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Functional MRI

* Non-invasive brain activity detection

* High temporal resolution
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Collaborations and deceptions in strategic interactions revealed by
hyperscanning fMRI
Aims:

The current study aims to investigate the neural mechanisms of interpersonal collaborations and deceptions, with an Opening Treasure Chest
(OTC) game under the fMRI hyperscanning setup.

Prof. PR{E A Prof. BE{& 5= Prof. H A7

openneuro.org/datasets/ds004103



Collaborations and deceptions in strategic interactions revealed by
hyperscanning fMRI

Siao-Shan Shen, Jen-Tang Cheng, Yi-Ren Hsu, Der-Yow Chen, Ming-Hung Weng. Chun-Chia Kung
doi: https://doi.org/10.1101/2021.07.11.451985
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Major Goal

Cooperation
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Region of Interest Analysis

* Averaging a dataset will make it less informative.
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Multi-Voxel Pattern Analysis

* Machine Learning based Image Classification
* Empirical, Data-driven, Self-adaptive
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Progress of Image Classification
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2019

Explore of CNN-MVPA

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

3D-CNN based discrimination of schizophrenia using resting-state fMRI K)

Muhammad Naveed Igbal Qureshi®”“%' Jooyoung Oh“"' Boreom Lee®*
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Fig. 2. VGG-Net based 3D-CNN architecture.



2020

Explore of CNN-MVPA (2)

Contents lists available at ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/neuroimage

fMRI volume classification using a 3D convolutional neural network robust
to shifted and scaled neuronal activations

L)

Chock for
updates

Hanh Vu, Hyun-Chul Kim, Minyoung Jung, Jong-Hwan Lee*
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2022

Explore of CNN-MVPA (3)

Contents lists available at ScienceDirect

Medical Image Analysis

FI SEFVIER journal homepage: www.elsevier.com/locate/media

SSPNet: An interpretable 3D-CNN for classification of schizophrenia )
using phase maps of resting-state complex-valued fMRI data ey

Qiu-Hua Lin®*, Yan-Wei Niu?, Jing Sui®, Wen-Da Zhao?, Chuanjun Zhuo®,
Vince D. Calhoun®
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Progress of Image Classification
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The ConvNeXt Model

* Better Performance

* Training Stability

* Strong Adaptability
 Computational Efficiency
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Major Goal

Cooperation
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Within/Between-Subject Scheme

Hierarchical group-level
multivariate pattern analysis

G-MVPA
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Leave-One-Out Strategy

Sample 1 Sample 2 Sample 3




Leave-One-Out Strategy

Test data Train data

Sample 1
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Leave-One-Out Strategy
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Leave-One-Out Strategy

Sample 1 Sample 2 Sample 3




Within Subject Test
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Within Subject Test
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Within Subject Test Results

Accuracy (%)
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Within Subject Test Results
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Between Subject Test
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Between Subject Test Results

Accuracy (%)
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Within/Between Pattern

* Within subject classification show promising result.

* Between subject pattern might be diverse.

Similar conclusion to:

NeuroIlmage
Volume 97, 15 August 2014, Pages 271-283

What do differences between multi-voxel
and univariate analysis mean? How subject-,
voxel-, and trial-level variance impact fMRI
analysis

Tyler Davis ®! © =, Karen F. LaRocque °! O =, Jeanette A. Mumford @ ¢,
1y ~

Kenneth A. Norman 9 ", Anthony D. Wagner P €, Russell A. Poldrack 9 ¢ f
https://doi.org/10.1016/j.neuroimage.2014.04.037




Multi-Head Structure
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Multi-Head Structure Performance
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Within/Between Pattern (2)

* Individual different can be detected with multi-head
design.

* Multi-head structure can also handle several factors
at once.



Multi-Head Structure
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Multi-Head for Embedding
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Multi-Head Structure

numbers of images in each condition
decreased as more factors were added
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Subsampling GLM Trick for
Training Data

12 trials

12 trials

—_—

—

Loop 12 times

1 test 11 train

3 test

9 train

Up to 84 images!
—> Combinations of 3 out of 9
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Hybrid to Create More Sample




Subsampling GLM Trick for
Training Data

Loop 40 times
~20/20 trials — 1 test 39 train

~20/20 trials — 9 test ~16/16 train

|

Combinations of 3 out of 16

(Up to 560 images in each!)

Using 75 subsample images
in this experiment



Performance of Subsampling Trick
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Summary

* Introduce new CNN architecture for MVPA
* Apply multi-head structure for complex conditions
* Design a subsampling trick to increase training data

* Advanced models can detect more hidden patterns
underlying brain activation.

* Additional techniques are needed to better visualize
and interpret those models.



Thanks for your time and attention

Any question or suggestion is welcome!!
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Data Preprocessing
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Major Python Packages

Nilearn

Major ANN programing tool

Designed for brain volumes analysis
*Able to directly handle AFNI output!!

Also provides statistical and
machine-learning tools



Tentative Architecture
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Tentative Architecture
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CNN Heat Map
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CNN Feature Map

Feature Map in Convolutional Neural Networks (CNN)
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First submitted to arXiv on April 30, 2024

Kolmogorov Arnold Network KAN
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Kolmogorov-Arnold Networks (KANSs)



Should | use KANs or MLPs?

Accuracy Interpretability

Compositional Complicated Continual

. : dimension
structure function learning

Qualitative

Either Either Either Either Either
is fine is fine Is fine is hard is fine

Efficiency

Want small

models

Either
is fine

Want fast
training




attention2d (nn. Module) :
__init_ (self, in planes, ratios, K, temperature, init weight=
super (attention2d, self). init_ ()
temperature % 3 = 1

self.avgpool = nn.AdaptiveAvgPool2d (1)

0

if 1in_planes != 3:
hidden planes int(in planes * ratios) + 1

hidden planes = K

self.fcl = nn.Conv2d(in planes, hidden planes, 1, bias=
self. fc2 = nn.Conv2d(hidden planes, K, 1, bias= )

self.weight = nn.Parameter (torch. randn(K, out planes, 1in planes//groups, kernel size, kernel size

aggregate weight torch. mm(softmax attention, weight)




