
Chapter 29Chapter 29 Magnetic Fields Due to Currents

 Wish to calculate the magnetic field produced 
at P by a typical current-length element           . 

 Magnetic fields can be superimposed to find a 
net field.

 This calculation is more challenging than the 
process associated with electric fields because 
whereas a charge element is a scalar, a current-
length element is a vector.

 The magnitude of the magnetic field produced 
at point P by a current-length element is

μ0 is the permeability constant:

 This vector equation is Biot-Savart lawBiot-Savart law, which is experimentally deduced, an 
inverse-square law. 

Calculating the Magnetic Field Due to a Current

μ0=4 π×10−7 T⋅m /A≈1.26×10−6 T⋅m /A
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Magnetic Field Due to a Current in a Long Straight WireMagnetic Field Due to a Current in a Long Straight Wire
 The magnitude of the magnetic field at a perpendicular distance R from a long 

(infinite) straight wire carrying a current i is

proof
 The magnitude of the differential magnetic field 

produced at P by the current-length element located a 
distance r from P is

 The direction of        is that of the vector            , 
namely, directly into the page.

 To find the magnitude of the total magnetic field at P,
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 The field magnitude B depends only on the current and the 

perpendicular distance R of the point from the wire.

 The field lines of the magnetic field form concentric circles 
around the wire.

 A simple right-hand rule for finding the direction of the magnetic 
field set up by a current-length element,

Curled-straight Right-hand rule: Grasp the element in your right hand 
with your extended thumb pointing in the direction of the current. 
Your fingers will then naturally curl around in the direction of the 
magnetic field lines due to that element. 
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 The magnetic field at any point is tangent to a magnetic field line; and it is 

perpendicular to a dashed radial line connecting the point and the current.

 Note that the magnetic field at P due to either the lower half or the upper half 
of the infinite wire is half this value

Magnetic Field Due to a Current in a Circular Arc of WireMagnetic Field Due to a Current in a Circular Arc of Wire
 As the figure shows, no matter where the element is located on the wire, the 

angle θ between the vectors       and      is π/2; also, r = R. Thus

 For the magnitude of the magnetic field 
at the center of a full circle of current,  
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Magnetic Field Due to Brain ActivityMagnetic Field Due to Brain Activity
 Magnetoencephalography (MEG): a procedure in which 

magnetic fields of a person's brain are monitored 
as the person performs a task.

 Let's estimate the magnitude of such a field,

 You need extremely sensitive 
instruments called SQUIDs 
(superconducting quantum 
interference devices) that 
can measure such small                             problem 29-2
fields.

                                                                          problem 29-1

r =2 cm , i =10 μ A , d s=1 mm , θ=π /2
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Force Between 2 Parallel Currents

 2 long parallel wires carrying currents exert
forces on each other.

 The magnetic field produced by the 
current in wire a at every point of 
wire b is

 The direction of the magnetic field at wire b is down.

 The force on a length L of wire b due to the external magnetic field is

                            and its magnitude is

 Applying the right-hand rule, we see that the force's direction is directly 
toward wire a.

 The general procedure for finding the force on a current-carrying wire is this:

To find the force on a current-carrying wire due to a 2nd current-carrying wire, 
first find the field due to the 2nd wire at the site of the 1st wire. Then find the 
force on the 1st wire due to that field.
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 Use this procedure to compute the force on wire a 
due to the current in wire b, we would find that the 

force is directly toward wire b; hence
Parallel currents attract each other, and anti-
parallel currents repel each other.

 The definition of ampere: the ampere is that 
constant current which, if maintained in 2 straight, 
parallel conductors of infinite length, of negligible circular 
cross section, and placed 1m apart in vacuum, would produce 
on each of these conductors a force of magnitude 2 × 10−7 
newton per meter of wire length. 

Rail GunRail Gun
 In this device, a magnetic force accelerates a projectile to 

a high speed in a short time.
 
 The currents in the rails produce magnetic fields that are 

directed downward between the rails.

 The net magnetic field exerts a force on the gas due to 
the current through the gas.

 As the gas is forced outward along the rails, it pushes the 
projectile, accelerating it by as much as 5 × 106g, and then 
launches it with a speed of 10km/s, all within 1ms.



Ampere's Law
 

 Ampere's lawAmpere's law is

 The loop on the integral sign means that the 
scalar product              is to be integrated around a closed loop, called
an Amperian loop. The current ienc is the net current encircled by that closed loop.
  
