
  

Chapter 10Chapter 10 Potentials and Fields

Scalar and Vector PotentialsScalar and Vector Potentials
 We seek the general solution to Maxwell’s equations,

ie, given ρ(r, t) and J(r, t), what are the fields E(r, t) and B(r, t)?

 In electrostatics ∇×E=0 allowed to write E as the gradient of a scalar 

potential: E = −∇Φ. But in electrodynamics it’s not true since ∇×E ≠ 0.

 B remains divergenceless, so                     as in magnetostatics since ∇⋅B=0.

 This reduces to the old form when A is constant.

  

The Potential Formulation

B=∇×A

⇒ ∇×E=−
∂

∂ t
∇×A ⇒ ∇×( E +

∂ A
∂ t
)=0 ⇒ E +

∂ A
∂ t

=−∇ Φ

⇒ E=−∇ Φ−
∂ A
∂ t

⇒ ∇×E=−
∂ B
∂ t

∇⋅E=
ρ
ϵ0

⇒ ∇
2 Φ+

∂

∂ t
∇⋅A=−

ρ
ϵ0

(1) ⇒ ∇
2Φ=−

ρ
ϵ0

⇐ A=const

Poisson equation

∇⋅E=
ρ
ϵ0

, ∇⋅B=0 , ∇×E =−
∂ B
∂ t

, ∇×B=μ0 J +μ0 ϵ0
∂ E
∂ t



  

 

 (1) & (2) contain all the information in Maxwell’s equations.

Example 10.1: Find the charge and current distributions that would give rise to 

the potentials

∇×B=μ0 J +μ0 ϵ0
∂ E
∂ t

⇒ ∇×(∇×A )=μ0 J−μ0 ϵ0 ∇
∂ Φ
∂ t

−μ0 ϵ0
∂

2 A
∂ t2

∇×(∇×A)=∇ (∇⋅A)−∇
2 A

⇒ ( ∇
2 A−μ0 ϵ0

∂
2 A
∂ t2
)−∇ ( ∇⋅A +μ0 ϵ0

∂Φ
∂ t
)=−μ0 J (2)

|x|< c t ⇒ [
E =−

∂ A
∂ t

=−
μ0 k

2
(c t−|x|) ẑ

B=∇×A=−
μ0 k

4 c
∂

∂ x
(c t −|x|)2 ŷ=±

μ0 k

2 c
(c t−|x|) ŷ

|x|> c t ⇒ E=B=0

⇒ ∇⋅E=0 , ∇⋅B=0 , ∇×E=−
∂ B
∂ t

=
∓μ0 k

2
ŷ , ∇×B=μ0 ϵ0

∂ E
∂ t

=−
μ0 k

2 c
ẑ

Φ=0 , A= [
μ0 k

4 c
(c t−|x|)2 ẑ ,   for |x|< c t

0 ,   for |x|> c t



  

 B has a discontinuity at x=0, and this signals the presence of a surface current 

K in the yz plane;

 A uniform surface current flows in the z direction over the plane x=0, which 
starts up at t=0, and increases in proportion to t.

 The news travels out (in both directions) at the speed of light: for points |x|>ct 
the message (“current is now flowing”) has not yet arrived, so the fields are 0.

⇒ ρ=0= J

B1
∥
−B2

∥

μ0
=K × n̂ ⇒ k t ŷ=K× x̂ ⇒ K=k t ẑ



  

Gauge TransformationsGauge Transformations
 Although (1) & (2) are ugly, we have reduced 6 problems—finding E & B (3 

components each)—down to 4: Φ (1 component) and A (3 components).

 Moreover, the potentials have not uniquely been defined ; we are free to impose 
extra conditions on Φ & A, as long as E & B keep the same—gauge freedom.

 Suppose we have 2 sets of potentials, (Φ, A) and (Φ, A), which correspond to 
the same electric and magnetic fields

 For any scalar function λ(r, t), we can add ∇ λ to A and also subtract ∂t λ from 

Φ. This will not affect the physical quantities E & B. Such changes in Φ & A are 
called gauge transformations.

 They can be exploited to adjust the divergence of A, with a view to simplifying 
the “ugly” equations (1) & (2).

B=∇×A
=∇×A ⇒ ∇×α=0 ⇒ α=∇ λ

E =−∇ Φ−
∂ A
∂ t

=−∇ Φ
−

∂ A 

∂ t
⇒ ∇ β +

∂ α

∂ t
=0 ] ⇒ ∇ ( β + ∂ λ

∂ t
)=0

⇒ β=−
∂ λ

∂ t
+ k (t ) ⇒ redefine λ+ ∫

0

t

k (t ) d t  λ ⇒
A

=A + ∇ λ

Φ
=Φ−

∂

∂ t
λ

A 
=A+α , Φ

=Φ+β



  

Coulomb Gauge and Lorenz GaugeCoulomb Gauge and Lorenz Gauge
The Coulomb Gauge: As in magnetostatics, we pick ∇⋅A = 0 = ∇⋅A−∇ 2λ

 A very peculiar thing about the scalar potential in the Coulomb gauge: it is 
determined by the distribution of charge right now (not at a retarded time).

