

⇒ αℓ
±
=−1−

x hℓ
–
− i

Z s

Z0

d x hℓ
–

d x

x h ℓ

− i

Z s

Z0

d x hℓ


d x

. Similar to β ℓ
±



  

If Z s∈ I
Z s= 0  or Z s ∞

⇒
|αℓ

±
+1|=1

|β ℓ
±
+1|=1

⇒
αℓ

±
=e2 i δℓ−1

β ℓ
±
=e2 i δℓ

′

−1
⇐

δ ℓ

δ ℓ
′ : scattering

phase shifts

⇒
tan δ ℓ=

jℓ (k a)
nℓ (k a)

, tan δℓ

=

d x jℓ

d x
d x nℓ

d x
|

x= k a

for Z s=0 ,  perfectly conducting sphere

and
tan δ ℓ= tan δℓ∣Z s=0



tan δ ℓ

= tan δℓ∣Z s=0

for Z s ∞

 With the surface impedance boundary condition the coefficients are the same 
for both states of circular polarization.

 For a given Zs, the multipole coefficients are decided & the scattering is known.

⇒ αℓ
±
=−1−

x hℓ
–
− i

Z s

Z0

d x hℓ
–

d x

x h ℓ

− i

Z s

Z0

d x hℓ


d x

, β ℓ
±
=−1−

x hℓ
–
− i

Z0

Z s

d x hℓ
–

d x

x hℓ


− i

Z0

Z s

d x hℓ


d x

(5)

(5) ⇒

αℓ
±
≃−

2 i (k a)2 ℓ+1

(2 ℓ+1) [(2 ℓ−1)!!]2
Z0 x− i (ℓ+1) Z s

Z0 x+ i ℓ Z s

β ℓ
±
≃−

2 i (k a)2 ℓ+1

(2 ℓ+1) [(2 ℓ−1)!!]2
Z s x− i (ℓ+1) Z 0

Z s x+ i ℓ Z 0

for k a≪ ℓ (6)



  

αℓ
±
≃

Z 0−Z s

Z 0+ Z s

(−1)ℓ e−2 i k a
−1 , β ℓ

±
=−αℓ

±   for  k a ≫ ℓ 

 In the long-wavelength limit, α±
ℓ and β±

ℓ become small very rapidly as ℓ 
increases. Only the lowest term (ℓ =1) need be retained for each multipole series.

 In the short-wavelength limit, the successive coefficients have comparable 
magnitudes, but phases that fluctuate widely. 

 For ℓ ~ ℓmax = k a, there is a transition region and for ℓ ≫ ℓmax, (6) holds.

 For the long-wavelength limit (k a ≪ 1) and a perfectly conducting sphere 

( Zs = 0), only the ℓ = 1 terms are important

 The result is valid for either state of circular polarization incident, or for an 
unpolarized incident beam. 

⇒ α1
±
=−

β1
±

2
=−

2 i
3

(k a)3 ⇒
d σsc

d Ω
≃

2 π

3
k4 a6

|X1
±1
∓2 i r̂×X 1

±1
|
2

|r̂×X 1
±1
|
2
=|X1

±1
|
2
=

3
16 π

(1+ cos2
θ ) + ± i ( r̂ ×X1

±1
)

⋅X 1

±1
=−

3
8 π

cos θ

⇒
d σsc

d Ω
≃

k 4 a6

8
(5−8 cos θ+5 cos2

θ)=(7)



  

 Diffraction is associated with departures from geometrical optics caused by the 
finite wavelength of the waves. Thus diffraction involves apertures or obstacles 
whose dimensions are large compared to a wavelength.

 To lowest approximation EM waves’ interaction is described by ray tracing 
(geometrical optics). The next approximation involves the diffraction of the waves 
around the obstacles or through the apertures with a spreading of the waves.

 Simple arguments based on Fourier transforms show that the angles of 

deflection of the waves are confined to the region       . 

 The various approximations all work best for λ ≪ d, and fail for λ ~ d or λ > d. 

 The angular distribution of the fields 
in region II, the diffraction region, is 
called the diffraction pattern.

 Wish to express the diffracted
fields in region II in terms of the 
fields on the surface S1.

 The geometry and mode of description 
for diffraction is equally applicable to scattering, with the sources in region I 
replaced by a scatterer.

Scalar Diffraction Theory 

∞

∞

θ≤
λ

d



  

 The Kirchhoff approximationKirchhoff approximation consists of the assumptions: 

(1) ψ and      vanish everywhere on S1 except in the openings. 

(2) The values of ψ and      in the openings are equal to the values of the 

      incident wave in the absence of any screen or obstacles.

