
Chapter 24Chapter 24 Electric Potential

 When an electrostatic force acts between 2 or more charged 
particles within a system, we can assign an electric potential electric potential 
energyenergy U to the system.
 
 If the system changes its configuration, then the resulting 

change U in the potential energy of the system is

 
 The work done by the electrostatic force is path independent 

since the electrostatic force is a conservative force.

 The reference configuration of a system is that the particles are all infinitely 
separated from one another. Therefore, the corresponding reference potential 
energy is 0.
 
 Let the initial potential energy Ui=U be 0, and let W represent the work done 

by the electrostatic forces between the particles during the move in from infinity. 
Then the final potential energy of the system is
 

Electric Potential Energy

Δ U =U f −U i=U f −U∞=−W ∞ ⇒ U ≡U f =−W ∞

Δ U =U f −U i=−W



 The potential energy per unit charge, which can be symbolized as U/q, is 

independent of the charge q of the particle we happen to use and is characteristic 
only of the electric field we are investigating.
 
 The potential energy per unit charge at a point in an electric field is called the 

electric potentialelectric potential V at that point,
 
 An electric potential is a scalar, not a vector.

 
 The electric potential difference V between any 2 points i and f in an electric 

field
 

 If we set Ui=U=0 at infinity as our reference potential energy, then  the 

electric potential Vi=V=0 there. Thus
 
 The SI unit for potential (volt) is the joule per coulomb.

 
 The conversion between the unit of an electric potential and the unit for an 

electric field is
 

therefore, we express values of the electric field in V/m rather than in N/C.

Δ V =V f −V i=
U f

q
−

U i

q
=

Δ U
q

=−
W
q

potential difference defined

Electric Potential

1 e V=e (1 V)=1.6×10−19 C (1 J /C)

=1.6×10−19 J

V =
U
q

1 N/C=1
N
C

1 V⋅C
1 J

1 J
1 N⋅m

=1 V/m

V =−
W ∞

q
potential defined



Work Done by an Applied ForceWork Done by an Applied Force
 Suppose we move a particle of charge q from point i to point f in an electric 

field by applying a force to it, then the change K in the kinetic energy of the 
particle is
 
 Suppose the particle is stationary before and after the move, then Kf=Ki=0, 

 
the work Wapp done by the applied force is equal to the 
negative of the work W done by the electric field.
 
 Relate the work done by our applied force to the change 

in the potential energy
                                                                                               Problem 24-1
 
 Relate our work Wapp to the electric potential difference V:

 
 It is the work we must do to move a particle of charge q through a potential 

difference V with no change in the particle's kinetic energy.
 

 Adjacent points that have the same electric potential form an equipotential equipotential 
surfacesurface.
 
 W=0 for any path connecting points on a given equipotential surface 

regardless of whether that path lies entirely on the surface.

W app=−W

Δ K = K f −K i =W app+W

W app =q Δ V

Δ U =U f −U i=−W =W app

Equipotential Surfaces



 Equipotential surfaces are always perpendicular 
to electric field, which is always tangent
to these lines.
 
 If the electric field were not perpendicular 

to an equipotential surface, it would have a 
component lying along that surface. This 
component would then do work on a charged 
particle as it moved along the surface.



 The differential work dW done on a particle 
by a force during a displacement is
 

 The total work W done on the particle by 
the field as the particle moves is
 

 Because the electrostatic force is 
conservative, all paths yield the same result.

 If we choose the potential Vi at point to be 0, then
 
                                                      problem 24-2
 

 Imagine that we move a positive test charge q0 
from point P to infinity. Because the path does 
not matter, let us choose the simplest one —
a line that extends radially from the fixed 
particle through P to ∞. Then

V =− ∫
i

f

E⃗⋅d s⃗

d W = F⃗⋅d s⃗=q0 E⃗⋅d s⃗

Calculating the Potential from the Field

W =q0 ∫
i

f

E⃗⋅d s⃗ ⇒ V f −V i =− ∫
i

f

E⃗⋅d s⃗

Potential Due to a Point Charge

E⃗⋅d s⃗= E cos θ d s= E d r ⇒ V f −V i =− ∫
R

∞

E d r



 
 

A positively charged particle produces 
a positive electric potential. 
A negatively charged particle produces 
a negative electric potential.
 
 The equation above also gives the electric potential 

either outside or on the external surface of a spherically 
symmetric charge distribution (shell theorem).
 

