
  

Chapter 31Chapter 31 Electromagnetic Oscillations and   
                   Alternating Current

 In the LC circuit the charge, current, and potential difference vary sinusoidally 

(with period T and angular frequency ω). The resulting oscillations of the 
capacitor’s electric field and the inductor’s magnetic field are said to be 
electromagnetic oscillationselectromagnetic oscillations.

 The energy stored in the electric field of the capacitor is

 The energy stored in the magnetic field of the inductor is

 To determine the charge q(t) on the 
capacitor,put in a voltmeter to measure the
potential difference (or voltage) vC that

exists across  the capacitor C:

 To measure the current, connect a 
small resistance R in series in the circuit 

and measure the potential difference vR 
across it:

LC Oscillations, Qualitatively
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 In an actual LC circuit, the oscillations will not continue indefinitely because 
there is always some resistance present that will drain energy from the electric 
and magnetic fields and dissipate it as thermal energy (the circuit may become 
warmer).



  

The Electrical– Mechanical 
Analogy

 The analogy between the oscillating 
LC system and an oscillating block–
spring system:

 These correspondences suggest that 
in an LC oscillator, the capacitor is 
mathematically like the spring in a 
block– spring system and the inductor 
is like the block.

 In a block– spring system:

 The correspondences suggest that to find the angular frequency of oscillation 
for an ideal LC circuit, k 

should be replaced by 1/C
and m by L,

Block-Spring System LC Oscillator
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The Block–Spring OscillatorThe Block–Spring Oscillator
 The total energy of a block– spring oscillator:

 Energy conservation, no friction:

X is the amplitude of the mechanical oscillations, ω is the angular frequency of 
the oscillations, and ϕ is a phase constant. 

The The LCLC Oscillator Oscillator

 The total energy in an oscillating LC circuit:

UB is the energy stored in the magnetic field of the inductor and UE is the energy 
stored in the electric field of the capacitor.

 Energy conservation, no resistance:

LC Oscillations, Quantitatively
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 The current of the LC oscillator:

 The angular frequency of the LC oscillator:

 ϕ is determined by the initial  conditions.

 The electrical energy stored in the LC circuit

 The magnetic energy stored in the LC circuit

Note:                                                                                                   problem 31-1
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Damped Oscillations in an RLC Circuit

 A circuit containing resistance, inductance, and 
capacitance is called an RLC circuit. We shall here 
discuss only series RLC circuits

 With a resistance present, the total EM energy of 
the circuit is no longer constant; it decreases with 
time as energy is transferred to thermal energy in the
resistance.

 Because of this loss of energy, the oscillations of charge, current, and
potential difference decrease in amplitude, and the oscillations are damped.

 The rate of energy transferred to thermal energy:

 The electrical energy:

   the magnetic energy:
                                                                                                             problem 31-2

U E=
q2

2 C
=

Q2

2 C
e−R t / L cos2

(ω ' t+ϕ)

U B=
L i2

2
=

Q2

2 C
e−R t / L sin2

(ω ' t+ϕ)

⇒ U =
Q2

2 C
e−R t / L

⇒
d

d t
( L i2

2
+

q2

2 C
)=L i

d i
d t

+
q
C

d q
d t

=− i2 R ⇒ L
d2 q

d t2 + R
d q
d t

+
1
C

q=0 RLC
curcuit

⇒ q=Q e−R t /2 L cos (ω ' t +ϕ) ⇐ ω ' =√ω2
−(R /2 L)2≤ω ⇐ ω=1 /√L C

d U
d t

=− i2 R



  

Alternating Current

 If the energy is supplied via 
oscillating emfs and currents, the 
current is said to be an alternating alternating 
currentcurrent, or ACAC for short. The 
nonoscillating current from a battery 
is said to be a direct currentdirect current, or DCDC.

 These oscillating emfs and currents
vary sinusoidally with time, reversing 
direction (in North America) 120 times 
per second and thus having frequency f = 60 Hz.

 The advantage of alternating current: As the current alternates, so does the As the current alternates, so does the 
magnetic field that surrounds the conductormagnetic field that surrounds the conductor. This makes possible the use of 
Faraday’s law of induction.

 In a generator:                                                             where ωd is called the 
driving angular frequencydriving angular frequency.

 The current may not be in phase with the emf.

