
  

Chapter 6Chapter 6 Magnetic Fields in Matter

Diamagnets, Paramagnets, FerromagnetsDiamagnets, Paramagnets, Ferromagnets
 All magnetic phenomena are due to electric charges in motion; you would find 

tiny currents on an atomic scale in magnetic material: electrons orbiting around 
nuclei and spinning about their axes.

 For macroscopic purposes, these current loops are so small that we may treat 
them as magnetic dipoles. Ordinarily, they cancel each other out because of the 
random orientation of the atoms.

 When a magnetic field is applied, a net alignment of these magnetic dipoles 
occurs, and the medium becomes magnetically polarized, or magnetized.

 Unlike electric polarization, which is almost always in the same direction as E, 

some materials acquire a magnetization parallel to B (paramagnets) and some 

opposite to B (diamagnets).

 Some substances (called ferromagnets, eg, iron) retain their magnetization 
even after the external field has been removed—for these, the magnetization is 
not only determined by the present field but also by the whole magnetic “history” 
of the object.

Magnetization



  

Torques and Forces on Magnetic DipolesTorques and Forces on Magnetic Dipoles
 A magnetic dipole experiences a torque 

in a magnetic field, just as an electric
dipole does in an electric field.

 Calculate the torque on a rectangular current loop in a 
uniform field B. Center the loop at the origin, tilt it an angle θ 

from the z axis towards the y axis. Let B point in the z direction.

 The forces on the 2 sloping sides cancel, stretching the loop but not rotating.

 The forces on the “horizontal” sides are likewise equal and opposite, so zero 
net force on the loop, but they do generate a torque:

 In a nonuniform field it is 
the exact torque for a 
perfect dipole of 
infinitesimal size. 

F = I b B ⇒ N= I a b B sin θ x̂=m B sin θ x̂ ⇐ m= I a b magnetic dipole
moment

⇒ N=m×B (@)

 in a uniform  field

N≡r×F= a F sin θ x̂



  

 (@) is identical in form to the electrical analog, N=p×E. 

 The torque is in such a direction as to line the dipole up parallel to the field. It 
is this torque that accounts for paramagnetism.

 Since every electron constitutes a magnetic dipole, you might expect 
paramagnetism to be a universal phenomenon.

 Actually, quantum mechanics (the Pauli exclusion principle) tends to lock the 
electrons within a given atom together in pairs with opposing spins, and this 
effectively neutralizes the torque on the combination.

 So paramagnetism most often occurs in atoms/molecules with an odd number 
of electrons, then the “extra” unpaired member is subject to the magnetic torque. 

 Random thermal collisions tend to destroy the alignment and order.

 In a uniform field, the net force on a current loop is 0:

 In a nonuniform field this is no longer the case.

 Suppose a circular wire ring of radius R, carrying a current I, is suspended 
above a short solenoid in the “fringing” region. 

F= I ∮ (d ℓ×B)= I ( ∮ d ℓ )×B=0



  

 B has a radial component, and there is a net downward 
force on the loop:

 The magnetic formula is identical to its electrical 
“twin,” for F=∇(p⋅E).

 This similarity made some early 
physicists think magnetic dipoles 
consisted of positive and 
negative magnetic “charges,” 
separated by a small distance, just like electric dipoles.

 There’s no magnetic charge. Magnetism is not due to magnetic monopoles, but 

rather to moving electric charges; 
magnetic dipoles are tiny current 
loops.

 Whenever the close-up features 
of the dipole come into play, the 
Gilbert model and the (correct) 
Ampere model can yield strikingly 
different answers.

F =2 π I R B cos θ

F≡−∇ U =∇ (m⋅B) ⇐ for a infinitesimal  loop + U ≡−m⋅B



  

External magnetic field: B (r 
)=B (0)+(r 

⋅∇) B (0)+⋯ ⇐ ∇⋅B=0 , ∇×B=0

∫ ∇

⋅(x i

 J ) d τ =∫ (∇
 x i


⋅J + xi


∇


⋅J ) d τ =∫ J i d τ =0

⇒ F=∫ J×B d τ =∫ J (r 
) d τ ×B (0)+∫ J (r 

)×(r 
⋅∇) B (0) d τ +⋯

=∫ J (r 
)×∇ [r 

⋅B ] (0) d τ +⋯ ⇐
∇ (r 

⋅B)=(r 
⋅∇) B+(B⋅∇) r 

+ r 
×(∇×B)+B×(∇×r 

)

⇒ Fdip=−∇×∫ (r 
⋅B) J (r 

) d τ  ⇐
∇×(r 

⋅B) J=∇ (r 
⋅B )× J (r 

)

+(r 
⋅B) ∇× J (r 

)