 This sounds odd to special relativity since no message travels faster than c.

 The point is that Φ by itself is not a physically measurable quantity—the 

physical quantity is E, and that involves A as well.

 It is built into A (in the Coulomb gauge) that whereas Φ instantaneously 

reflects all changes in ρ, the combination −∇Φ−∂t A does not; E will change only 
after sufficient time has elapsed for the “news” to arrive.

 The advantage of the Coulomb gauge is that the scalar potential is particularly 

simple to calculate; the disadvantage (apart from the acausal appearance of Φ) is 

that A is particularly difficult to calculate. 

⇒ ∇
2Φ+

∂

∂ t
∇⋅A =∇

2Φ=−
ρ
ϵ0

 Poisson’s equation

⇒ Φ (r , t)= 1
4 π ϵ0

∫ ρ (r
 , t)
�

d τ  ⇐ Φ (∞ , t )=0



  

the source for the wave equation for A can be expressed entirely in terms of the 
transverse current.

∇⋅A=0 ⇒ ∇
2 A−μ0 ϵ0

∂
2 A
∂ t 2 =−μ0 J +μ0 ϵ0 ∇

∂ Φ
∂ t

⇐ (2)

J= J ℓ+ J t ⇐
∇× J ℓ=0 longitudinal, irrotational
∇ ⋅ J t =0 transverse, solenoidal

⇒ ∇⋅( ∇
2 A−

1
c2

∂
2 A
∂ t2

)=∇
2
(∇⋅A )−

1
c2

∂
2

∂ t2
(∇⋅A)=0 ⇐ c2

=
1

√μ0 ϵ0

=∇⋅(−μ0 J +
1
c2

∇
∂Φ
∂ t
)=∇⋅(−μ0 J ℓ+

1
c2

∇
∂ Φ
∂ t
) ⇐ the equation

of continuity

⇒ μ0 J ℓ−
1
c2

∇
∂ Φ
∂ t

=const ⇒ 0 ⇒ J ℓ= ϵ0
∂

∂ t
∇ Φ

⇒ ∇
2 A−

1
c2

∂
2 A
∂ t2 =−μ0 J t



  

The Lorenz gauge:

 Designed to eliminate the middle term in (2) 

                                                  Meanwhile, (1)

 The virtue of the Lorenz gauge is that it treats Φ & A on an equal footing.

 This democratic treatment of Φ & A is nice in special relativity, where the 
d’Alembertian is the natural generalization of the Laplacian, (3) can be regarded 
as 4d versions of Poisson’s eqn. And the wave eqn □f=0, might be regarded as 
the 4d version of Laplace’s equation.

 In the Lorenz gauge, Φ & A satisfy the inhomogeneous wave equation, with 
a “source” term on the right in (3).

 By the Lorenz gauge, the whole of electrodynamics reduces to the problem of 
solving the inhomogeneous wave equation for a specified source.

d’Alembertian 
operator

□≡∇
2
−

1
c2

∂
2

∂ t 2
⇒

□Φ=−
ρ
ϵ0

□ A=−μ0 J
(3)

∇⋅A=−
1
c2

∂ Φ
∂ t

⇐( ∇
2
−

1
c2

∂
2

∂ t2 ) λ=−∇⋅A 
−

1
c2

∂ Φ

∂ t

⇒ ∇
2Φ−

1
c2

∂
2Φ

∂ t 2 =−
ρ

ϵ0

⇒ ∇
2 A−

1
c2

∂
2 A
∂ t2 =−μ0 J



  

 Even for potentials that satisfy the Lorenz condition there is arbitrariness. 
Evidently the restricted gauge transformation, 

 All potentials in this restricted class are said to belong to the Lorenz gauge.

 The Lorenz gauge is commonly used, first because it leads to the wave 
equations, which treat Φ and A on equivalent footings, and second because it is a 
concept independent of the coordinate system chosen and so fits naturally into 
the considerations of special relativity.

A″=A+∇ Λ , Φ″=Φ−
∂ Λ

∂ t
⇐ □Λ=( ∇

2
−

1
c2

∂
2

∂ t2 ) Λ=0

⇒ ∇⋅A″+ 1
c2

∂Φ″

∂ t
=0   as long as  ∇⋅A +

1
c2

∂ Φ
∂ t

=0



  

Example: The Lorenz Gauge: The given E and B are derivable from 2 pairs of 

scalar and vector potentials: (Φ, A) and (Φ0, A0), as

Hence if Φ0 and A0 satisfy the Lorentz condition, then Φ and A will also satisfy 
the condition.

