## Electric Potential Energy

- When an electrostatic force acts between 2 or more charged particles within a system, we can assign an electric potential energy $U$ to the system.

Test charge $q_{0}$ at point $P$

- If the system changes its configuration, then the resulting change $\Delta U$ in the potential energy of the system is

$$
\Delta U=U_{f}-U_{i}=-W
$$

- The work done by the electrostatic force is path independent since the electrostatic force is a conservative force.
- The reference configuration of a system is that the particles are all infinitely separated from one another. Therefore, the corresponding reference potential energy is 0 .
- Let the initial potential energy $U_{i}=U_{\infty}$ be 0 , and let $W_{\infty}$ represent the work done by the electrostatic forces between the particles during the move in from infinity. Then the final potential energy of the system is

$$
\Delta U=U_{f}-U_{i}=U_{f}-U_{\infty}=-W_{\infty} \quad \Rightarrow \quad U \equiv U_{f}=-W_{\infty}
$$

## Electric Potential

- The potential energy per unit charge, which can be symbolized as $U / q$, is independent of the charge $q$ of the particle we happen to use and is characteristic only of the electric field we are investigating.
- The potential energy per unit charge at a point in an electric field is called the electric potential $V$ at that point, $\quad V=\frac{U}{q}$
- An electric potential is a scalar, not a vector.
- The electric potential difference $\Delta V$ between any 2 points $i$ and $f$ in an electric field

$$
\Delta V=V_{f}-V_{i}=\frac{U_{f}}{q}-\frac{U_{i}}{q}=\frac{\Delta U}{q}=-\frac{W}{q} \text { potential difference defined }
$$

- If we set $U_{i}=U_{\infty}=0$ at infinity as our reference potential energy, then the electric potential $V_{i}=V_{\infty}=0$ there. Thus $V=-\frac{W_{\infty}}{q}$ potential defined
- The SI unit for potential (volt) is the joule per coulomb.
- The conversion between the unit of an electric potential and the unit for an electric field is

$$
\begin{aligned}
& \text { ric field is } \\
& 1 \mathrm{~N} / \mathrm{C}=1 \frac{\mathrm{~N}}{\mathrm{C}} \frac{1 \mathrm{~V} \cdot \mathrm{C}}{1 \mathrm{~J}} \frac{1 \mathrm{~J}}{1 \mathrm{~N} \cdot \mathrm{~m}}=1 \mathrm{~V} / \mathrm{m} \quad \begin{array}{r}
1 \mathrm{e} \mathrm{~V}
\end{array}=e(1 \mathrm{~V})=1.6 \\
& =1.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

therefore, we express values of the electric field in V/m rather than in N/C.

## Work Done by an Applied Force

- Suppose we move a particle of charge $q$ from point $i$ to point $f$ in an electric field by applying a force to it, then the change $\Delta K$ in the kinetic energy of the particle is

$$
\Delta K=K_{f}-K_{i}=W_{\text {app }}+W
$$

- Suppose the particle is stationary before and after the move, then $K_{f}=K_{i}=0$,

$$
W_{\text {app }}=-W
$$

the work $W_{\text {app }}$ done by the applied force is equal to the negative of the work $W$ done by the electric field.

- Relate the work done by our applied force to the change in the potential energy $\quad \Delta U=U_{f}-U_{i}=-W=W_{\text {app }}$


Problem 24-1

- Relate our work $W_{\text {app }}$ to the electric potential difference $\Delta V: W_{\text {app }}=q \Delta V$
- It is the work we must do to move a particle of charge $q$ through a potential difference $\Delta V$ with no change in the particle's kinetic energy.


## Equipotential Surfaces

- Adjacent points that have the same electric potential form an equipotential surface.
- $W=0$ for any path connecting points on a given equipotential surface regardless of whether that path lies entirely on the surface.
- Equipotential surfaces are always perpendicular to electric field, which is always tangent to these lines.
- If the electric field were not perpendicular to an equipotential surface, it would have a component lying along that surface. This component would then do work on a charged particle as it moved along the surface.