Scalar Helmholtz
wave equation

(∇
2
+ k2

)ψ (r )=0 ⇒ (∇
2
+ k2

)G (r , r 
)=−δ (r−r 

)

⇒ ψ (r )= ∮
S

[ψ ∇
 G (r , r 

)−G (r , r 
) ∇


ψ ]⋅d a

⇐ (1.36)
d a  : inwardly

=−
1

4 π
∮
S

ei k �

� [∇ 
ψ+( i k− 1

�
) �̂ ψ ]⋅d a

⇐

�⃗=r−r 

G (r , r 
)=

ei k �

4 π �

= ∫
S1

+ ∫
S2  ∞

⇐

ψ∞  f (θ , ϕ)
ei k r

r
, 1

ψ
∂ ψ

∂ r ∞

 i k− 1
r

⇒ ∇

ψ+( i k−

1
�
) �̂ ψ ∝

1
r2

radiation
condition

⇒ ψ (r )=−
1

4 π
∫
S1

ei k �

� [∇ 
ψ+( i k− 1

�
) �̂ ψ ]⋅d a  Kirchhoff

integral
(11)

∂ ψ

∂ n

∂ ψ

∂ n



  

 The standard diffraction calculations of classical optics are all based on the 
Kirchhoff approximation. However, the recipe can have only limited validity.  

 A mathematical inconsistency in the Kirchhoff assumptions: for the Helmholtz

wave equation, if                      on any finite surface, then ψ = 0 everywhere.

 The only mathematically correct result of the 1st Kirchhoff assumption is that 
the diffracted field vanishes everywhere, inconsistent with the 2nd assumption.

 The mathematical inconsistencies in the Kirchhoff approximation can be 
removed by the choice of a proper Green function.

 If ψ is known or approximated on S1, a Dirichlet Green function is required,

 If      is known or approximated on S1, a Neumann Green function is required,

G D=0  for r   on S ⇒ ψ (r )= ∫
S1

ψ ∇
 G D⋅d a

(12)

∂ G N

∂ n =0  for r   on S ⇒ ψ (r )=−∫
S1

G N ∇

ψ⋅d a

(13)

ψ=
∂ ψ

∂ n
=0

∂ ψ

∂ n



  ψ (P )=
k

2 π i
∫

apertures

ei k r

r
ei k r ′

r  O (θ , θ

) d a

(10)

 If S1 is an infinite plane screen at z = 0, the method of images can be used

 It might appear that the 3 approximate 
formulas (11)-(13) are different and will lead to 
different results. But in fact they yield very similar results.

 The amplitude of the point source P  is taken to be 

spherically symmetric and equal to        , r, r ≫ wavelength.

 The diffracted fields for all 3 approximations can be written in the common 

form, 

ei k r ′

r 

⇒ GD , N (r , r 
)=

1
4 π
( ei k �

�
∓

ei k �′

�
) ⇐

�=|r−r 
| , �=|r −r″|
r″ : image of r ′

then �=√(x− x 
)
2
+(y− y

)
2
+(z− z

)
2 , �=√( x− x

)
2
+( y− y

)
2
+(z+ z

)
2

⇒ ψ (r )=

k
2 π i

∫
S1

( 1+
i

k �
) ei k �

�
ψ (r 

) �̂⋅d a 
⇐ G D

−
1

2 π
∫
S1

ei k �

�
∇


ψ (r 

)⋅d a
⇐ G N



  

 For apertures being large compared to a wavelength, the diffracted intensity is 
confined to a narrow range of angles and is governed almost entirely by the 
interferences between the 2 exponential factors in (10).

 If P  & P are far from the screen in terms of the aperture dimensions, the 
obliquity factor can be treated as a constant. Then the relative amplitudes of the 
different diffracted fields will be the same.

 For normal incidence all obliquity factors are approximately unity where there 
is appreciable diffracted intensity.

 The discussion above explains why the mathematically inconsistent Kirchhoff 
approximation has any success at all.

 The use of Dirichlet/Neumann Green functions gives a better logical structure, 
but provides little practical improvement without elaboration of the physics.

 An important deficiency of the discussion so far is its scalar nature. EM fields 
have vector character.

where obliquity factor O (θ , θ

)= [

cos θ ψ approximated on S1

cos θ
 ∂ ψ

∂ n
 approximated on S1

cos θ+ cos θ


2
Kirchhoff approximation



  

 The vectorial equivalent to a Kirchhoff integral 
Vector Equivalents of the Kirchhoff Integral 

E (r )= ∮
S

( E (∇
 G⋅d a 

)−G (d a
⋅∇


) E ) ⇐ (∇

2
+ k2

) E j=0 components

= ∮
S

( 2 E (∇
 G⋅d a

)−(d a
⋅∇)G E )

= ∮
S

2 E (∇
 G⋅d a

)+ ∫
V

∇
 2
(G E ) d3 x

 ∇

⋅E=0 , ∇


×E= i ω B

∇
2 F=∇ (∇⋅F )−∇×(∇×F ) +

∫
V

∇ ϕ d3 x= ∮
S

ϕ d a

∫
V

∇×F d3 x= ∮
S

d a×F
⇐ d a  is

outward

⇒ E= ∮
S

( 2 E (∇
 G⋅d a

)−∇

⋅(G E ) d a

+d a
×(∇


×G E ))

= ∮
S

( 2 E (∇
 G⋅d a

)−∇
 G⋅E d a 

+d a
×(i ω G B+∇

 G×E ))

⇒

E (r )= ∮
S

( ∇
 G×(E×d a

)+(E⋅d a
) ∇

 G− i ω G B×d a )
B (r )= ∮

S

( ∇
 G×(B×d a

)+(B⋅d a
) ∇

 G+ i ω G
E
c2 ×d a )



  