∫ ∇

⋅(x i

 x j
 J ) d τ =∫ ( xi

 J j+ x j
 J i+ x i

 x j

∇


⋅J ) d τ =0 ⇐ localized J

⇒ ∫ xi
 J j d τ =−∫ x j

 J i d τ 

⇒ ∫ B×(J×r 
) d τ =∫ [ J (r 

⋅B)−r 
(J⋅B )] d τ =2 ∫ J (r 

⋅B) d τ 

⇒ Fdip=−∇×∫ B×(− r 
× J
2
) d τ =∇×(B×m ) ⇐ m=∫ r 

× J
2

d τ 

=∇ (m⋅B ) ⇐
∇×(B×m)=(m⋅∇)B−(B⋅∇)m +(∇⋅m )B−(∇⋅B) m
∇ (m⋅B)=(m⋅∇) B+(B⋅∇) m + r×(∇×B)+B×(∇×m )



  

Example: A rectangular loop in the xy-plane with sides b1 and b2 carrying a 

current I lies in a uniform magnetic field                                   . Determine the 
force and torque on the loop.

B=Bx x̂+ By ŷ+B z ẑ

N=∫ r 
×(J×B) d τ  ⇐ d N=r 

×d F=r 
×(J×B) d τ 

=∫ (r 
⋅B) J d τ −B ∫ r 

⋅J d τ =B×∫ −
r 
× J
2

d τ =m×B



  

Effect of a Magnetic Field on Atomic OrbitsEffect of a Magnetic Field on Atomic Orbits
 Electrons not only spin; they also revolve around 

the nucleus—assume the orbit is a circle of radius R.

 This orbital motion doesn’t constitute a steady current, 
but the period so short that it looks like a steady current:

 It’s harder to tilt the entire orbit than it is the spin, so the orbital contribution 
to paramagnetism is small.

 This leads to that the electron speeds up or slows down, depending on the 

orientation of B.

 Whereas the centripetal acceleration        is ordinarily sustained by electrical 

forces alone,                                           , in the presence 

of a magnetic field there is an additional force, −e v×B.

 Let B  the plane of the orbit,

⇒ 0< e v̄ B=
me

R
( v̄2

−v2
)=

me

R
( v̄  v) ( v̄−v ) ⇒ v̄> v

I=
e
T
=

e (− v)
2 π R

⇒ m= I⋅π R2 ẑ=−
1
2

e v R ẑ=−
e

2 me

L

v2

R

1
4 π ϵ0

e2

R2 + e v̄ B=me
v̄2

R

1
4 π ϵ0

−e2

R2 R̂ =−me
v2

R
R̂



  

 When B is turned on, the electron speeds up. A change in orbital speed means 

a change in the dipole moment:

 The change in m is opposite to the direction of B.

 An electron circling the other way would have a dipole             moment pointing 
upward, but such an orbit would be slowed down by the 
field, so the change is still opposite to B.

Δ m=−
1
2

e Δ v R ẑ=−
e2 R2

4 me

B

Let Δ v= v̄− v≪ 1 ⇒
me

R
( v̄  v) ( v̄−v)≈

me

R
(2 v̄) Δ v=e v̄ B ⇒ Δ v=

e R B
2 me



  

 Ordinarily, the electron orbits are randomly oriented, and the orbital dipole 
moments cancel out. But with a magnetic field, each atom picks up “extra” dipole 
moment, and these increments are all antiparallel to the field — diamagnetism.

 It is a universal phenomenon, affecting all atoms. But it is much weaker than 
paramagnetism, and thus is observed mainly in atoms with even numbers of 
electrons, where paramagnetism is usually absent.

 This classical model is fundamentally flawed (it’s a true quantum phenomenon). 
What is important is the empirical fact that in diamagnetic materials the induced 
dipole moments point opposite to the magnetic field.



  

Hall EffectHall Effect
 Consider a conducting material of a d×b rectangular 

cross section in a uniform magnetic field 
A uniform direct current flows in the y-direction:

 The magnetic force law let the charge
carriers experience a force ⊥ both B & u.

 If the material is a con ductor/n-type semiconductor, the charge carriers are 
electrons, and q is negative. The magnetic force tends to move the electrons in 

the +x-direction, creating a transverse electric field.

 It continues until the transverse field can stop the drift of the charge carriers.

 In the steady state the net force on the charge carriers is 0:

 For conductors/n-type semiconductors and a positive J0>0 , ⇒ u=−u0 ŷ

J= J 0 ŷ= N q u

⇒ Eh=−(−u0 ŷ )×B0 ẑ=u0 B0 x̂ ⇒ Hall voltage V h= ∫
0

d

E h d x=u0 B0 d

E x

J y B z

=
1

N q
 Hall coefficient: a characteristic of the material

F=q (E h+ u×B)=0 ⇐ E h : Hall field ⇒ Eh=−u×B Hall effect

B=B0 ẑ



  



  

 If the charge carriers are holes, such as in a p-type semiconductor, the Hall 
field will be reversed, and the Hall voltage will be negative with the reference 
polarities shown in the figure.

 The Hall effect can be used for measuring the magnetic field and determining 
the sign of the predominant charge carriers.

 In actuality it is a complex affair involving quantum theory concepts.