(b)

(c)



## Calculating the Potential from the Field

- The differential work $\mathrm{d} W$ done on a particle by a force during a displacement is

$$
\mathrm{d} W=\vec{F} \cdot \mathrm{~d} \vec{s}=q_{0} \vec{E} \cdot \mathrm{~d} \vec{s}
$$

- The total work $W$ done on the particle by the field as the particle moves is $W=q_{0} \int_{i}^{f} \vec{E} \cdot \mathrm{~d} \vec{s} \Rightarrow V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot \mathrm{~d} \vec{s}$
- Because the electrostatic force is conservative, all paths yield the same result.

- If we choose the potential $V_{i}$ at point to be 0 , then $V=-\int_{i}^{f} \vec{E} \cdot \mathrm{~d} \vec{s}$ problem 24-2


## Potential Due to a Point Charge

- Imagine that we move a positive test charge $q_{0}$ from point $P$ to infinity. Because the path does not matter, let us choose the simplest one a line that extends radially from the fixed particle through $P$ to $\infty$. Then

$$
\vec{E} \cdot \mathrm{~d} \vec{s}=E \cos \theta \mathrm{~d} s=E \mathrm{~d} r \Rightarrow V_{f}-V_{i}=-\int_{R}^{\infty} E \mathrm{~d} r
$$


(a)

(b)

$$
\begin{aligned}
& V_{f}=V(\infty)=0, \quad V_{i}=V(R)=V, \quad E=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \\
\Rightarrow & 0-V=\frac{-q}{4 \pi \epsilon_{0}} \int_{R}^{\infty} \frac{\mathrm{d} r}{r^{2}}=\left.\frac{q}{4 \pi \epsilon_{0}} \frac{1}{r}\right|_{R} ^{\infty}=\frac{-1}{4 \pi \epsilon_{0}} \frac{q}{R} \\
\Rightarrow & V=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}
\end{aligned}
$$

A positively charged particle produces a positive electric potential.
A negatively charged particle produces a negative electric potential.

- The equation above also gives the electric potential either outside or on the external surface of a spherically symmetric charge distribution (shell theorem).


## Potential Due to a Group of Point Charges

- Find the net potential at a point due to a group of point charges with the help of the superposition principle:

$$
V=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}} n \text { point charges }
$$

- The sum is an algebraic sum. Therefore, it lies an important computational advantage of potential over electric field: It is a lot easier to sum several scalar quantities than to sum several vector quantities whose have directions and components.

(a)
problem 24-3
(b)


## Potential Due to an Electric Dipole

- The net potential at $P$ is

$$
\begin{aligned}
V & =\sum_{i=1}^{2} V_{i}=V_{+}+V_{-} \\
& =\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{r_{+}}+\frac{-q}{r_{-}}\right) \\
& =\frac{q}{4 \pi \epsilon_{0}} \frac{r_{-}-r_{+}}{r_{-} r_{+}}
\end{aligned}
$$


(a)

(b)

- Naturally occurring dipoles are quite small; so we are usually interested only in points that are relatively far from the dipole, ie, $r \gg d$, thus
$r_{-}-r_{+} \approx \mathrm{d} \cos \theta$ and $r_{+} r_{-} \approx r^{2} \Rightarrow V \simeq \frac{q}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} \cos \theta}{r^{2}}$
$\Rightarrow \quad V \simeq \frac{1}{4 \pi \epsilon_{0}} \frac{p \cos \theta}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}} \quad$ electric dipole
$+$


## Induced Dipole Moment

- Many molecules, such as water, have permanent electric dipole moments.
- In nonpolar molecules and in every isolated atom, the centers of the positive and negative charges coincide, thus no dipole moment is set up.
- If an atom or a nonpolar molecule is placed in an external electric field, the field distorts the electron orbits and separates the centers of positive and negative charge.
- This shift sets up an induced dipole moment that points in the direction of the field. The atom or molecule is said to be polarized by the electric field.
- When the field is removed, the induced dipole moment and the polarization disappear.