Φ (r , t )=Φ0 (r , t )+ ω

r
cos (k r −ω t)

A (r , t )=A 0 (r , t)+ r̂ ( k
r

cos (k r−ω t )−
sin (k r −ω t )

r2 )

⇒

Φ (r , t)=Φ0 (r , t )−
∂

∂ t
sin (k r −ω t)

r

A (r , t )=A0 (r , t )+ r̂ ∂

∂ r
sin (k r −ω t )

r

⇒ Φ=Φ0−
∂ ψ

∂ t
, A=A 0+∇ ψ ⇐ ψ=

sin (k r−ω t )
r

Lorenz condition: ∇⋅A+
1
c2

∂Φ
∂ t

=∇⋅A0+
1
c2

∂ Φ0

∂ t
+∇

2
ψ−

1
c2

∂
2
ψ

∂ t 2 =0

where ∇2
ψ−

1
c2

∂
2
ψ

∂ t2
=−k2 sin (k r −ω t)

r
+
ω

2

c2

sin (k r −ω t)
r

=0



  

Lorentz Force Law in Potential FormLorentz Force Law in Potential Form
 Express the Lorentz force law in terms of potentials:

 The convective derivative of A,                                     , also total derivative. It

represents the time rate of change of A at the (moving) location of the particle.

 The change in A in d t is

 As the particle moves, the potential it “feels” changes for 2 distinct reasons: 
one is because the potential varies with time, and second, because it is now in a 

new location, where A is different because of its variation in space.

d A =A (r+ v d t , t+d t )−A (r , t)=
∂ A
∂ x

v x d t +
∂ A
∂ y

vy d t +
∂ A
∂ z

vz d t +
∂ A
∂ t

d t

⇒
d A
d t

=
∂ A
∂ t

+(v⋅∇) A

F=
d p
d t

=q (E +v×B)=q (−∇ Φ−
∂ A
∂ t

+v×(∇×A)) ⇐ p=m v

∇ (v⋅A)=v×(∇×A)+(v⋅∇) A ⇐ particle's
velocitiy

v=v (t ) ,  not a function
of position

⇒
d p
d t

=−q ( ∂ A
∂ t

+(v⋅∇) A+∇ (Φ−v⋅A))
d A
d t

≡
∂ A
∂ t

+(v⋅∇) A



  

 With the aid of the convective derivative, the Lorentz force law reads:

 The standard formula from mechanics:

 A similar argument gives the rate of change of the particle’s energy:

 We can interpret A as a kind of “potential momentum” per unit charge, just as 

Φ is potential energy per unit charge. 

d p
d t

=−∇ U ⇐ p : canonical
momentum

d
d t

(p+q A)=−∇ [q (Φ−v⋅A )]

d
d t

(T +q Φ)=
d

d t
( 1

2
m v2)+q

d Φ
d t

=m v⋅
d v
d t

+q ( ∂ Φ
∂ t

+(v⋅∇)Φ)
=v⋅F+q ( ∂ Φ

∂ t
+(v⋅∇)Φ)

=q v⋅(−∇ Φ−
∂ A
∂ t

+ v×(∇×A ))+q ( ∂ Φ
∂ t

+(v⋅∇)Φ )
=q ( ∂ Φ

∂ t
−v⋅

∂ A
∂ t
)= ∂

∂ t
[q (Φ−v⋅A )] ( The derivative on the right acts

only on Φ  and A , not on v .
)

d p
d t

=−∇ U ⇐ p : canonical
momentum

d pcan

d t
=−∇ U vel ⇐ pcan=p +q A , U vel=q (Φ−v⋅A )  velocitiy-dependent

d
d t

(T +q Φ)=
∂

∂ t
[q (Φ−v⋅A)] ⇐ T =

1
2

m v2 kinetic
energy

, q Φ potential
energy



  

Continuous Distributions
Retarded PotentialsRetarded Potentials
 In the static case, (3) reduces to 4 copies of Poisson’s eqn,

                                                 ,  with the familiar solutions

 Since EM “news” travels at the speed of light. In the nonstatic case, it’s not the 

status of the source right now that matters, but its condition at some earlier time 
tr (called the retarded time) when the “message” left:

 Since this message must travel a distance �, the delay is      :

 The natural generalization of the solution for nonstatic sources is therefore

 The integrands evaluated at the retarded time are called retarded potentials.

 The retarded potentials reduce properly to (4) in the static case, for which ρ 
and J are independent of time.

Φ (r , t )=
1

4 π ϵ0
∫ ρ (r

 , t r)

�
d τ  , A (r , t )=

μ0

4 π
∫ J (r  , t r)

�
d τ 

∇
2Φ=−

ρ

ϵ0
, ∇

2 A=−μ0 J

Φ (r )= 1
4 π ϵ0

∫ ρ (r

)

�
d τ  , A (r )=

μ0

4 π
∫ J (r 

)

�
d τ  (4)

t r= tr (t , r , r 
)

t r= t− �
c

�⃗

�
c



  

 To prove the generalized solution, we must show that they satisfy the 
inhomogeneous wave equation and meet the Lorenz condition.

 Don’t apply the same logic to the fields you’ll get entirely the wrong answer:

 In calculating the Laplacian of Φ(r, t), the crucial point to notice is that the 

integrand depends on r in 2 places: explicitly, in the denominator (�=|r−r|), and 

implicitly, through                , in the numerator.