 When a conductor begins to move at speed v through a magnetic field, its 

conduction electrons do also. And an electric field E and potential difference V 
are quickly set up:

 Such a motion-caused circuit potential 
difference can be of serious concern 
when a conductor in an orbiting satellite 
moves through Earth’s magnetic field.

 If a conducting line (said to be 
an electrodynamic tether) dangles 
from the satellite, the potential 
produced along the line might be 
used to maneuver the satellite.

e E=e v B ⇒ V = v B d



  

MagnetizationMagnetization
 In the presence of a magnetic field, matter becomes magnetized;  it contains 

many tiny dipoles, with a net alignment along some direction.

 2 mechanisms that account for this magnetic polarization: 

    (1) paramagnetismparamagnetism: the dipoles associated with the spins of unpaired electrons 
          experience a torque tending to line them up parallel to the field. 

    (2) diamagnetismdiamagnetism: the orbital speed of the electrons is altered in such a way as 
          to change the orbital dipole moment in a direction opposite to the field.

 We describe the state of magnetic polarization by the vector quantity

a role analogous to the polarization P in electrostatics.

 No matter paramagnetism, diamagnetism, or ferromagnetism, we take M as 
given and do the consequent calculation.

 Except the famous ferromagnetic trio (iron, nickel, and cobalt), few materials 
are affected by a magnetic field.

 The reason is that diamagnetism and paramagnetism are extremely weak: It 
takes a delicate experiment and a powerful magnet to detect them at all.

magnetization M≡
magnetic dipole moment

volume
= lim

Δ τ  0

∑m k

Δ τ



  

 If you suspend a piece of paramagnetic material above a solenoid, the induced 
magnetization would be upward, and hence the force downward. By contrast, the 
magnetization of a diamagnetic object would be downward and the force upward.

 When a sample is placed in a region of nonuniform field, the paramagnet is 
attracted into the field, whereas the diamagnet is repelled away.

 But the actual forces are weak—in a typical experimental arrangement the 
force on iron would be 104−105 times bigger. That’s why we don’t worry about 
the effects of magnetization inside a copper wire most of the time.



  

The Field of a Magnetized Object
Bound CurrentsBound Currents
 Let the magnetic dipole moment per unit volume is M in magnetized material.

 The vector potential of a single dipole m is

 In the magnetized object, each volume element dτ  carries a dipole moment       
M dτ , so the total vector potential is

 Instead of integrating the contributions of all the infinitesimal dipoles, we first 
determine the bound currents, and then find the field they produce.

A (r )=
μ0

4 π
∫ M (r 

)× �̂

�2
d τ =

μ0

4 π
∫ (M (r 

)×∇
 1
�
) d τ  ⇐ ∇

 1
�
=

�̂

�2

=
μ0

4 π
( ∫ ∇


×M (r 

)

�
d τ −∫ ∇


×

M (r 
)

�
d τ )  d a

= n̂ d a

=
μ0

4 π
( ∫ ∇


×M (r 

)

�
d τ +∮ M (r 

)

�
×d a)

J b≡∇×M , K b≡M× n̂ ⇒ ∇⋅J b=0
volume current surface current

⇒ A (r )=
μ0

4 π
∫
V

J b (r

)

�
d τ +

μ0

4 π
∮
S

K b (r

)

�
d a

�⃗

�⃗≡r−r 
⇒ �=|r −r 

|

A (r )=
μ0

4 π
m× �̂

�2
=
μ0

4 π
m×∇

 1
�



  

∫ ∇⋅v d τ=∮ v⋅d a ⇐ divergence theorem

Let v  v×c   where c  is a constant vector ⇒ ∇×c =0

∇⋅(u ×w)=w⋅(∇×u )−u⋅(∇×w)

=∑
m

x̂ m
∂m⋅∑

i j k

ϵ
i j k x̂ i u j wk=∑

i j k

ϵ
i j k

∂i (u j wk )=∑
i j k

ϵ
i j k

(u j ∂i wk+wk ∂i u j )

=∑
m

wm x̂m
⋅∑

i j k
ϵ

i j k x̂ i ∂ j uk−∑
m

um x̂ m
⋅∑

i j k
ϵ

i j k x̂ i ∂ j w k

⇒
∫ ∇⋅(v×c ) d τ =∫ [c⋅(∇×v )−v⋅(∇×c )] d τ =c⋅∫ ∇×v d τ

∮ (v×c )⋅d a= c⋅∮ d a×v

⇒ ∫
V

∇×v d τ = ∮
S

d a×v=− ∮
S

v×d a ⇐ c  can be any constant.

Check Problem 1.61(b).



  

n̂J b
n̂

K b K b

⇒ B (r )=∇×A=
μ0

4 π
∫
V

J b (r

)× �̂

�2 d τ +
μ0

4 π
∮
S

K b (r

)× �̂

�2 d a



  

 Notice the parallel with the electrical case: there the field of a polarized object 
was the same as that of a bound volume charge ρb= −∇⋅P plus a bound surface 
charge                 .

Example 6.1: Find the magnetic field of a uniformly magnetized           sphere.