E (r )= ∮
S1+S2

( ∇
 G×(E×d a

)+(E⋅d a 
) ∇

 G− i ω G B×d a )

G 
ei k r ′

4 π r e−i k r̂ ′⋅r , ∇
 G  i k r̂  G   for  r 

∞

⇒ ∮
S2

= i k ∮
S2

G [ r̂ 
×(E×d a

)+(E⋅d a 
) r̂ 

−c B×d a 
]

= i k ∮
S2

G [E ( r̂ 
⋅d a

)−c B×d a
+E×( r̂ 

×d a 
)]

= − i k ∮
S2

G (c B×d a 
+E d a

)  d a
≡− r̂  d a

 O( 1
r0

) 0 ⇐ E =− r̂ 
×c B+O ( 1

r0
2 ) , r0 ∞

⇒ E (r )= ∮
S1

( ∇
 G×(E×d a 

)+(E⋅d a
) ∇

 G− i ω G B×d a )
vector Kirchhoff integral relation,  where  G=

ei k �

4 π �
at ∞

∞

 On both sides of the relation, (scattered fields) = (total fields)−(incident wave).



  

r ∞ ⇒ G (r , r 
)

ei k r

4 π r
e−i k⋅r ′ , ∇

 G − i k G , E s (r )
ei k r

r
F (k , k0)

⇒ F (k , k0)=
1

4 π i
∮
S1

e− i k⋅r ′ ( ω B s×d a
+ k×(E s×d a

)+ k (E s⋅d a
))

scattering amplitude

 F ( k , k 0 ) depends explicitly on the outgoing direction of k, implicitly on the 

incident direction k 0 via the scattered fields E s and B s.      

r
r ′



  

 The terms in big brackets can be interpreted as effective electric and magnetic 
surface currents on S1 acting as sources for the scattered fields.
 

k⋅F=0 ⇐ ω (n̂ 
×B s)⋅k̂=k n̂ 

⋅(c B× k̂ )= k n̂ 
⋅E s ⇐ d a

= n̂ d a

⇒ F (k , k0)=
k

4 π i
×∮

S1

e− i k⋅r ′( E s×d a
−c k̂×(Bs×d a 

)) ⇐ ω=c k

B×d a 
− k̂⋅(B×d a 

) k̂ =− k̂×[ k̂ ×(B×d a
)]

⇒ ê 
⋅F (k , k0)=

1
4 π i

∮
S1

e− i k⋅r ′( ω ê 
⋅(B s×d a

)+ ê 
⋅k×(E s×d a 

)) ($)



  

 Consider a thin, perfectly conducting, plane screen with apertures at z = 0, with 

the sources in the region z < 0, the diffracted fields in the region z > 0

 The scattered fields E  & B  have their origin in the surface-current density 
and surface-charge density that are necessarily produced on the screen to satisfy 
the boundary conditions.

 The fields that are odd in z are not necessarily 0 over the whole plane z=0.

 The conducting surface exists, E
z ≠ 0 implies an associated surface-charge 

density, equal on the 2 sides of the surface. Similarly, nonvanishing B ‖ imply a 
surface-current density, equal in magnitude & direction on 2 sides of the screen.

 Only in the aperture does continuity require E
z, B


x, B


y vanish. This leads to the 

statement that in the apertures of a perfectly conducting plane screen E⊥ & B ‖  
are the same as in the absence of the screen.

Vectorial Diffraction Theory 

J z=0 ⇒
Az


=0

Φ , Ax
 , Ay

  are even in z
⇒

E x
 , E y

 , B z
  are even in z

Bx
 , By

 , E z
  are  odd  in z

(#)

⇒
E=E0+E

B=B0+B
⇐

E0 , B0 : fields produced by the sources without screen/obstacle

E  , B : fields caused by plane screen diffracted z>0
reflected z<0



  

 (14) is most useful when the diffracting obstacles consist of one or more finite 
flat segments, eg, a circular disc. Then the surface current on the obstacles can 
be approximated by using the incident field B 0 in the integrand ⇐ B ( z = 0 ) = 0.

 (✶) satisfies the Maxwell equations and yields consistent boundary values at 
z=0. The reason for the difference in sign for z ≷ 0 is the opposite reflection 

properties of E  compared to B .

 Cannot exploit E ‖=0 on the metallic portions of the screen in (✶) because it is 

the total electric field, not E .

∂ Ai


∂ z
= ẑ⋅∇ Ai


= ẑ⋅∇ Ai


− ẑ⋅

∂ A 

∂ xi =[(∇×A 
)× ẑ ]i=(B

× ẑ )i ⇐ Az

=0

⇒ A 
(r )= 1

2 π
∫

screen

ei k �

�
d a

×B
⇐ (13) ⇐ d a

=± ẑ d a  for z ≷ 0

⇒ B
(r )= 1

2 π
∇×∫

screen

ei k �

�
d a 

×B
(14) with B∥


=0  in the aperture

S 1= screen+ apertures

⇒ E
(r )= i

ω μ ϵ
∇×B

(r )

Similar
argument

⇒ E 
(r)=±

1
2 π

∇×∫
S1

ei k �

�
d a

×E
∣z′=0


() ⇐ ±  for z ≷ 0



  