E (r , t)≠
1

4 π ϵ0
∫ ρ (r

 , t r)

�2 �̂ d τ  , B (r , t)≠
μ0

4 π
∫ J (r  , t r)× �̂

�2 d τ 

∇ Φ= 1
4 π ϵ0

∫ ( ∇ ρ

�
+ρ ∇

1
�
) d τ  ⇐ ∇ ρ= ρ̇ ∇ t r=−

ρ̇

c
∇ �=−

ρ̇

c
�̂

=
1

4 π ϵ0
∫ (− ρ̇

c
�̂
�
−ρ

�̂

�2
) d τ  ⇐ ∇

1
�
=−

�̂

�2
,  ρ̇≡

∂ ρ

∂ tr

⇒ ∇
2Φ=∇⋅∇ Φ=−

1
4 π ϵ0

∫ ( �̂
c �

⋅∇ ρ̇+
ρ̇

c
∇⋅

�̂
�
+
�̂

�2⋅∇ ρ+ ρ ∇⋅
�̂

�2 ) d τ 

∇ ρ̇=−
ρ̈

c
∇ �=−

ρ̈

c
�̂ , ∇⋅

�̂
�
=

1
�2 , ∇⋅

�̂

�2 =4 π δ3
( �⃗) , ρ̈≡

∂
2
ρ

∂ tr
2

⇒ ∇
2Φ=

1
4 π ϵ0

∫ ( ρ̈

c2 �
−4 π ρ δ3

( �⃗)) d τ =
1
c2

∂
2Φ

∂ t2 −
1
ϵ0
ρ (r , t ) ⇐

∂ tr

∂ t
=1

t r= t− �
c



  

⇒ ∇
2Φ−

1
c2

∂
2Φ

∂ t2 =−
ρ

ϵ0

∇ Ai=
μ0

4 π
∫ ( ∇ J i

�
+ J i ∇

1
�
) d τ  ⇐ ∇ J i= J̇ i ∇ tr=−

J̇ i

c
∇ �=−

J̇ i

c
�̂

=
μ0

4 π
∫ (− J̇ i

c
�̂
�
− J i

�̂

�2
) d τ  ⇐ ∇

1
�
=−

�̂

�2
,  J̇ i≡

∂ J i

∂ tr

⇒ ∇
2 Ai=−

μ0

4 π
∫ ( �̂

c �
⋅∇ J̇ i+ J̇ i ∇⋅

�̂
c �

+
�̂

�2⋅∇ J i+ J i ∇⋅
�̂

�2 ) d τ 

∇ J̇ i=−
J̈ i

c
∇ �=−

J̈ i

c
�̂ , ∇⋅

�̂
�
=

1
�2 , ∇⋅

�̂

�2 =4 π δ3
( �⃗) , J̈ i≡

∂
2 J i

∂ t r
2

⇒ ∇
2 Ai=

μ0

4 π
∫ ( J̈ i

c2 �
−4 π J i δ

3
( �⃗)) d τ =

1
c2

∂
2 Ai

∂ t2 −μ0 J i (r , t)

⇒ ∇
2 A−

1
c2

∂
2 A
∂ t2

=−μ0 J

 This proof applies equally well to the advanced potentials,

the charge & the current densities are evaluated at the advanced time

Φa (r , t )=
1

4 π ϵ0
∫ ρ (r

 , t a)

�
d τ  , Aa (r , t)=

μ0

4 π
∫ J (r  , t a)

�
d τ 

t a= t + �
c



  

 Although the advanced potentials are entirely consistent with Maxwell’s eqns, 
they violate the principle of causality. They suggest that the potentials now 
depend on what the charge & the current distribution will be at in the future.

 In a more general way,

Similarly,

 The retarded potentials (automatically) satisfy the Lorenz gauge condition. 
[Problem 10.10]

Φ (r , t )= 1
4 π ϵ0

∫ ρ (r
 , t r)

�
d τ = 1

4 π ϵ0
∫ ρ (r

 , t )
�

δ (t− tr ) d τ  d t

Φ (r , t )= 1
4 π ϵ0

∫ ρ (r
 , t)
�

δ (t − tr ) d4 x
⇐ t r= t − �

c
= t−

|r−r 
|

c

A (r , t )=
μ0

4 π
∫ J (r  , t)

�
δ (t − tr ) d4 x



  

Example 10.2: An infinite straight wire carries the current
Find the resulting electric and magnetic fields.

 The retarded vector potential at P is

 For          , the “news” has not yet reached P, and the

potential is 0. For         , only the segment                           contributes,

⇒ A (s , t )= ẑ
μ0 I 0

4 π
2 ∫

0

√c2 t 2
− s2

d z

√ s2
+ z2

= ẑ
μ0 I 0

2 π
ln √s2

+ z2
+ z

s |
0

√c2 t2
− s2

=
μ0 I 0

2 π
ln

c t+√c2 t2
− s2

s
ẑ ,  for s< c t ⇐

doesn't deal with
the change at t=0

⇒

E (s , t )=−
∂ A
∂ t

=−
c μ0 I 0

2 π √c2 t2
− s2

ẑ (for Φ=0)

B (s , t )=∇×A=−
∂ Az

∂ s
ϕ̂=
μ0 I 0

2 π s
c t

√c2 t2
− s2
ϕ̂

⇒

return to static
E=0

B=
μ0 I 0

2 π s
ϕ̂

 at t ∞

t >
s
c

A (s , t)=
μ0

4 π
ẑ ∫

−∞

+∞ I (t r)

�
d z

|z|≤√c2 t2
− s2

I (t)=[0 ,  for t≤0
I 0 ,  for t>0

= I 0 Θ (t )

t <
s
c

�



  

Jefimenko’s EquationsJefimenko’s Equations

 This is the time-dependent generalization of Coulomb’s law, to which it reduces 
in the static case.