 Choosing the z axis along the direction of M,

 A rotating spherical shell, of uniform surface charge σ, 
corresponds to a surface current density (Ex. 5.11)

 So the field of a uniformly magnetized sphere is identical to the field of a 
spinning spherical shell, with the identification

 The integration is easier if we let r lie on the z-axis, 

so that M is tilted at an angle θ. We orient the x-axis 

so that M lies in the xz-plane.

  

J b=∇×M=0 , K b=M× n̂ =M× r̂ 
= M sin θ ϕ̂

K=σ v=σ ω R sin θ ϕ̂

σ R ω M

σb=P⋅n̂

M

r 

A (r )=
μ0

4 π
∫ K b

�
d a

⇐ d a
= R2 sin θ d θ d ϕ

M=M (sin θ x̂ + cos θ ẑ ) , �=√R2
+r2

−2 r R cos θ

θ

θ


ϕ


�



  
 The internal field is uniform, like the electric field inside a uniformly polarized 

sphere, although the factors are different, 2/3 in place of −1/3. The external 
fields are also analogous: pure dipole in both instances.

K b=M× r̂ 
=|

x̂ ŷ ẑ
M sin θ 0 M cos θ

sin θ cos ϕ sin θ sin ϕ cos θ |
=M [sin θ (sin θ sin ϕ ẑ−cos θ sin ϕ x̂ )+(cos θ sin θ cos ϕ−sin θ cos θ) ŷ ]

∫
0

2 π

sin ϕ d ϕ
= ∫

0

2 π

cos ϕ d ϕ=0

⇒ A (r )=−
μ0 M R2 sin θ

2
ŷ ∫

0

π
cos θ sin θ d θ

√R2
+ r2

−2 r R cos θ

=
μ0

3

r<
3

r3 M×r , r<=min (r , R) ⇐ M×r=−r M sin θ ŷ

=
μ0 M

3

r<
3

r2
sin θ ϕ̂ ⇐ revert the coordinates M∥ẑ , r =(r , θ , ϕ)

⇒ B=∇×A=

2 μ0

3
M uniform  inside the sphere

μ0

4 π
3 ( r̂⋅m ) r̂ −m

r3 outside the perfect dipole m=
4 π
3

R3 M



  

Example: Determine the magnetic flux density on the axis 
of a uniformly magnetized circular cylinder of a magnetic
material. The cylinder has a radius b, length L, and axial 
magnetization                .

The magnet is like a cylindrical sheet with a 
lineal current density of M. There is no surface 
current on the top and bottom faces.

d B=
μ0

4 π
M ϕ̂

×(−b ŝ+(z− z) ẑ )
[(z− z)2+b2

]
3 /2

d a

=
μ0 M

4 π
(z− z) ŝ+ b ẑ
[(z− z)2+b2

]
3 /2

b d ϕ d z

⇒ B=∫ d B=
μ0 M

4 π
ẑ ∫ b2 d ϕ d z

[(z− z)2+b2
]
3 /2 ⇐ axial symmetry

=
μ0 M

2
ẑ ∫

0

L
−b2 d (z− z)

[(z− z)2+b2
]
3 /2 =−

μ0 M

2
ẑ ∫

θ0

θL

sin3
θ d cot θ=

μ0 M

2
ẑ ∫

θ0

θ L

sin θ d θ

=−
μ0 M

2
cos θ ẑ|

θ0

θ L

=
μ0 M

2
( z

√z2
+b2

−
z−L

√(z−L)2+b2
) ẑ

M=M ẑ

J b=∇×M=0 , K b=M× n̂ ⇒ M× ŝ 
=M ϕ̂

θ



  



  

Problem 6.10: An iron rod of length L and 
square cross section of side a is given a 

uniform longitudinal magnetization M, then 
bent around into a circle with a narrow gap 
of width w. Find the magnetic field at the 

center of the gap, assuming w≪a≪L.

The magnetic field at the center of a square loop, which 
carries a steady current I = w K b (from the quiz, using the 
result of Ex. 5.5), is

So the net field in the gap is, by superposition,

a
Bgap=B inside−Bsquare=( 1−2 √2

w
π a
) μ0 M

ϕ̂

K b=M ⇒ B inside=μ0 M ϕ̂=μ0 M   for a complete  ring ⇐ B=
μ0 I total

2 π R
ϕ̂

2 π R≃L

Bsquare=2 √2
μ0 I
π a
ϕ̂=2 √2

w
π a
μ0 M ϕ̂=2 √2

w
π a
μ0 M



  

Physical Interpretation of Bound CurrentsPhysical Interpretation of Bound Currents
 The field of a magnetized object is identical to the field that would be produced 

by a certain distribution of “bound” currents, Jb and Kb.

 Let the dipoles be represented by tiny 
current loops in a thin slab of uniformly 
magnetized material.

 All the “internal” currents cancel: every time there 
is one going right, a contiguous one is going left.

 At the edge there is no adjacent loop to do the canceling. 
The whole thing is equivalent to a ribbon of current I around the boundary.