−
∂ ψ



∂ z
=− ẑ⋅∇ ψ


= ẑ⋅(−∇ ψ


−
∂ A 

∂ t
)= ẑ⋅E

⇐ Az

=0

⇒ ψ

(r )=∫ ei k �

2 π �
E 
⋅d a

+ A 
(r )=∫ ei k �

2 π �
d a

×B

⇒ E 
(r )=−∇ ψ


−∂t A 

=−∇ ∫ ei k �

2 π �
E 
⋅d a

−∫ ei k �

2 π �
d a 

×∂t B

=∫ ( ∇
 ei k �

2 π �
) E 

⋅d a 
−∫ ei k �

2 π �
(∇


×E 

)×d a

=∫ ∇
( ei k �

2 π �
E 
⋅d a )−∫ ei k �

2 π �
(d a 

⋅∇

) E 

=∫ ei k �

2 π �
( (∇


⋅E

) d a
−(d a

⋅∇

)E )

=∫ ei k �

2 π �
∇


×(d a 

×E 
)

=∫ ∇

×( ei k �

2 π �
d a

×E)−∫ ∇
 ei k �

2 π �
×(d a 

×E 
)

=∇×∫ ei k �

2 π �
d a

×E



  

 This difficulty can be removed by use of linear superposition:

 E 1 is equal to the "source" field E 0 in z > 0 to give the extra (diffracted) field E  

in terms of a surface integral.

 

 For z < 0, E 0 + E 1 are the fields of the sources in the presence of a perfectly 

conducting plane (with no apertures) at z = 0: E 1 (& B 1) are the reflected fields!

 Ediff (r )≡E
(r )+E1 (r )=

1
2 π

∇×∫
apertures

ei k �

�
d a 

×E (16)

⇒
Ediff (z>0)=E (z>0)   total electric field
E (r )=E1 (r )+E0 (r )−Ediff (r )   for  z<0 the illuminated region

E
(r )=±

1
2 π

∇×∫
aperture

ei k �

�
d a

×E−E1 (r ) ⇐ E∥ (plane screen )=0

where  E1 (r )=±
1

2 π
∇×∫

S 1

ei k �

�
d a

×E0

Like E  , E1 , x , E1 , y  are even in z
E1 , z   is  odd  in z

⇒
E1 (z>0)=E0

E1 (z<0) reflected field ⇐ E0+E1



  

 The complementary screen is the diffracting screen which is obtained by 
replacing the apertures by screen and the screen by apertures.

 If there are sources inside S (in region I) giving 
a field ψ, then in the absence of either screen 
the field ψ in region II is given by (11) where 
the surface integral is over the entire surface S.

 With the screen Sa in position, the field ψа in 
region II is given in (11) with the source field ψ 
in the integrand and the surface integral only 
over Sb (the apertures).

 For the complementary screen Sb, the field ψb 
is given in the same approximation by a surface 
integral over Sa.

 If ψ stands an incident plane wave, Babinet's 
principle says that the diffraction patterns away from the diffraction patterns away from 
the incident direction are the same for the original screen and its complementthe incident direction are the same for the original screen and its complement.

Babinet's Principle of Complementary Screens

⇒ S=S a+S b

ψ=ψa+ψb Babinet's principle



  

 The result also follows from the generalized Kirchhoff integrals if the amplitude 
or its normal derivative is equal to that of the incident wave in the apertures and 
zero elsewhere, in the spirit of the Kirchhoff approximation.

 Consider a thin, perfectly conducting plane screen and its complement, and the 
2 alternative formulations of this diffraction problem

 The complementary situation has a screen that is the complement of the 
original and has source fields with opposite polarization characteristics.

 In both equations the integration is over the screen Sb because of the boundary 

conditions on E and B
c in the 2 cases.

 From the linearity of the Maxwell equations and the relation between the 
original and complementary source fields,

⇒

E (r ) = 1
2 π

∇×∫
Sb

ei k �

�
d a 

×E   for S a , z>0 ⇐ (16)

Bc

(r )= 1

2 π
∇×∫

Sb

ei k �

�
d a

×B c
   for S b , z>0 ⇐ (14)

E (r )= c Bc

(r )

c B (r )=−E c

(r )

  for  S a , z>0

Original: E0 , c B0 for S a

Complement: E c 0=c B0 , c B c 0=−E0 for S b

(15)



  

 The – sign is a consequence of the requirement of outgoing radiation flux at 
infinity, just as for the source fields.

 Babinet’s principleBabinet’s principle for a perfectly conducting thin screen plan & its complement 
states that the original fields and the complementary fields are related

 For practical situations (finite, but large, conductivity; curved screens with 
large radii of curvature), the vectorial Babinet's principle can hold approximately.

 The vectorial Babinet's principlevectorial Babinet's principle says that the diffracted intensity in directions 
other than that of the incident field is the same for a screen and its complement, 
and the polarization characteristics are rotated.

 The vector formulation of Babinet's principle is useful 
in microwave problems.

 The radiation pattern from the slot will be the same as 
that of a thin linear antenna with its driving electric field 
along the antenna. The polarization of the radiation will 
be opposite for the 2 systems.

 Elaboration of these ideas makes it possible to design 
antenna arrays by cutting suitable slots in the sides of 
waveguides.

E −c B c= E0

c B+ E c=c B0

  for z>0  if (15)  stands.