 Ampere's law can be written as

 
 We use the following curled-straight right-hand rule to 

assign a plus sign or a minus sign to each of the currents 
that make up the net encircled current ienc:
Curl your right hand around the Amperian loop, 
with the fingers pointing in the direction of 
integration. A current through the loop in the 
general direction of your outstretched thumb is 
assigned a plus sign, and a current generally in 
the opposite direction is assigned a minus sign.
 
 With the indicated counterclockwise direction of integration, the net current 

encircled by the loop is
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 The contributions of the current outside the loop to the magnetic field cancel 
out because the integration is made around the full loop.

Magnetic Field Outside a Long Straight Wire with CurrentMagnetic Field Outside a Long Straight Wire with Current
 Under the cylindrical symmetry, the magnetic 

field has the same magnitude B at every point 
on the loop.

 Since     is tangent to the loop at every point 
along the loop, as is       . Thus,     and       are
either parallel or antiparallel at each point of 
the loop, and we assume they are parallel, 

Magnetic Field Inside a Long Straight Wire Magnetic Field Inside a Long Straight Wire 
with Currentwith Current
 If the current is uniformly distributed over a 

cross section of the wire, the magnetic field 
produced by the current must be cylindrically 
symmetrical. 
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 Ampere's law gives

 Inside the wire, the magnitude B of the magnetic field is proportional to r; the 

magnitude is 0 at the center and a maximum at the surface, where r = R.

       problem 29-3

Magnetic Field of a SolenoidMagnetic Field of a Solenoid
 SolenoidSolenoid: a long, tightly wound helical coil of wire.

 Assume that the length of the solenoid is much greater than the diameter. 
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Solenoids and Toroids



 The solenoid s magnetic field is the vector sum of the fields produced by the 
individual turns (windings) that make up the solenoid.

 At points inside the solenoid and reasonably far from the wire, the magnetic 
field is approximately parallel to the (central) solenoid axis.

 In the limiting case of an ideal solenoid, which is infinitely long and consists of 
tightly packed (close-packed) turns of square wire, the field inside the coil is 
uniform and parallel to the solenoid axis.

 In the limiting case of an ideal solenoid, the magnetic field outside the solenoid 
is 0.

 The direction of the magnetic field along the solenoid axis is given by a curled  
straight right-hand rule. 



 The spacing of these lines in the central 
region shows that the field inside the coil 
is fairly strong and uniform over the cross 
section of the coil. The external field is 
relatively weak.

 Apply Ampere's law

to the solenoid, then 

Let n be the number of turns per unit 
length of the solenoid; then the loop 
encloses nh turns and

 Ampere's law then gives 
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 The magnetic field magnitude B within a solenoid does not depend on the 
diameter or the length of the solenoid and that B is uniform over the solenoidal 
cross section.

 A solenoid provides a practical way to set up a known uniform magnetic field for 
experimentation, just as a parallel-plate capacitor provides a practical way to set 
up a known uniform electric field.

Magnetic Field of a ToroidMagnetic Field of a Toroid
 From the symmetry, we see that the lines of the magnetic

field form concentric circles inside the toroid.

 Choose a concentric circle of radius r as an Amperian loop 
and traverse it in the clockwise direction. Ampere's 
law yields

 B is not constant over the cross section of a toroid.
 
 B = 0 for points outside an ideal toroid (as if the 

toroid were made from an ideal solenoid).

 The direction of the magnetic field within a toroid 
follows from our curled straight right-hand rule.
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A Current-Carrying Coil as a Magnetic Dipole
 A coil behaves as a magnetic dipole in that, if we 

place it in an external magnetic field, a torque act on it: 

Magnetic Field of a CoilMagnetic Field of a Coil
 Consider a coil with a single circular loop and only points 

on its perpendicular central axis, z axis, 

 From the symmetry, the vector sum of all the 
perpendicular components due to all the loop elements 
ds is 0, thus

 The Biot-Savart law gives the magnetic field at r
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B (z)≈
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2 z3

 The direction of the magnetic field is the same as the direction of the magnetic 
dipole moment of the loop.

 For z ≫ R, then

 Extend our result to include a coil of N turns

 Since the directions of the magnetic field 
and of the magnetic dipole moment are the 
same, and μ=NiA, thus

 2 ways in which we can regard a current-carrying 
coil as a magnetic dipole:

  (1) it experiences a torque when we place it in an external magnetic field; 

  (2) it generates its own intrinsic magnetic field, given, for distant points along
       its axis

Selected problems: 18, 26, 42, 56, 60
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