 Each of the tiny loops has area a and thickness t. In terms of the magnetization 

M, its dipole moment is m=M a t. In terms of the circulating current I, m=I a. So   
I = M t, so the surface current is

 Using the outward unit vector
   , the direction of Kb is 
conveniently indicated 
by the cross product:

n̂

K b=
I
t
= M

K b=M× n̂



  

 This expression also indicates that there is no current on the top or bottom 

surface of the slab; here M is parallel to    , so the cross product vanishes.

 It is a peculiar kind of current, no single charge makes the whole trip, each 
charge moves only in a tiny little loop within a single atom. But the net effect is a 
macroscopic current flowing over the surface of the magnetized object.

 When the magnetization is nonuniform, the internal currents no longer cancel.

 On the surface where they join, there is a net current in the x direction,

n̂

I x=[M z (y +d y)−M z (y)] d z=
∂ M z

∂ y
d y d z ⇒ (J b)x=

∂ M z

∂ y
⇐ J≡

d I
d a



  

 So a nonuniform magnetization in the y direction would contribute an amount

 Like any other steady current, Jb should obey the conservation law ∇⋅Jb=0, for 
the divergence of a curl is always 0.

−
∂ M y

∂ z
⇒ (J b)x=

∂ M z

∂ y
−
∂ M y

∂ z
⇒ J b=∇×M



  

The Magnetic Field Inside MatterThe Magnetic Field Inside Matter
 The actual microscopic magnetic field inside matter fluctuates wildly from point 

to point and instant to instant.

 When we speak of “the” magnetic field in matter, we mean the macroscopic 
field: the average over regions large enough to contain many atoms. The 
magnetization M is “smoothed out” in the same sense.

 It is this macroscopic field that one obtains when the methods in this chapter 
are applied to points inside magnetized material.



  

The Auxiliary Field H
Ampère’s Law in Magnetized MaterialsAmpère’s Law in Magnetized Materials
 The field due to magnetization of the medium is the field produced by these 

bound currents. The field can come from others called the free current.

 In any event, the total current can be written as

 The free current is there because a wire is connected to a battery—it involves 
actual transport of charge; the bound current is there because of magnetization—
it results from the conspiracy of many aligned atomic dipoles.

 Ampère’s law can be written as

 H plays a role in magnetostatics analogous to D in electrostatics: D allows to 

write Gauss’s law in terms of the free charge alone, H allows to express Ampere’s 
law in terms of the free current alone, what we control directly.

 Bound current, like bound charge, comes along for the ride—the material gets 
magnetized, and this results in bound currents; we cannot turn them on or off 
independently, as we can free currents. 

1
μ0

∇×B= J= J f + J b=J f +∇×M ⇒ ∇×( B
μ0

−M )= J f

⇒ H≡
B
μ0

−M ⇒ ∇×H= J f ⇒ ∮ H⋅d ℓ= I f enc
⇐ I f enc

: total free current

J= J b+ J f



  

∮ H⋅d ℓ=H⋅2 π s= I f enc
= I

s2

s>
2 ⇒ H=

I
2 π

s

s>
2 ϕ̂

where s>=max (s , R)

M (s≥R)=0 ⇒ B (s≥ R)=μ0 H (s≥R)=
μ0 I

2 π s
ϕ̂

Example 6.2: A long copper rod of radius R 
carries a uniformly distributed (free) current 
I. Find H inside and outside the rod. 

 Copper is weakly diamagnetic, so the dipoles 
will line up opposite to the field.

 This results in a bound current running 
antiparallel to I, within the wire, and parallel to 

I along the surface.

 All the currents are longitudinal, so B, M, 

and therefore also H, are circumferential.

 For an Amperian loop of radius s,

same as for a nonmagnetized wire (Ex. 5.7). B inside cannot be determined yet.



  

 For linear media (mentioned later)                                      for s < R (and χm<0), 

 H is a more useful quantity than D. This is because to build an electromagnet 

you run a certain (free) current through a coil. The current determines H (or the 

line integral of H); B depends on the specific materials you used and even on the 
history of the magnet.

 On the other hand, to set up an electric field, you do not plaster a known free 
charge on the plates of a parallel plate capacitor; you connect them to a battery 
of known voltage. It’s the potential difference determines E (or the line integral of 

E); D depends on the details of the dielectric.

 Theoretically, D and H are on an equal footing.

 Many authors call H, not B, the “magnetic field,” and call B the “flux density,” 

or magnetic “induction.” We will continue to call B the “magnetic field.”

⇒ J b=∇×M=
χm I

π R2 ẑ , K b=M× n̂ =

−
χm I

2 π R
ẑ    for n̂ = ŝ

±
χm I

2 π R2
s   for n̂=± ẑ

⇒ ∮
C

K b⋅d ℓ=−χm I =−∫
S

J b⋅d a ⇒ B in=μ0 (H in+M )=μ0 (1+χm)H in

M=χm H=
χm I s

2 π R2
ϕ̂



  

A Deceptive ParallelA Deceptive Parallel
 Be aware that μ0 H is “just like B, only its source is Jf instead of J.” For the curl 

alone does not determine a vector field—you must also know the divergence.