B

E



  

 There are 3 length scales to consider, the size d of the diffracting system, the 
distance r from the system to the observation point, and the wavelength λ.

 A diffraction pattern only becomes manifest for r≫d. Then in expressions like 
(10) or (16) slowly varying factors in the integrands can be treated as constants.

 Only the phase factor k in e i k needs to be handled with some care.

 In most practical applications the 
simpler Fraunhofer limit is appropriate. 
We consider only the Fraunhofer limit.

   

Diffraction by a Circular Aperture; Remarks on Small Apertures

k �= k ( r− r̂⋅r 
+

r  2
−( r̂⋅r 

)
2

2 r
+⋯)   for  r ≫ d

≃ [
k (r − r̂⋅r 

)  for  kd ≪ 1   Fraunhofer diffraction

k ( r − r̂⋅r 
+

r 2
−( r̂⋅r 

)
2

2 r
)  for  λ∼d Fresnel diffraction

(11) ⇒ ψ (r)=−
ei k r

4 π r
∫
S 1

e− i k r̂⋅r ′
[∇


ψ (r 

)+ i ψ (r 
) k ]⋅d a

(17)

(16) ⇒ E (r)= i
ei k r

2 π r
k×∫

S1

e− i k r̂⋅r ′ d a
×E (r 

) (18)



  

 The plane of incidence is the x-z plane,

E i=E0 (x̂ cos α− ẑ sin α) ei k ( z cos α+ x sin α)
⇒ (n̂×E i)z=0=E0 ŷ cos α ei k x ′ sin α

(18) ⇒ E (r )= i
ei k r E0 cos α

2 π r
k× ŷ ∫

0

a

ρ d ρ ∫
0

2 π

ei k ρ [sin α cos β− sin θ cos (ϕ−β )] d β

ξ≡√sin2
θ+ sin2

α−2 sin θ sin α cos ϕ

⇒ ∫
0

2 π

ei k ρ [sin α cos β− sin θ cos (ϕ−β )] d β

= ∫
0

2 π

e− i k ρ ξ cos β
′

d β

=2 π J 0 (k ρ ξ )

⇒ E (r )= i
ei k r

r
a2 E 0 cos α

J 1 (k a ξ )

k a ξ
k× ŷ

vector Smythe-Kirchhoff approximation (19)

⇒
d P
d Ω

=Pi cos α (cos2
θ+ cos2

ϕ sin2
θ )

|J 1 (k a ξ )|
2

π ξ
2

(20)

where  Pi=
π a2

2 Z 0

E0
2 cos α incident ⊥  power



  

 This means that the main part of the wave passes through the opening in the 
manner of geometrical optics; only slight diffraction effects occur.

 For k a ~ 1 the Bessel function varies slowly in angle; the transmitted wave is 
distributed in directions very different from the incident direction.

 For k a ≪ 1, the angular distribution is determined by the factor k × e 
2. But in 

this limit the assumption of an unperturbed field in the aperture breaks down 
badly.

 

k a≫ 1 ⇒
|2 J 1 (k a ξ )|

2

k 2 a2
ξ

2


1   at ξ=0

0   for ξ>
1

k a

Total transmitted power= ∫
forward  hemisphere

d P
d Ω

d Ω

⇒ T ≡
transmitted power

incident power
transmission coefficient

=
cos α

π
∫

0

2 π

∫
0

π /2

(cos2
θ+ cos2

ϕ sin2
θ )

|J 1 (k a ξ )|
2

ξ
2 sin θ d θ d ϕ



1 k a≫ 1
k 2 a2 cos α

3
k a ≪1 ⇐ the transmission is small

for very small holes



  

T (α=0)= ∫
0

π /2

(2 csc θ−sin θ) J 1
2
(k a sin θ) d θ  + (3.87)   &  (3.88)

=

1− 1
k a ∑ J 2 m+1 (2 k a)

1−
1

2 k a
∫

0

2 k a

J 0 (t ) d t
⇐

∫
0

π /2 J n
2
(z sin θ)

sin θ
d θ= ∫

0

2 z J 2 n (t )

t
d t

∫
0

π /2

J n
2
(z sin θ) sin θ d θ=

1
2 z
∫

0

2 z

J 2 n (t ) d t

 The transmission coefficient increases monotonically as k a increases, with 
small oscillations superposed.

 For a wave not normally incident, the question immediately arises as to what to 
choose for the scalar function in (11).

 the most consistent assumption is to take the magnitude of E or B. Then the 
diffracted intensity is treated as proportional to the absolute square of (11). 

 If a component of E or B is chosen for ψ, we must decide to keep or throw 
away radial components of the diffracted fields in calculating the diffracted 
power.

k a ≫ 1 ⇒ T ≃1−
1

2 k a
−

1
2 k a √π k a

sin ( 2 k a− π

4
)+⋯

exhibits the small oscillations explicitly



  

 Choosing the magnitude of E for ψ, then

 The vector Smythe-Kirchhoff result (20) and the scalar result (21) contain the 

same “diffraction” distribution factor                    & the same dependence on 

wave number. But the scalar result has no azimuthal dependence (apart from that 
contained in ξ), whereas the vector expression does.