 The driving frequencydriving frequency f d=
ωd

2 π

ℰ=ℰm sin ωd t , i= I sin (ωd t−ϕ)



  

Three Simple Circuits

 An undamped LC circuits or a damped RLC 

circuits (with small enough R) without any 

external emf are said to be free oscillations, 
and the angular frequency                    is said 
to be the circuit’s natural angular frequencynatural angular frequency.

 When the external alternating emf is connected to an RLC circuit,      the 

oscillations of charge, potential difference, and current are said to be driven 
oscillations or forced oscillations., with the driving angular frequency ωd:
Whatever the natural angular frequency ω of a circuit may be, forced oscillations
of charge, current, and potential difference in the circuit always occur at the 
driving angular frequency ωd. 

A Resistive LoadA Resistive Load
 By the loop rule:

 vR and iR are in phase, which means that their corresponding maxima (and 
minima) occur at the same times.   

⇒ vR=V R sin ωd t ⇐ V R=ℰm ⇒ i R=
vR

R
=

V R

R
sin ωd t

i R= I R sin (ωd t−ϕ) ⇒ ϕ=0 , V R= I R R resistor

Forced Oscillations

ω=1 /√LC

ℰ− vR=0 ⇒ vR=ℰm sin ωd t



  

                                                                                            problem 31-3
A Capacitive LoadA Capacitive Load
 The potential difference across the capacitor

 The current:

 Capacitive reactanceCapacitive reactance:

 The SI unit of XC is the ohm, just as for resistance R.

        

X C=
1
ωd C

capacitive reactance

vC=V C sin ωd t ⇒ qC=C vC=C V C sin ωd t

⇒ V C= I C X C capacitor ⇐ true for any capacitance in any circuit

iC=
d qC

d t
=ωd C V C cos ωd t

cos ωd t= sin ( ωd t + π
2
) ⇒ iC= IC sin (ωd t −ϕ)=

V C

X C

sin ( ωd t + π
2
)



  

Problem 31-4

An Inductive LoadAn Inductive Load
 The potential difference across the inductance

 Inductive reactanceInductive reactance:

 The SI unit of XL is the ohm, just as for XC an for R.
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L
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2
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X L
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2
)

⇒ V L= I L X L inductor ⇐ true for any inductance in any circuit



  

Circuit Resistance Phase of Phase Constant Amplitude
Element Symbol or Recactance the Current (or Angle) ϕ Relation

Resistor R R In phase with vR 0 V R= I R R

Capacitor C XC =
1
ωd C

Leads vC by π
2

−
π

2
V C= I C X C

Inductor L X L=ωd L Lags vL by π
2

π

2
V L= I L X L

Problem 31-5

Phase and Amplitude Relations for Alternating Currents and Voltages



  

The Series RLC Circuit

 Apply a RLC circuit the alternating emf

The Current AmplitudeThe Current Amplitude
 For the loop rule:

 The value of I depends on the difference between ωd L and 1/ωd C or, 

equivalently, the difference between XL and XC.  

⇒ ℰm
2
=(I R)2+( I X L− I X C)

2
⇒ I=

ℰm

√R2
+(X L− XC )

2
=
ℰm

Z
where

Z =√R2
+(X L− X C)

2 impedance ⇒ I=
ℰm

√R2
+[ωd L−1 /(ωd C )]

2
current
amplitude

ℰ=ℰm sin ωd t applied emf ⇒ i= I sin (ωd t−ϕ)

ℰ= vR+ vC+ vL ⇒ ℰm
2
=V R

2
+(V L−V C)

2



  

ℰ=ℰm sin ωd t ⇒ i= I sin (ωd t−ϕ)

⇒

vR= i R=V R sin (ωd t−ϕ)
vC= −V C cos (ωd t−ϕ)
vL= V L cos (ωd t −ϕ)

⇐

V R= I R
V C= I XC

V L= I X L

⇒ Define V X =V L −V C

ℰm sin ωd t ⇐ℰ=vR+ vC + vL=V R sin (ωd t−ϕ)+V X cos (ωd t−ϕ)

=(V R cos ϕ+V X sin ϕ) sin ωd t+(V X cos ϕ−V R sin ϕ) cos ωd t

Coefficient comparison gives V R cos ϕ+V X sin ϕ=ℰm

V X cos ϕ−V R sin ϕ=0

⇒
tan ϕ=

V X

V R

=
V L−V C

V R

=
X L−XC

R

V R=ℰm cos ϕ , V X =ℰm sin ϕ ⇒ ℰm
2
=V R

2
+V X

2
=V R

2
+(V L−V C )

2



  

 The current that we have been describing in this section is the steady-state 
current that occurs after the alternating emf has been applied for some time.