 For ∇⋅B=0, the divergence of H is not, in general, 0. In fact, ∇⋅H=−∇⋅M. 

Only when ∇⋅M=0 is the parallel between B and μ0 H faithful.

 Consider a cylinder of iron that carries a permanent uniform magnetization M 

parallel to its axis. In this case there is no free current anywhere,

might lead you to suppose that H=0, and hence that B=μ0 M inside the magnet 

and B=0 outside, which is nonsense. It is true that the curl of H vanishes 

everywhere, but the divergence does not. (Can you see where ∇⋅M  0 ?)

 To find B/H in a problem involving magnetic materials, first look for symmetry. 
If the problem exhibits cylindrical, plane, solenoidal, or toroidal symmetry, then 
you can get H directly from the above eqn by the usual Ampère’s law methods.

 In such cases ∇⋅M=0 since the free current alone determines the answer 

(∇⋅H=0). If any symmetry is absent, you have to think of another approach, and 

in particular you must not assume that H=0 just because there is no free current.

∮ H⋅d ℓ= I f



  

Boundary ConditionsBoundary Conditions
 The magnetostatic boundary conditions can be rewritten in terms of H and the 

free current:

 In the presence of materials, these are sometimes more useful than the 
corresponding boundary conditions on B:

 For linear media (as mentioned later),

μabove

∇ ⋅ H=−∇⋅M
∇×H= J f

⇒
H above


−H below


=−(M above


−M below


)

Habove
∥

−Hbelow
∥

= K f × n̂

Babove


−Bbelow


=0 ⇒ μabove H above


−μbelow H below


=0

K f ⊗
ℓn̂

Bbelow μbelow Hbelow

H above
Babove

Babove


−Bbelow


= 0
Babove

∥
−B below

∥
=μ0 K× n̂

⇔

Aabove− A below= 0
∂

∂ n
A above−

∂

∂ n
A below=−μ0 K



  

Example: 2 magnetic media with permeabilities μ1 & μ2 have a 
common boundary. The magnetic field intensity in medium 1 at 
has a magnitude H 1 and makes an angle α1 with the normal. 
Determine the magnitude and the direction of the magnetic 
field intensity in medium 2.

α1

α2

H2

H1

μ1

μ2

μabove H above


−μbelow H below


=0
H above

∥
−H below

∥
=K f × n̂ =0

⇒
μ1 H 1 cos α1=μ2 H 2 cos α2

H 1 sin α1= H 2 sin α2

⇒
tan α2

tan α1

=
μ2

μ1
⇒ α2= tan−1( μ2

μ1
tan α1)

⇒ H 2=√H 2 

2
+H 2∥

2
=√(H 2 cos α2)

2
+(H 2 sin α2)

2

=H 1 √( μ1

μ2
cos α1)

2

+ sin2
α1=

H 1

μ2
√μ1

2 cos2
α1+μ2

2 sin2
α1



  

Linear and Nonlinear Media 
Magnetic Susceptibility and PermeabilityMagnetic Susceptibility and Permeability
 For most substances the magnetization is proportional to the field, provided the 

field is not too strong.

 χm is positive (negative) for paramagnets (diamagnets). Typical values~10−5.

 Materials that obey (#) are called linear media:

Thus B is also proportional to H. μ0 is called the permeability of free space.

B=μ0 (H +M )=μ0 (1+χm)H=μ H ⇐ permeability μ≡μ0 (1+χm)=μ0 μr

M=χm H (#) ⇐ χm : magnetic susceptibility



  

Example 6.3: An infinite solenoid (n turns/unit length, current I) is filled
with linear material of susceptibility χm. Find the magnetic field inside 
the solenoid.

 This is one of those symmetrical cases in which we can get H from 
the free current alone, using Ampère’s law

 If the matter is paramagnetic/diamagnetic, B is enhanced/reduced.

                                         is in the same/opposite direction as I  for χm ≷ 0.

 Linear media still does not escape the defect in the parallel between B and H.

 At the boundary between 2 materials of different permeability, the divergence 
of M can actually be ∞.

 At the end of a cylinder of linear paramagnetic material, M is 0 on one side but 
not on the other. 

K b=M× n̂ =χm H× n̂
=χm n I ϕ̂

∇⋅H=∇⋅
B
μ
=

1
μ
∇⋅B+B⋅∇ 1

μ
=B⋅∇ 1

μ
≠0  in general

∮ H⋅d ℓ= I f enc
⇒ H=n I ẑ ⇒ B=μ n I ẑ=μ0 (1+χm) n I ẑ



  

 In the plot,

 Incidentally, the volume bound current density in a homogeneous linear 
material is proportional to the free current density:

 Unless free current actually flows through the material, all bound current will 
be at the surface.