## Potential Due to a Continuous Charge Distribution

- the potential $\mathrm{d} V$ at point $P$ due to $\mathrm{d} q$ :
$\mathrm{d} V=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r}$ positive or negative $\mathrm{d} q$
$\Rightarrow \quad V=\int \mathrm{d} V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\mathrm{~d} q}{r}$


## Line of Charge

- An element of the rod $\mathrm{d} x$ has a differential charge: $\mathrm{d} q=\lambda \mathrm{d} x$
- The potential d $V=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{\lambda \mathrm{~d} x}{\sqrt{x^{2}+d^{2}}}$

- The total potential $V$ is

$$
\begin{aligned}
V & =\int \mathrm{d} V=\frac{\lambda}{4 \pi \epsilon_{0}} \int \frac{\mathrm{~d} x}{\sqrt{x^{2}+d^{2}}} \\
& =\left.\frac{\lambda}{4 \pi \epsilon_{0}} \ln \left(x+\sqrt{x^{2}+d^{2}}\right)\right|_{0} ^{L}=\frac{\lambda}{4 \pi \epsilon_{0}} \ln \frac{L+\sqrt{L^{2}+d^{2}}}{d}
\end{aligned}
$$

- Appendix E17:

$$
\begin{aligned}
& \text { Appendix E17: } \\
& \int \frac{\mathrm{d} x}{\sqrt{x^{2}+a^{2}}}=\int \frac{\mathrm{d}(x / a)}{\sqrt{(x / a)^{2}+1}}=\int \frac{\mathrm{d} y}{\sqrt{y^{2}+1}} \text { where } y \equiv \frac{x}{a}
\end{aligned}
$$

Define $\tan \theta \equiv y \Rightarrow \int \frac{\mathrm{~d} y}{\sqrt{y^{2}+1}}=\int \frac{\mathrm{d} \tan \theta}{\sec \theta}=\int \sec \theta \mathrm{d} \theta \Leftarrow \mathrm{d} \tan \theta=\sec ^{2} \theta \mathrm{~d} \theta$ $\mathrm{d} \sec \theta=\tan \theta \sec \theta \mathrm{d} \theta \Rightarrow \mathrm{d}(\tan \theta+\sec \theta)=\sec \theta(\tan \theta+\sec \theta) \mathrm{d} \theta$ $\Rightarrow \sec \theta \mathrm{d} \theta=\frac{\mathrm{d}(\tan \theta+\sec \theta)}{\tan \theta+\sec \theta}=\mathrm{d} \ln |\tan \theta+\sec \theta|$
$\Rightarrow \quad \int \sec \theta \mathrm{d} \theta=\int \mathrm{d} \ln |\tan \theta+\sec \theta|=\ln |\tan \theta+\sec \theta|$ $=\ln \left(x / a+\sqrt{(x / a)^{2}+1}\right)=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+$ const
$\Rightarrow \int \frac{\mathrm{d} x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+$ const

## Charged Disk

- A differential element has the charge $\mathrm{d} q=\sigma\left(2 \pi R^{\prime}\right)\left(\mathrm{d} R^{\prime}\right)$
- Its contribution to the potential is

$$
\mathrm{d} V=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{~d} q}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{\sigma\left(2 \pi R^{\prime}\right)\left(\mathrm{d}^{\prime} R^{\prime}\right)}{\sqrt{R^{\prime 2}+z^{2}}}
$$

- The total potential is

$$
\begin{aligned}
V & =\int \mathrm{d} V=\frac{\sigma}{2 \epsilon_{0}} \int_{0}^{R} \frac{R^{\prime} \mathrm{d} R^{\prime}}{\sqrt{R^{\prime 2}+z^{2}}}=\frac{\sigma}{4 \epsilon_{0}} \int_{0}^{R} \frac{\mathrm{~d}\left(R^{\prime 2}+z^{2}\right)}{\sqrt{R^{\prime 2}+z^{2}}} \\
& =\left.\frac{\sigma}{2 \epsilon_{0}} \sqrt{R^{\prime 2}+z^{2}}\right|_{0} ^{R}=\frac{\sigma}{2 \epsilon_{0}}\left(\sqrt{R^{2}+z^{2}}-z\right)
\end{aligned}
$$



## Calculating the Field from the Potential

- The electric field at any point $\perp$ the equipotential surface through that point:

$$
\vec{E} \perp S_{E P}
$$

- Suppose that a positive test charge $q_{0}$ moves through a displacement from one equipotential surface to the adjacent surface, then

$$
\begin{aligned}
& -\mathrm{d} U \Rightarrow-q_{0} \mathrm{~d} V=q_{0} E(\cos \theta) \mathrm{d} s \Leftarrow\left(q_{0} \vec{E}\right) \cdot \mathrm{d} \vec{s} \Leftarrow \vec{F} \cdot \mathrm{~d} \vec{s} \\
& \Rightarrow \quad E \cos \theta=-\frac{\mathrm{d} V}{\mathrm{~d} s}
\end{aligned}
$$