 This is the time-dependent generalization of the Biot-Savart law, to which it 
reduces in the static case.

Φ (r , t )=
1

4 π ϵ0
∫ ρ (r

 , t r)

�
d τ  , A (r , t)=

μ0

4 π
∫ J (r  , t r)

�
d τ 

E =−∇ Φ−
∂ A
∂ t

, B=∇×A .  Since t r= t − �
c
= t−

|r−r 
|

c
, ρ=ρ (r  , t r)

∇ Φ=−
1

4 π ϵ0
∫ ( ρ̇

c
�̂
�
+ ρ

�̂

�2 ) d τ  ,
∂ A
∂ t

=
μ0

4 π
∫ J̇

�
d τ 

⇒ E (r , t )=
1

4 π ϵ0
∫ ( ρ (r

 , t r)

�2 �̂+
ρ̇ (r  , tr )

c �
�̂−

J̇ (r  , t r)

c2 �
) d τ  (5)

∇ ×A=
μ0

4 π
∫ ( ∇× J

�
− J×∇

1
�
) d τ   t r= t− �

c
, ∇ �= �̂

∇× J= ∑
i , j , k
ϵ

i j k x̂ i ∂ j J k= ∑
i , j , k
ϵ

i j k x̂ i J̇ k ∂ j t r=−
1
c ∑

i , j , k
ϵ

i j k x̂ i J̇ k ∂ j �=
J̇ × �̂

c

⇒ B (r , t)=
μ0

4 π
∫ ( J (r  , t r)

�2
+
J̇ (r  , tr )

c �
)× �̂ d τ  (6) ⇐ ∇

1
�
=−

�̂

�2



  

 (5) & (6) are the (causal) solutions to Maxwell’s equations
―Jefimenko’s equations

 Jefimenko’s equations are of limited utility, since it is easier to calculate the 
retarded potentials and differentiate them, rather than going directly to the 
fields.

 They help to clarify the puzzle: To get to the retarded potentials, all you do is 

replace t by tr in the electrostatic and magnetostatic formulas, but in the case of 

the fields not only is t replaced by tr, but completely new terms appear.

 They provide strong support for the quasistatic approximation.



  

Point Charges
Liénard-Wiechert PotentialsLiénard-Wiechert Potentials
 To calculate the (retarded) potentials, Φ(r, t) & A(r, t), of a point charge q that 

is moving on a specified trajectory

 A naïve reading of the formula                                                        suggests that 

the potential is                                . But this is wrong.

 It is true that for a point source the denominator � comes outside the integral, 

but what remains,                          , is not equal to the charge of the particle.

 To calculate the total charge of a configuration, you must integrate ρ over 
the entire distribution at one instant of time, but here the retardation,                    , 
obliges us to evaluate ρ at different times for different parts of the configuration.

 If the source is moving, this will give a distorted picture of the total charge, and 
this problem would disappear for point charges.

 A point charge is regarded as the limit of an extended charge, when the size 
goes to 0. For an extended particle, no matter how small, the retardation gives 

� (t r)≡ position of q  at time t r ⇐ trajectory

Φ (r , t )=
1

4 π ϵ0

q
�

Φ (r , t )= 1
4 π ϵ0

∫ ρ (r
 , t r)

�
d τ 

∫ ρ (r  , tr) d τ =
q

1− �̂⋅v / c
=

q
1−β⋅�̂

⇐ β=
v
c

, β=
v
c

∫ ρ (r  , tr) d τ 

t r= t− �
c



  

Proof: This is a purely geometrical effect.

 A train coming towards you looks longer than it really is, because the light you 
receive from the caboose left earlier than the light you receive simultaneously 
from the engine, and at that earlier time the train was farther away,

 So approaching trains appear longer, by 

a factor            . By contrast, a train going away 

from you looks shorter, by a factor           . 

 If the train’s velocity makes an angle θ with your line of sight, 
the extra distance light from the caboose cover is Lcos θ. In the time                , 

the train moves a distance L−L:
L cos θ

c
=

L
−L
v

⇒ L
=

L
1−β cos θ

L

c
cos θ

L

c
=

L
−L
v

⇒ L
=

L
1−β

1
1−β 1

1+β

�̂



  

 This effect does not distort the dimensions  the motion (the train’s height & 
width) since there’s no motion in the direction, they look the same distance apart.

 The apparent volume τ is related to the actual volume τ by

 Whenever you do a retarded integral, in which the integrand is evaluated at the 

retarded time, the effective volume is modified by the factor               .