Selected problems: 3, 8, 13, 16, 18, 21, 23

J b=∇×M=∇×(χm H )=χm J f

∮ M⋅d a≠0 ⇒ ∇⋅M≠0  everywhere

⇒ ∇⋅H≠0  everywhere



  

Magnetic Scalar FieldMagnetic Scalar Field

 

 For M given and J=0

J=0 ⇒ ∇×H=0 ⇒ H =−∇ Φ ⇐ Φ :  magnetic scalar potential
B=μ H ⇒ ∇⋅(μ ∇ Φ)=0

For μ=const ⇒
∇

2Φ=0 + the boundary conditions for H
∇

2Ψ=0 ⇐ B=−∇ Ψ + the boundary conditions for B

∇⋅B=μ0 ∇⋅(H +M )=0 ⇒ ∇⋅H=−∇
2Φ=ρM ⇐−∇⋅M ⇒ ∇

2Φ=−ρM

⇒ Φ (r )= 1
4 π
∫ ρM (r 

)

�
d τ =−

1
4 π
∫ ∇


⋅M (r 

)

�
d τ  if no boundary

surface

=
1

4 π
( ∫ M⋅∇

 1
�

d τ − ∮
r
′
 ∞

M
�
⋅d a) ⇐ M well behaved

& localized

⇒ Φ (r )=−
1

4 π
∇⋅∫ M

�
d τ  (@) ⇐ ∇

 1
�
=−∇

1
�

≈−
1

4 π
∇

1
r
⋅∫ M d τ =

m⋅r̂
4 π r2 ⇐ m≡∫ M d τ , r ≫ 0



  

 An arbitrary localized distribution of magnetization asymptotically has a dipole 
field with strength given by the total magnetic moment of the distribution.

 If the magnetized material has a volume and surface, we specify M inside the 
volume assuming that it falls suddenly to 0 at the surface, similar to the electric 
polarized material, and assign an effective magnetic surface-charge density, σM 

 (@) is generally applicable even for the limit of discontinuous distributions of 
M. Never combine the surface integral of σM with (@)!

Φ (r )=−
1

4 π
∇⋅∫ M

�
d τ = 1

4 π
∫ M⋅∇

 1
�

d τ = 1
4 π
∫
V

M⋅∇
 1
�

d τ 

=
1

4 π
∮
S

M
�
⋅d a 

−
1

4 π
∫
V

∇

⋅M
�

d τ  ⇐
M (r 

∉V )=0
d a

= n̂ d a

⇒ Φ (r )= 1
4 π
∫
V

ρM

�
d τ + 1

4 π
∮
S

σM

�
d a

⇐ ρM=−∇⋅M , σM=M⋅n̂

if M  is uniform ⇒ Φ (r )= 1
4 π
∮
S

M
�
⋅d a



  

Example 6.1: Find the magnetic field of a 
                      uniformly magnetized sphere.

 

 Find   

J b=∇×M=0 , K b=M× n̂ =M× r̂ 
= M sin θ ϕ̂

r 

A (r )=
μ0

4 π
∫ K b

�
d a

⇒ B=∇×A

θ


ϕ


M

θ

�



  

Example 6.1: Using a scalar potential as the alternative 1:

Φ=−
1

4 π
∇⋅∫ M

�
d τ 

∫ M
�

d τ =M ∫ d τ 

�
=M ∫ r  2 sin θ d r  d θ d ϕ

√r2
+r  2

−2 r r  cos θ
⇐

choose r=r ẑ
temporarily

=
2 π M

r
∫

0

R

r 
(r+ r 

−|r−r 
|) d r=2 π M [

R2
−

r2

3
  for r <R  with ∫

0

r

+ ∫
r

R

2 R3

3 r
 for r >R ⇒ r >r 

Φ=−
1

4 π
∇⋅∫ M

�
d τ  ⇒ Φin (r , θ)=

M
3

z , Φout (r , θ )=
M
3

R3

r2 cos θ

H=−∇ Φ ⇒ H in=−
1
3

M , Hout=
M
3

R3

r3 (2 cos θ r̂ +sin θ θ̂)

B=μ0 (H +M ) ⇒ B in=
2
3
μ0 M , Bout=μ0

M
3

R3

r3 (2 cos θ r̂ +sin θ θ̂)



  

Example 6.1: Using a scalar potential as the alternative 2:

Use the similar trick like the one with vector potential:

Choose r =r ẑ ,   put M in the x z -plane ⇒ M=M sin θ x̂ +M cos θ ẑ
And r̂ 

=sin θ cos ϕ x̂ +sin θ sin ϕ ŷ + cos θ ẑ
⇒ σM=M⋅r̂ 

= M (sin θ sin θ cos ϕ+ cos θ cos θ)

⇒ ∮ σM

�
d a

=M ∮ sin θ sin θ cos ϕ+ cos θ cos θ

√r2
+ R2

−2 r R cos θ
R2 sin θ d θ d ϕ

=2 π M R2 cos θ ∫
0

π cos θ sin θ d θ

√r2
+ R2

−2 r R cos θ
=

2 π M

3 r2 (R3
+r3

−|R3
−r3

|) cos θ

=
4 π M

3

r<
3

r2
cos θ ⇐ r<=min (r , R)