- Since $E \cos \theta$ is the component of the electric field in the direction of the displacement, therefore

$$
E_{s}=-\frac{\partial V}{\partial s}
$$

- This equation states:

The component of an electric field in any direction is the negative of the rate at which the electric potential changes with distance in that direction.

- If we take the $s$ axis to be, in turn, the $x, y$, and $z$ axes, then

$$
\begin{aligned}
& E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z} \\
& \Rightarrow \quad \vec{E}=-\left(\hat{\mathrm{i}} \frac{\partial V}{\partial x}+\hat{\mathrm{j}} \frac{\partial V}{\partial y}+\hat{\mathrm{k}} \frac{\partial V}{\partial z}\right)=-\left(\hat{\mathrm{i}} \frac{\partial}{\partial x}+\hat{\mathrm{j}} \frac{\partial}{\partial y}+\hat{\mathrm{k}} \frac{\partial}{\partial z}\right) V
\end{aligned}
$$

- Define gradient operator: $\nabla=\hat{\mathrm{i}} \frac{\partial}{\partial x}+\hat{\mathrm{j}} \frac{\partial}{\partial y}+\hat{\mathrm{k}} \frac{\partial}{\partial z} \Rightarrow \vec{E}=-\nabla V$
- For the simple situation in which the electric field is uniform, $E=-\frac{\Delta V}{\Delta s}$ where $s \perp$ the equipotential surfaces.
- The component of the electric field is 0 in any direction parallel to the equipotential surfaces.
problem 24-5


## Electric Potential Energy of a System of Point Charges

- define the electric potential energy of a
system of point charges, held in fixed positions
 by forces not specified, as follows:

The electric potential energy of a system of fixed point charges is equal to the work that must be done by an external agent to assemble the system, bringing each charge in from an infinite distance.

- When we bring $q_{1}$ in from infinity and put it in place, we do no work because no electrostatic force acts on $q_{1}$.
- When we next bring $q_{2}$ in from infinity and put it in place, we must do work because $q_{1}$ exerts an electrostatic force on $q_{2}$ during the move.
- To build up the potential energy, an external agent is needed to move $q_{2}$ in position, and the work is

$$
W_{a}=U=q_{2} V_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r}
$$

- For a system of $n$ charged particles, the potential energy is

$$
U=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} U_{i j}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{4 \pi \epsilon_{0}} \frac{q_{i} q_{j}}{r} \text { for } i \neq j
$$


problem 24-7


Gold nucleus

## Potential of a Charged Isolated Conductor

An excess charge placed on an isolated conductor will distribute itself on the surface of that conductor so that all points of the conductor - whether on the surface or inside - come to the same potential. This is true even if the conductor has an internal cavity and even if that cavity contains a net charge.

## Proof <br> - We know $V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot \mathrm{~d} \vec{S}$

- Since $\vec{E}=0$ for all points within a conductor, it follows directly that $V_{f}=V_{i}$ for all possible pairs of points $i$ and $f$ in the conductor.


## Spark Discharge from a Charged Conductor

- At sharp points or sharp edges, the surface charge density
 and thus the external electric field, may reach very high values.
- In such circumstances, it is safe to enclose yourself in a cavity inside a conducting shell, eg, a car.
- Human body is a fairly good electrical conductor and can be easily charged if you move around or change clothing.
- It is better to discharge yourself before you touch some conducting objects, eg, computer, gas nozzle, etc.

(b)


## Isolated Conductor in an External Electric Field

- If an isolated conductor is placed in an external electric field, all points of the conductor still come to a single potential regardless of whether the conductor has an excess charge.
- The free conduction electrons distribute themselves on the surface in such a way that the electric field they produce at interior points cancels the external electric field.
- the electron distribution causes the net electric
 field at all points on the surface to be perpendicular to the surface.

Selected problems: 4, 30, 38, 44, 66