 This correction factor makes no reference to the size of the particle, it is every 
bit as significant for a point charge as for an extended charge.

 For a point charge the retarded time is 
determined implicitly by

 At most one point on the trajectory is in 

communication with r at any particular time t.

 If there were 2 such points, with retarded 
times t1 and t2:

so the average speed of the particle in the 
direction of the point r would have to be c

�1=c (t − t 1) , �2=c (t − t 2)

⇒ �1−�2=c (t2− t1)

1
1− �̂⋅β

τ

=

τ

1− �̂⋅β

�=c (t− tr) ⇐ �⃗=r− �⃗ (t r)

�⃗
�⃗ (tr )



  

 Since no charged particle can travel at the speed of light, it follows that only 
one retarded point contributes to the potentials, at any given moment. 

   Liénard-Wiechert potentials for a moving point charge.

Selected problems: 3, 12, 18, 23, 28, 31  

Φ (r , t )=
q

4 π ϵ0 �
1

1− �̂⋅β
=

q

4 π ϵ0

1
�− �⃗⋅β

⇐ �⃗=� �̂

J=ρ v ⇒ A (r , t )=
μ0

4 π
∫ ρ (r

 , tr) v (tr )

�
d τ =

μ0

4 π
v
�
∫ ρ (r  , tr ) d τ 

⇒ A (r , t )=
μ0

4 π
q v
�

1
1− �̂⋅β

=
β

c
Φ (r , t) ⇐ μ0 ϵ0=

1
c2



  

Φ (r , t )= 1
4 π ϵ0

∫ ρ (r
 , t r)

�
d τ = 1

4 π ϵ0
∫ ρ (r

 , t )
�

δ (t− t r) d τ  d t

=
1

4 π ϵ0
∫ ρ (r

 , t )
�

δ (t− t r) d4 x 
⇐ t r= t− �

c
= t −

|r −r 
|

c

For point charge ρ (r  , t)=q δ3
(r 

− �⃗ (t )) ⇐ �⃗ (t) : trajectory at t

⇒ Φ (r , t)=
1

4 π ϵ0
∫ q

�
δ

3
(r 

− �⃗) δ (t− t r) d4 x 
=

q
4 π ϵ0

∫ δ (t

− tr )

|r − �⃗|
d t

=
q

4 π ϵ0
∫ δ (t


− t +� / c)
�

d t  ⇐ �⃗=r − �⃗ (t) , �=|�⃗| now

f (t)≡ t− t + �
c

⇒
d f
d t

=1− �̂⋅
v
c
=1− �̂⋅β ⇐ v=

d �⃗

d t
, β=

v
c

δ ( f )=
δ (t− t s)

∑|d f /d t |t ' = ts

⇐ f (t s)=0 ⇒ t s= tr = t − �
c
= t−

|r− �⃗ (t s)|

c

⇒ Φ (r , t)=
q

4 π ϵ0
∫ δ (t


− t +� /c )
�

d t=
q

4 π ϵ0 �
1

1− �̂⋅β

Similarly, A (r , t )=
μ0

4 π
q v
�

1
1− �̂⋅β

=
1

4 π ϵ0 c
q β

�− �⃗⋅β



  

Definition of the Dirac delta function: ∫
−∞

+∞

f ( x) δ ( x− y) d x= f (y )

∫
−∞

+∞

g ( x ) δ ( f ( x )) d x=∫ g δ ( f )
d x
d f

d f ⇐
if u= f (x ) ,
then x= f −1

(u)= f −1
( f )

= ∫
–



g δ ( f )|d x
d f |d f = ∫

–

 g δ ( f )

|d f
d x |

d f

f ( x )=0  if x= z i  the root ⇒ ∫
–

 g δ ( f )

|d f
d x |

d f = ∫
z i− ϵ

z i+ ϵ g (x ) δ (x− z i)

|d f
d x |x= zi

d x

⇒ ∫
−∞

+∞

g ( x) δ ( f ( x)) d x= ∫
−∞

+∞

g (x )∑
i

δ (x− z i)

|d f
d x |x= z i

d x ⇐ if more than 1 root

⇒ δ ( f ( x ))=∑
i

δ ( x− z i)

|d f
d x |x = zi

 where z i 's are roots.



  

Example 10.3: Find the potentials of a point charge moving with constant velocity

v=constant ⇒ �⃗ (t r)=v t r ⇐ a=0

⇒ �=|r−v tr|=c (t− tr ) ⇒ r2
−2 tr r⋅v + v2 tr

2
=c2

(t2
−2 t tr + tr

2
)

⇒ t r=
c2 t−r⋅v±√(c2 t −r⋅v )2+(c2

−v2
) (r2

−c2 t2
)

c2
− v2 ⇒ lim

v  0
tr  t±

r
c

choose
−  sign

⇒ t r=
c t−r⋅β−√(c t−r⋅β)2+(1−β2

) (r2
−c2 t 2

)

c (1−β2
)

⇒ � (1−β⋅�̂)=c (t − t r)( 1−β⋅
r−v tr

c (t− tr)
) ⇐ �=c (t− t r) , �̂=

r −v tr

c (t− tr )

=c (t− tr )−β⋅r + c β2 t r=c t−β⋅r−c (1−β2
) t r

=√(c t−β⋅r )2
+(1−β2

) (r2
−c2 t2

) ⇐  using t r 's expression.