 When the emf is first applied to a circuit, a brief transient current occurs. Its 

duration is determined by the time constants τL=L/R and τC=RC as the inductive 
and capacitive elements “turn on.”

The Phase ConstantThe Phase Constant
 From the plot:  tan ϕ=

V L−V C

V R

=
I X L− I X C

I R
⇒ tan ϕ=

X L−X C

R
phase
constant



  

 3 different results for the phase constant
                      XL>XC: The circuit is said to be more inductive than capacitive.

                      XC>XL: The circuit is said to be more capacitive than inductive.

                      XC=XL: The circuit is said to be in resonance.

 In the purely inductive circuit, where XL is nonzero and XC=R=0, then ϕ=π/2 

(the greatest value of ϕ). In the purely capacitive circuit, where XC is nonzero and 

XL=R=0, then ϕ=–π/2 (the least value of ϕ).

ResonanceResonance
 For a given resistance R, that amplitude is 

a maximum when the quantity ωd L-1/ωd C 
in the denominator is 0

 The natural angular frequency ω of the
RLC circuit is also equal to              , the maximum value 

of I occurs when the driving angular frequency matches the natural angular 
frequency—that is, at resonance.

1 /√L C

ωd=ω=
1

√L C
resonance

ωd L=
1
ωd C

⇒ ωd=
1

√L C
maximum I



  

 The resonance curves peak at their maximum current amplitude I (=ℰm/R) when 

ωd=ω, but the maximum value of I decreases with increasing R. The curves also 

increase in width (measuring at half the maximum value of I) with increasing R.

For small ωd, XL(=ωd L) is small and XC(=1/ωd C) is large. Thus, the circuit is 

mainly capacitive and the impedance is dominated by the large XC, which keeps 
the current low.

 As ωd increases, XC remains dominant but decreases while XL increases. The 

decrease in XC decreases the impedance, allowing the current I to increase. When 

the increasing XL and the decreasing XC reach equal values, the current I is 

greatest and the circuit is in resonance, with ωd=ω.

As ωd continue to increase, the increasing XL becomes more dominant over the 

decreasing XC. The impedance increases because of XL and the current decreases.

 In summary: The low-angular-frequency side of a resonance curve is dominated 
by the capacitor’s reactance, the high-angular frequency side is dominated by the 
inductor’s reactance, and resonance occurs in the middle.

                                                                                              Problem 31-6



  

 In steady-state operation the average energy stored in the capacitor and 
inductor together remains constant. The net transfer of energy is thus from the 
generator to the resistor, where EM energy is dissipated as thermal energy.

 The instantaneous rate at which energy is dissipated in the resistor

 The average rate at which energy is dissipated

 If we switch to the rms current, we can compute the
average rate of energy dissipation for alternating-
current circuits just as for direct-current circuits.

 

Power in Alternating-Current Circuits

Pavg=
1
T
∫

0

T

P d t =
I 2 R
T
∫

0

T

sin2
(ωd t−ϕ) d t=

I 2 R
2
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√2
)2

R ⇒ I rms≡
I

√2
rms current

⇒ Pavg= I rms
2 R average power

V rms=
V

√2
, ℰrms=

ℰ

√2
rms voltage; rms emf

P= i2 R=[ I sin (ωd t−ϕ)]2 R= I 2 R sin2
(ωd t−ϕ)



  

 Alternating-current instruments, such as ammeters and voltmeters, are usually 
calibrated to read Irms, Vrms, and ℰrms.

 Plug an alternating-current voltmeter into a electrical outlet and it reads 120 V, 
that is an rms voltage. The maximum value of the potential difference at the 
outlet is                       or 170 V.

 The equation is independent of the sign of the phase constant ϕ⇐cosϕ=cos(-ϕ). 

 To maximize the rate at which energy is supplied to a resistive load in an RLC 
circuit, we should keep the power factor cos as close to 1 as possible  ⇐ ϕ=0.