 Find the net potential at a point due to a group of 
point charges with the help of the superposition 
principle:
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 The sum is an algebraic sum. Therefore, it lies an important computational 
advantage of potential over electric field: It is a lot easier to sum several scalar 
quantities than to sum several vector quantities whose have directions and 
components.
                                               problem 24-3                                        problem 24-4
 

 The net potential at P is

Potential Due to an Electric Dipole
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 Naturally occurring dipoles are quite small; so we are usually interested only in 
points that are relatively far from the dipole, ie, r≫d, thus
 

Induced Dipole MomentInduced Dipole Moment
 Many molecules, such as water, have permanent electric 

dipole moments.
 
 In nonpolar molecules and in every isolated atom, the 

centers of the positive and negative charges coincide, thus 
no dipole moment is set up.
 
 If an atom or a nonpolar molecule is placed in an

external electric field, the field distorts the electron orbits 
and separates the centers of positive and negative charge.
 
 This shift sets up an induced dipole moment that points 

in the direction of the field. The atom or molecule is said to be polarized by the 
electric field.
 
 When the field is removed, the induced dipole moment and the polarization 

disappear.

r− −r+≈ d cos θ  and r+ r−≈ r2
⇒ V ≃

q
4 π ϵ0

d cos θ

r2

⇒ V ≃
1

4 π ϵ0

p cos θ

r2 =
1

4 π ϵ0

p⃗⋅r̂

r2 electric dipole



d q=λ d x

 the potential dV at point P due to dq:
 

Line of ChargeLine of Charge
 An element of the rod dx has a differential charge:

 

 The potential  

 The total potential V is
 

 Appendix E17:

Potential Due to a Continuous Charge Distribution
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Define
 

Charged DiskCharged Disk
 A differential element has the charge

 
 Its contribution to the potential is 

 The total potential is 

y1 y2
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−d U ⇒−q0 d V =q0 E (cos θ) d s ⇐ (q0 E⃗ )⋅d s⃗ ⇐ F⃗⋅d s⃗

⇒ E cos θ=−
d V
d s

 The electric field at any point ⊥ the equipotential 
surface through that point:
 

 Suppose that a positive test charge q0 moves 
through a displacement from one equipotential 
surface to the adjacent surface, then
 

 Since E cosθ is the component of the electric field in the direction of the 
displacement, therefore

 
 This equation states:

The component of an electric field in any direction is the negative of the rate at 
which the electric potential changes with distance in that direction.
 
 If we take the s axis to be, in turn, the x, y, and z axes, then

Calculating the Field from the Potential

E⃗  S EP
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 Define gradient operator:
 
 For the simple situation in which the electric field is uniform,

  where s ⊥ the equipotential surfaces.
 
 The component of the electric field is 0 in any direction parallel to the equi-

potential surfaces.

problem 24-5

 define the electric potential energy of a 
system of point charges, held in fixed positions 
by forces not specified, as follows:

The electric potential energy of a system of fixed point charges is equal to the 
work that must be done by an external agent to assemble the system, bringing 
each charge in from an infinite distance.

 When we bring q1 in from infinity and put it in place, we do no work because 
no electrostatic force acts on q1. 
 
 When we next bring q2 in from infinity and put it in place, we must do work 

because q1 exerts an electrostatic force on q2 during the move.
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 To build up the potential energy, an external agent is needed to move q2 in 
position, and the work is 
 

 For a system of n charged particles, the potential energy is
 

problem 24-6                                   problem 24-7
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An excess charge placed on an isolated conductor will distribute itself on the 
surface of that conductor so that all points of the conductor – whether on the 
surface or inside – come to the same potential. This is true even if the conductor 
has an internal cavity and even if that cavity contains a net charge.
 
Proof
 We know

 
 Since           for all points within a conductor, it follows 

directly that Vf=Vi for all possible pairs of points i and f 
in the conductor.
 
Spark Discharge from a Charged ConductorSpark Discharge from a Charged Conductor
 At sharp points or sharp edges, the surface charge density 

and thus the external electric field, may reach very high values.
 
 In such circumstances, it is safe to enclose yourself in a 

cavity inside a conducting shell, eg, a car.

 Human body is a fairly good electrical conductor and can 
be easily charged if you move around or change clothing.

 It is better to discharge yourself before you touch some 
conducting objects, eg, computer, gas nozzle, etc.

E⃗ =0

Potential of a Charged Isolated Conductor

V f −V i =− ∫
i

f

E⃗⋅d s⃗



Isolated Conductor in an External Electric FieldIsolated Conductor in an External Electric Field
 If an isolated conductor is placed in an external 

electric field, all points of the conductor still come 
to a single potential regardless of whether the 
conductor has an excess charge.
 
 The free conduction electrons distribute 

themselves on the surface in such a way that the 
electric field they produce at interior points 
cancels the external electric field.

 the electron distribution causes the net electric 
field at all points on the surface to be 
perpendicular to the surface.

Selected problems: 4, 30, 38, 44, 66
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