⇒

Φ (r , t)=
1

4 π ϵ0

q

√(c t−β⋅r )2+(1−β2
) (r2

−c2 t2
)

A (r , t )=
μ0

4 π
q v

√(c t−β⋅r )2+(1−β2
) (r2

−c2 t2
)



  

The Fields of a Moving Point ChargeThe Fields of a Moving Point Charge
 Calculate the electric and magnetic fields of a point charge in arbitrary motion: 

Φ (r , t)= 1
4 π ϵ0

q
�−β⋅⃗�

, A (r , t )= β
c
Φ (r , t) ⇒

E =−∇ Φ−∂t A
B=∇×A

c β (t r)=v (tr )=
˙⃗� (t r)=

d �⃗

d t r

, �=c (t− tr ) ⇐ �⃗=r− �⃗ (tr ) ⇒ ∇ �=−c ∇ t r

⇒ ∇ Φ=−
q

4 π ϵ0

∇ (�−β⋅�⃗)

(�−β⋅�⃗)2
=

q

4 π ϵ0 �
2

c ∇ t r+∇ (β⋅⃗�)

(1− �̂⋅β)2

∇ (β⋅�⃗)=∇∑
i
(β

i �i)=∑
i
(�i ∇ β

i
+ β

i
∇ �i) ⇐ �⃗=r − �⃗ , r =∑ xk x̂ k

=∑
i
( �i

d β i

d tr

∇ tr +β
i
∇ ( x i−�i))=( �⃗⋅β̇) ∇ tr +β−(β⋅v ) ∇ t r

=β+(�⃗⋅β̇−c β2
) ∇ t r ⇐ v=c β , c β̇=

d v
d t r

=a : acceleration  at
the retarded time

⇒ ∇ Φ=
q

4 π ϵ0 �
2

β+(c−c β2
+ �⃗⋅β̇) ∇ t r

(1− �̂⋅β)2
 according to

the above result

−c ∇ tr=∇ �=∇ √ �⃗⋅�⃗=
∇ ( �⃗⋅�⃗)

2 √ �⃗⋅�⃗
=

1
�∑i

(�i
∇ �i)=

�⃗−( �⃗⋅v ) ∇ t r

�



  

⇒ ∇ tr=
− �̂

c (1− �̂⋅β)
⇒ ∇ Φ=

q

4 π ϵ0 �
2

c (1− �̂⋅β) β−(c−c β2
+ �⃗⋅β̇) �̂

c (1− �̂⋅β)3

∂ �⃗
∂ t

=
∂

∂ t
[r − �⃗ (t r)]=−v

∂ tr

∂ t
⇒

∂ �
∂ t

=
∂

∂ t
√ �⃗⋅�⃗= �̂⋅∂ �⃗

∂ t
=−c (�̂⋅β)

∂ t r

∂ t

�=c (t− tr ) ⇒
∂ �
∂ t

=c−c
∂ tr

∂ t
⇒

∂ tr

∂ t
=

1
1− �̂⋅β

⇒
∂ �
∂ t

=−
c �̂⋅β

1− �̂⋅β

⇒
∂ �⃗
∂ t

=−
c β

1− �̂⋅β
, ∂ β

∂ t
=

d β
d t r

∂ tr

∂ t
=

β̇

1− �̂⋅β

∂

∂ t
1

�− �⃗⋅β
=−

1
�2
(1− �̂⋅β)2

( ∂ �
∂ t

− �⃗⋅
∂ β

∂ t
−β⋅

∂ �⃗
∂ t
)= c �̂⋅β+ �⃗⋅β̇−c β2

�2
(1− �̂⋅β)3

⇒
∂ A
∂ t

=
Φ
c
∂ β

∂ t
+
β

c
∂ Φ
∂ t

=
q

4 π ϵ0
( β̇

c � (1− �̂⋅β)2
+
β

c
c �̂⋅β+ �⃗⋅β̇−c β2

�2
(1− �̂⋅β)3

)
=

q

4 π ϵ0 �
2

(1− �̂⋅β) (� β̇−c β)+(c−c β2
+ �⃗⋅β̇)β

c (1− �̂⋅β)3

⇒ E (r , t )=
q

4 π ϵ0 �
2

c (1−β2
) (�̂−β)+ �⃗×[(�̂−β)× β̇ ]

c (1− �̂⋅β)3
⇐ −∇ Φ−

∂ A
∂ t



  

∇×β= ∑
i , j , k

ϵ
i j k x̂ i ∂ j β k= ∑

i , j , k

ϵ
i j k x̂ i

∂ t r

∂ x j

d β k

d tr

=∇ t r× β̇=
β̇× �̂

c (1− �̂⋅β)