Problem 31-7

√2×(120 V)

I rms=
ℰrms

Z
=

ℰrms

√R2
+(X L−X C)

2
⇒ Pavg=

ℰ rms

Z
I rms R=ℰrms I rms

R
Z

⇒ Pavg=ℰrms I rms cos ϕ average power ⇐ cos ϕ=
V R

ℰm
=

I R
I Z

=
R
Z

power
factor



  

Energy Transmission RequirementsEnergy Transmission Requirements
 An ac circuit with only a resistive load, the power factor cos 0=1,

 A range of choices of I and of V provided only that the product IV is as required.

 In the transmission of electrical energy from the generating plant to the 
consumer, we want the lowest practical current (hence the largest practical 
voltage) to minimize I2R losses (often called ohmic losses) in the transmission line.

 Consider a 735 kV line to transmit electrical energy for 1000 km. If the current 
is 500 A and the power factor ~ unity. Then

 The resistance of the transmission line is about 0.22Ω/km
Energy is dissipated due to that resistance at a rate 

 In the other case:

 The general energy transmission rule: Transmit at the highest possible voltage 
and the lowest possible current. 

Transformers

⇒ Rtotal=220Ω

Pavg=ℰ I = I V

⇒ Pavg
R
= I '2 R=(1000 A)

2
(220 Ω)=220 MW∼65 %×Pavg

supply

Pavg
supply

=ℰ I =(735000 V) (500 A)=368 MW

I ' =2 I , ℰ ' =ℰ

2
⇒ Pavg

supply
=ℰ ' I '=ℰ I

Pavg
R
= I 2 R=(500 A)

2
(220Ω)=55 MW∼15 %×Pavg

supply



  

The Ideal TransformerThe Ideal Transformer
 Need a device with which we can raise (for 

transmission) and lower (for use) the ac voltage in 
a circuit, keeping the product current voltage 
essentially constant ⇒ the transformer.

 The ideal transformer consists of two coils, with 
different numbers of turns, wound around an iron core.

 The primary winding, of Np turns, is connected to an AC generator whose emf is

 The secondary winding, of Ns turns, is connected to load resistance R.

 The primary current, the magnetizing current Imag, lags the primary voltage Vp by 

90° (no power is delivered). The sinusoidally changing primary current Imag 
produces a sinusoidally changing magnetic flux B in the iron core.

 The core strengthens the flux and to bring it through the secondary winding.

 Because B varies, it induces an emf ℰturn (dB/dt) in each turn of the secondary. 
the emf per turn ℰturn is the same in the primary and the secondary

ℰturn=
V p

N p

=
V s

N s

⇒ V s=V p

N s

N p

transformation of voltage

ℰ=ℰm sin ω t



  

 Ns>Np: step-up transformer     because Vs>Vp  ;

   Ns<Np: step-down transformer because Vs<Vp  .

 Connect the secondary to the resistive load R, now energy is transferred from 
the generator:

1 An AC Is appears in a secondary circuit, with corresponding energy dissipation 

   rate Is
2R(=Vs

2/R) in the resistive load.

2 Is produces its own alternating magnetic flux in the iron core, and this flux 
   induces an opposing emf in the primary windings.

3 Vp of the primary cannot change in response to this opposing emf because it 
   must always be equal to the emf that is provided by the generator.

4 To maintain Vp, the generator now produces (in addition to Imag) an AC Ip in the 

   primary circuit; the emf induced by Ip in the primary will exactly cancel the emf 

   induced there by Is. Because the phase constant of Ip is not 90° like that of Imag, 

   this current Ip can transfer energy to the primary.



  

 Assume no energy is lost, conservation of energy requires that

Impedance MatchingImpedance Matching
 For maximum transfer of energy from an emf device to a load, the impedance of 

the emf device must equal the impedance of the load. We can match the 
impedances of the two devices by coupling them through a transformer that has a 
suitable turns ratio.

Solar Activity and Power-Grid SystemsSolar Activity and Power-Grid Systems

problem 31-8 

Selected problems: 22, 26, 36,50, 58    

I p V p= I s V s ⇒ I s= I p

N p

N s

transformation of currents

⇒ I p= I s

N s

N p

=
N s

N p

V s

R
=( N s

N p

)
2 V p

R
≡

V p

Req

⇒ Req=( N p

N s

)
2

R



  

Impedance Matching and Maximum Power TransferImpedance Matching and Maximum Power Transfer

RS≠0 ⇒ I =
V S

RS+ RL

⇒ PL≡ I2 RL=
V S

2 RL

(RS+RL)
2

To find PL , max ⇒
d PL

d RL

=0

⇒ RL=RS ⇒ PL , max=
V S

2

4 RS
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