 The azimuthal variation comes from the polarization properties of the field, and 
must be absent in a scalar approximation.

 For normal incidence( α = 0 ) & k a ≫ 1 the polarization dependence is 
unimportant. The diffraction is confined to very small angles in the forward 
direction. Then all scalar & vector approximations reduce to the common 
expression, 

(17) ⇒ ψ (r )=− i
ei k r

r
k a2 E0

cos α+ cos θ

2

J 1 (k a ξ )

k a ξ
vs (19)

⇒
d P
c Ω

≃Pi
k2 a2

π
cos α( 1+

cos θ

cos α
)2

|J 1 (k a ξ )

k a ξ |
2

(21)

|J 1 (k a ξ )

k a ξ |
2

d P
d Ω

≃Pi
k2 a2

π |J 1 (k a sin θ )

k a sin θ |
2



  

 For k a = π there is a considerable disagreement between the 2 approximations.

 The Smythe-Kirchhoff result is close to the correct one.

 The vector approximation and exact calculations for a rectangular open-
opening yield results in surprisingly good agreement, even down to k a ~ 1.



  

 If the wavelength is short compared to the dims of the obstacle, the surface can 
be divided approximately into an illuminated region and a shadow region. 

 The boundary between these regions is only in the limit of geometrical optics. 

The transition region has a width of            , R: curvature radius of the surface.

 Since R is of the order of magnitude of the dimensions of the obstacle, the 
short-wavelength limit will approximately satisfy the geometrical condition.

 In the shadow region the scattered fields on the surface must be very nearly 
equal and opposite to the incident fields.

 In the illuminated region the scattered fields at the surface will depend on the 
properties of the obstacle. 

 If the wavelength is short compared to the min radius of curvature, then treat 
the surface as locally flat. 

 Eventually specialize to a perfectly conducting obstacle, for which Es,‖ and Bs,⊥ 

are equal and opposite to the corresponding incident fields, while Bs,‖ & Es,⊥ are 
approximately equal to the incident values ⇒ (#)

Scattering in the Short-Wavelength Limit 

3√2 R2

k



  

 

the remarkable property of depending only on the projected area normal to the 
incident direction and not at all on the detailed shape of the obstacle.

e 
⋅F=e 

⋅F sh+ e 
⋅F ill + E i=E0 e 0 ei k0⋅r , c B i= k̂0×E i

($) ⇒ e 
⋅F sh=

i E0

4 π
∫

sh

ei (k0− k )⋅r ′ e 
⋅[(k0×e 0)×d a

+ k×(e 0×d a
)] ⇐

E s≃−E i

Bs≃−B i

=
i E0

4 π
∫

sh

ei (k0− k )⋅r ′ e 
⋅[(k + k0)×(e 0×d a

)−(d a
⋅e 0) k0]

λ ≪1 ⇒ k0⋅r  , k⋅r 
≫ 1

⇒ ∫ ei (k 0− k )⋅r ′ e 
[ ⋯ ] d a

 0   except  k 0≃ k ⇐ forward direction

forward region ⇒ θ≤
1

k R
⇒ e 

⋅k̂ 0∼e 0⋅k̂∼ sin θ ≪ 1 ⇐ e 0⋅k̂0=e 
⋅k̂=0

⇒ e 
⋅F sh≃

i E 0

2 π
e 
⋅e 0 ∫

sh

ei (k 0− k )⋅r ′ k0⋅d a

k0⋅d a
= k d x  d y

=k d2 x=k× projected element of area ⇐ k0=k ẑ

(k 0− k )⋅r 
=k (1−cos θ) z− k⋅r≃− k⋅r ⇐

r= x  e 1+ y e 2

k=k x e 1+ k y e 2

k R≫ 1 + θ ≪1 ⇒ e 
⋅F sh≃

i k
2 π

E0 e 
⋅e 0 ∫

sh

e− i k⋅r d2 x



  

 In this limit all scatterers of the same projected area give the same shadow-
scattering contribution.

 The polarization character of the scattered radiation is the factor e ✶e 
0.

 Since the scattering is at small angles, the dominant contribution has the same 
polarization as the incident wave ⇒ no spin flip in quantum-mechanical language.

 Consider a scatterer whose projected area is a circular disc of radius a 

 The scattering from the illuminated side of the obstacle cannot be calculated 
without specifying the shape and nature of the surface. Assume the illuminated 
surface is perfectly conducting

⇒ ∫
sh

e− i k⋅r d2 x=2 π a2 J 1 (k a sin θ)

k a sin θ

⇒ e 
⋅F sh= i k a2 E0 e 

⋅e 0

J1 (k a sin θ)

k a sin θ
(22)

⇒ E s ,∥≃−E i   and  B s ,∥≃B i   on  S1

⇒ e 
⋅F ill=

i E0

4 π
∫

ill

ei ( k0− k )⋅r ′ e 
⋅[k×(e 0×d a

)−(k0×e0)×d a
]

=
i E 0

4 π
∫

ill

ei (k0− k )⋅r ′ e 
⋅[(k− k 0)×(e 0×d a 

)+(e 0⋅d a
) k0] (23)



  

 Try the similar argument, but the contribution in the forward direction 
vanishes due to k 

0
 − k instead of k 

0
 + k in the shadow amplitude. The illuminated 

side of the scatterer thus gives only a modest contribution to the scattering at 
small angles. 