⇒ ∇×A=∇×
β Φ

c
=
Φ
c
∇×β+∇ Φ× β

c

=
q

4 π ϵ0
( β̇× �̂

c2 � (1− �̂⋅β)2
+

c (1− �̂⋅β)β−(c−c β2
+ �⃗⋅β̇) �̂

c �2
(1− �̂⋅β)3

×
β

c
)

=
q

4 π ϵ0 �
2

[c (1−β2
) β+(�⃗⋅β̇) β+� (1− �̂⋅β) β̇ ]× �̂

c2
(1− �̂⋅β)3

[c (1−β2
) β+(�⃗⋅β̇) β+ � (1− �̂⋅β) β̇ ]× �̂

= �̂×[c (1−β2
) (�̂−β)+(�⃗⋅β̇) (�̂−β)− �⃗⋅(�̂−β) β̇ ] ⇐ � (1− �̂⋅β)= �⃗⋅(�̂−β)

= �̂×[c (1−β2
) (�̂−β)+ �⃗×((�̂−β)×β̇)]

⇒ B (r , t )= �̂
c
×E (r , t ) ⇐ ∇×A

 Evidently the magnetic field of a point charge is always perpendicular to the 
electric field, and to the vector from the retarded point.



  

�⃗×[(�̂−β)× β̇ ]

 The 1st term in E [the one with                            ] falls off as the inverse square 
of the distance from the particle.

 If the velocity and acceleration are both 0, this term alone survives and reduces 

to the old electrostatic result                          . So the 1st term in E is called the 
generalized Coulomb field.

 It does not depend on the acceleration, it is also known as the velocity field.

 The 2nd term [the one with                            ] falls off as the inverse 1st power of 
� and is therefore dominant at large distances.

 It is this term that is responsible for EM radiation; so it is called the radiation 
field—or, since it is proportional to a, the acceleration field.

 With the E and B fields, the Lorentz force law determines the resulting force:

E=
1

4 π ϵ0

q

�2 �̂

c (1−β2
) (�̂−β)

⇒ F=
q Q

4 π ϵ0 �
2

1
c2
(1− �̂⋅β)3

( c2
(1−β2

) (�̂−β)+ c �⃗×[(�̂−β)×β̇ ]

+V ×[ �⃗×(c (1−β2
) (�̂−β)+ �⃗×((�̂−β)× β̇))])

where V  is the velocity of Q



  

Example 10.4: Calculate the electric and magnetic fields of a point charge 
moving with constant velocity.

 Notice that E points along the line from the present position of the particle. This 
is a real coincidence, since the “message” came from the retarded position.

 Because of sin2 θ in the denominator, the field of a fast-moving charge is 
flattened out like a pancake in the direction  the motion.

 In the forward/backward directions E is reduced by a factor (1−β 2) relative to 
the field of a charge at rest; in the perpendicular direction it is enhanced by a 

factor                .

β̇=
a
c
=0 ⇒ E=

q
4 π ϵ0

(1−β2
) (�̂−β)

�2
(1− �̂⋅β)3

⇐ β≡
v
c

, β=
v
c

, �⃗=r − �⃗ (t r)

�=|�⃗|=c (t − t r)

� (�̂−β)= �⃗−� v / c=r−v t r−(t− t r) v=r −v t ⇐ �⃗ (tr )=v tr

� (1− �̂⋅β)= �⃗⋅(�̂−β)=√(c t −r⋅β)2+(1−β2
) (r2

−c2 t2
) ⇐ using Ex. 10.3

=R √1−β2 sin2
θ ⇐

R ≡r−v t
θ :  angle between R  & v

⇐ Problem 10.16

⇒ E (r , t )=
q

4 π ϵ0

1−β2

(1−β2 sin2
θ)

3 /2

R̂
R2

1

√1−β2



  

Problem 10.16
R≡r −v t ⇒ r=R +v t ⇒ r2

= R2
+2 R⋅v t+ v2 t2

⇒ (c t−r⋅β)2+(1−β2
) (r2

−c2 t2
) ⇐ β≡

v
c

, β=
v
c

=(c t−R⋅β−c β2 t )2+(1−β2
) (R2

+2 c R⋅β t+ c2
β

2 t 2
−c2 t2

)

=[c (1−β2
) t−R⋅β ]

2
+(1−β2

) [R2
+2 c R⋅β t−c2

(1−β2
) t2

]

=c2
(1−β2

)
2 t2

−2 c (1−β2
) R⋅β t +R2

β
2 cos2

θ

+(1−β2
) R2

+2 c (1−β2
)R⋅β t−c2

(1−β2
)
2 t2

=(1−β2
) R2

+ R2
β

2 cos2
θ=R2

−β
2 R2 sin2

θ=R2
(1−β2 sin2

θ)



  

 

 Lines of B circle around the charge.

  When v2≪c2 they reduce to

 The 1st is essentially Coulomb’s law, and the 2nd is the “Biot-Savart law for a 
point charge.”

�̂=
r−v tr

�
=

r−v t+ v (t− t r)

�
=

R
�
+β ⇒ B=

�̂
c
×E =

β

c
×E

E (r , t)≈ 1
4 π ϵ0

q

R2
R̂ , B (r , t)≈

μ0

4 π

q

R2
v× R̂
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