 This makes sense since the illuminated side must give the reflected wave, and 
the reflection is mainly at angles other than forward. 

 To go further we need the shape & EM property of the scatter's illuminated 
part.

 As in Sec. 7.11, the dominant contribution to (23) comes from the region of 
integration where the phase of the exponential is stationary

k =(k , θ , ϕ)

n
=(1 , α , β )

⇒

f (α , β)=(k0− k )⋅r 
⇐ phase factor

= k a [(1−cos θ) cos α− sin θ sin α cos (β−ϕ)]

a : radius of the spherical surface

⇒
α0=

π+θ

2
β0= ϕ

stationary
point

⇐ reflection from the sphere
according to geometrical optics

⇒ n
=nr≡

k− k0

|k− k0|

⇒ f (α , β )=−2 k a sin θ

2
( 1−

x2

2
−

y2

2
cos2 θ

2
+⋯) ⇐

x=α−α0

y=β−β0

Let  e r=2 (nr⋅e 0) nr −e 0



  

⇒ e 
⋅F ill≃

k a2 E0

4 π i
sin θ e 

⋅e r e
−2 i k a sin θ

2 ∫ e
i x2 k a sin θ

2 d x ∫ e
i y2 k a sin θ

2
cos2 θ

2 d y (24)

≃
a
2

E 0 e
−2 k a sin θ

2 e 
⋅e r ⇐ ∫

−∞

∞

ei α x2

d x= √ π i
α

for 2 k a sin θ

2
≫1

⇒
|e 

⋅F ill|  const   as  2 k a sin θ

2
≫1

|e 
⋅F ill| ∝ θ

2 as  θ  0

 Compare (22) with (24) shows that in the 
forward direction the shadow contribution 
dominates in magnitude over the reflected 
amplitude by a factor of k a ≫1, while at 

angles where k a sin θ ≫1, the ratio of the

magnitudes is  of 

 The scattering in the forward direction is a typical diffraction pattern with a 
central maximum and smaller secondary maxima, while at larger angles it is 
isotropic.

1

√k a sin3
θ

⇒
d σ

d Ω
=

a2|J1 (k a sin θ)

sin θ |
2

, θ≤
10
k a

a2

4
, θ ≫

1
k a



  

 The shadow diffraction peak gives a contribution of π a 2, and so does the 
isotropic part. The total scattering cross section is thus 2 π a 2, one factor of the 
geometrical projected area coming from direct reflection and the other from the 
diffraction scattering that must accompany the formation of a shadow behind the 
obstacle. 

4
a2

d σ

d Ω



  

Optical Theorem and
        Related Matters 
E =E i+E s , B=B i+B s

⇒

Pabs=−
1

2 μ0

∮
S1

ℜ[E ×B
]⋅d a

Pscatt=
1

2 μ0

∮
S1

ℜ [E s×Bs

]⋅d a 

⇐ d a
=n d a

E i=E0 ei k0⋅r e 0 , c B i= k̂0×E i , k0= k k̂0

⇒ P=Pabs+Pscatt+P incident=−
1

2 μ0

∮
S1

ℜ [E s×B i

+E i


×Bs]⋅d a 

=−
1

2 μ0 c
ℜ [E0

 ∮
S1

e− i k 0⋅r

e 
⋅[c B s×d a

+ k̂0×(E s×d a 
)]]

=
2 π

k Z0

ℑ [E 0
 e0


⋅F (k= k0)]

optical
theorem

⇐ the forward scattering
amplitude k= k0 , e =e 0

⇐ ($)

⇒ σ t≡
P

Pincident /area
=
|E0|

2

2 Z 0

total cross section
(extinction cross section )

=
4 π

k
ℑ [e 

⋅f (k= k0)]
optical

theorem
⇐ f (k , k0)≡

F (k , k0)

E0

normalized
scattering
amplitude

r
r ′



  

 The notation corresponds to the standard quantum-mechanical conventions.

 For particles with spin the forward scattering amplitude is the one in which 
none of the particles change their spin state.

 For photons it is indicated by e✶
0f for scattered radiation with the same 

polarization finally as it was initially.

 The optical theorem can connect the forward scattering amplitude for a single 
scatterer to the macroscopic EM properties, ie, the dielectric constant, of a 
medium composed of a large number of scatterers.

 Let a plane wave incident normally on a thin slab of uniform material composed 
of N identical scattering centers per unit volume.

 The incident wave impinges on the scattering centers, causing each to generate 
a scattered wave. The coherent sum of the incident wave and of all the scattered 
waves gives a modified wave to the right of the slab.

 Comparison of this modified wave with the expected wave through a slab of a 
macroscopic, electric susceptibility ϵ(ω) leads to a relation between ϵ and f.

 The thickness and the density of the slab are assumed to be so small that only 
single scatterings in the slab need be considered and thus the effective exciting 
field at each scatterer is just the incident field itself.



  

�
r



  

 The scattered field produced at the observation point O is approximately

 The amplitude at O for a wave with the same polarization state as the incident 
wave is

ê 0

⋅E≈ E0 ei k z0( 1+

2 π i
k

N d ê0

⋅f (k , 0))

d E s=
ei k �

�
f (k , θ , ϕ) E 0 ei k0⋅r N d3 x ⇐ �=√ρ

2
+(z− z0)

2 , cos θ=
z0− z
�

⇒ E s= N E0 ∫
0

2 π

d ϕ ∫
0

d

ei k z d z ∫
0

∞ ei k �

�
f (k , θ , ϕ) ρ d ρ

=N E 0 ∫
0

2 π

d ϕ ∫
0

d

ei k z d z ∫
|z0− z|

∞

ei k � f (k , θ , ϕ) d � ⇐ ρ d ρ=� d �

∫
|z0− z|

∞

ei k � f (k , θ , ϕ) d �= 1
i k
( ei k � f|

�=|z0− z|

∞

+ (z0− z) ∫
|z0− z|

∞ ei k �

�2

d f
d cos θ

d �)
=

i
k

ei k |z− z0| f (k , 0)+O ( 1
k |z0− z|

) ⇐ k |z0− z|∞

⇒ E s≈
2 π i

k
N E0 f (k , 0) ∫

0

d

ei k (z +|z0− z|) d z=
2 π i

k
N E 0 f (k , 0) ei k z0 d ⇐ z0> z

⇒ Total  electric
field at O

E=E0 ei k z0( ê 0+
2 π i

k
N d f (k , 0))+O (d2

)



  

 Now consider the slab macroscopically, with its EM properties specified by a 

dielectric constant            appropriate to describe the propagation of the wave 

of frequency ω = c k and polarization e 
0. 

 The derivation has a number of simplifying assumptions and the notion of a 
macroscopic description assumed rather than derived.

 The scattering amplitude should be evaluated at the wave number k  in the 
medium, not at the free-space wave number k, and there is a multiplier to the 2nd 
term that gives a measure of the effective exciting field at a scatterer relative to 
the total coherent field in the medium.

 For the dipole moment of the atom, summed over the various oscillators

p=
e2

m∑
j

f j E 0 ê 0

ω j
2
−ω

2
− i ω γ j

⇒ f (k )= 1
4 π ϵ0

e2

m ∑
j

f j (k× ê 0)× k

ω j
2
−ω

2
− i ω γ j

⇒ ê 0

⋅f (k= k0)=

e2 k2

4 π ϵ0 m∑j

f j

ω j
2
−ω

2
− i ω γ j

⇒ the transmitted
wave at z= z0

ê 0

⋅E (macroscopic)=E0 ei k z0 [1+ i

k d
2
( ϵ

ϵ0
−1)]+O (d2

)

⇒
ϵ (ω)

ϵ0
=1+

4 π N

k2 ê 0

⋅f (k , 0) (25)

ϵ (ω)
ϵ0



  

(10.2)
(10.5)

⇒ f =
ϵr−1

ϵr +2
a3

(k× ê 0)× k ⇒
forward

amplitude
ê 0

⋅f (k= k0)= k2 a3 ϵr−1

ϵr +2

 The attenuation coefficient α is related to the total cross section of a single 
scatterer through α = N σ t and to the imaginary part of the wave number in the 

medium through α = 2 ℑ[k ]

 Thus if we consider scattering by a single scatterer embedded in a medium 
with k , the optical theorem and other relations will appear as before.

 The same situation holds in the scattering of electrons in a solid where the 
effective mass or other approximation is used to take into account propagation 
through the lattice.

 The optical theorem is an exact relation. If an approximate expression for f is 
employed, a manifestly wrong result for the total cross section may be obtained.

 In the long-wavelength limit, the scattering amplitude for a dielectric sphere of 
radius a is

 For a lossless dielectric, this amplitude is real; the optical theorem then yields 
σ t = 0.

⇒
ϵ (ω)

ϵ0
=1+

N e2

ϵ0 m ∑
j

f j

ω j
2
−ω

2
− i ω γ j

 in agreement with (7.51)

⇒ α= N σ t=
4 π N
ℜ [k 

]
ℑ [ ê 0


⋅f (ℜ [k 

] , 0)] ⇐
(25)
(7.54)



  

 On the other hand, the total cross section is in 
this case equal to the scattering cross section (**):

 Even with a lossy dielectric ( ℑ[ϵ] ≠ 0 ), 
the optical theorem yields a total cross

 The seeming contradictions are reflections of the necessity of different orders 
of approximation required to obtain consistency between the two sides of the 
optical theorem.

 In the long-wavelength limit it is necessary to evaluate the forward scattering 
amplitude to higher order in powers of ω to find the scattering cross section 
contribution in the total cross section by means of the optical theorem.

 For lossless or nearly lossless scatterers it is simplest to determine the total 
cross section directly by integration of the differential scattering cross section 
over angles.

 For dissipative scatterers, the optical theorem yields a nonzero answer that has 
a different (lower power) dependence on ω and other parameters from that of the 
scattering cross section.

 This contribution is the absorption cross section to lowest explicit order in ω. It 
can be calculated from first principles, but the optical theorem provides an 
elegant and convenient method to do it.

σ t=
12 π k a3

ℑ [ϵ ]

|ϵr+2|
2

σ sc=
8 π

3
k 4 a6|

ϵr−1

ϵr+2|
2


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