⇒ Φ=
M
3

r<
3

r2 cos θ ⇒

Φin (r , θ)=
M
3

r cos θ=
M
3

z

Φout (r , θ)=
M
3

R3

r2 cos θ

⇒ H=−∇ Φ , B=μ0 (H +M )

M

θ

Φ=
1

4 π
∮
S

σM

�
d a

�



  

Example 6.1: Using a scalar potential as the alternative 3:

H=−∇ Φ ⇐ ∇×H= J f =0 ⇐ no free current

∇
2Φ=0 ⇐ ∇⋅H=∇⋅M=0 ⇐ M=M ẑ

⇒ Φin (r , θ )=∑
ℓ=0

C ℓ r ℓ Pℓ (cos θ) , Φout (r , θ )=∑
ℓ=0

Dℓ
r ℓ+1

Pℓ (cos θ)

Boundary
conditions:

(1) Φin (R)=Φout (R) , (2) Bin , r (R)=Bout , r (R) ⇐ B=μ0 (H +M )

⇒ (1) C ℓ=
Dℓ

R2 ℓ+1
(2)μ0 (C1+M )=−2 μ0

D1

R3
, μ0 ℓ C ℓ=−μ0

ℓ+1
R2 ℓ+1

Dℓ  for ℓ≠1

⇒ C1=
M
3

, D1=
M
3

R3 , C ℓ=Dℓ=0  for ℓ≠1

⇒ Φin (r , θ )=
M
3

z , Φout (r , θ)=
M
3

R3

r2 cos θ

⇒ H in=−
1
3

M , Hout=
1
3

R3

r3 [3 ( r̂⋅M ) r̂−M ]

⇒ B in=
2
3
μ0 M , Bout=

μ0

3
R3

r3 [3 ( r̂⋅M ) r̂−M ]



  



  

Example: A Magnetic Sphere in a Uniform External Magnetic Field.
Consider a sphere of radius R, made of a linear magnetic material 
of permeability μ1, embedded in a medium of permeability μ2. 

The sphere is placed in a magnetic field H 0 which is initially 

uniform and pointing along the z direction.

Current=0 ⇒ H=−∇ Φ ⇐ ∇×H= J f =0 , B=μ H
⇒ Φ (r ∞)=−H 0 z=−H 0 r cos θ , choose Φ (r=0)=0

⇒ Φin=∑ C ℓ r ℓ Pℓ (cos θ ) , Φout=−H 0 r cos θ+∑
ℓ=0

Dℓ
r ℓ+1

Pℓ (cos θ)

Boundary
conditions:

(1) Φin (R)=Φout (R) , (2) Bin , r (R)=Bout , r (R )

⇒

C1=
D1

R3
−H 0 , C ℓ=

Dℓ
R2 ℓ+1

 for ℓ≠1 ⇐ (1)

μ1 C1=−μ2 (2
D1

R3 +H 0) , μ1 ℓ C ℓ=−μ2 (ℓ+1)
Dℓ

R2 ℓ+1  for ℓ≠1 ⇐ (2)

⇒ C1=−
3 μ2

μ1+2 μ2

H 0 , D1=
μ1−μ2

μ1+2 μ2

H 0 R3 , C ℓ=Dℓ=0  for ℓ≠1

⇒ B in=
3 μ1 μ2

μ1+2 μ2

H0 , Bout=μ2( H0+
μ1−μ2

μ1+2 μ2

R3

r3 [3 ( r̂⋅H0) r̂−H 0])



  

Example: A cylindrical bar magnet of radius b and 
length L has a uniform magnetization                 
along its axis. Use the equivalent magnetization 
charge density concept to determine the magnetic 
flux density at an arbitrary distant point.

At a distant point the equivalent magnetic 
charges on the top and bottom faces 
appear as point charges:

±qM=π b2
σM=±π b2 M

⇒ Φ= 1
4 π
∮ σM

�
d a

≈
qM

4 π
( 1

r
−

1
r –

) ⇐ r±=√r2
∓ r L cos θ+

L2

4

=
qM

4 π r
( 1+

L
2 r

cos θ+⋯−1+
L

2 r
cos θ +⋯)≈ qM L

4 π r2
cos θ

⇒ B=−μ0 ∇ Φ=
μ0

4 π
(3 r̂⋅m ) r̂−m

r3
⇐ m=m ẑ =qM L ẑ=π b2 L M ẑ

total magnetic dipole moment

r

ρM =−∇⋅M=0

σM= [±M  on top/bottom face
0  on side wall

M=M ẑ

r –r



  

FerromagnetismFerromagnetism
 In a linear medium, the alignment of atomic dipoles is maintained by a 

magnetic field imposed from the outside.

 Ferromagnets—which are not linear—no external fields needed to sustain the 
magnetization; the alignment is “frozen in.”

 Like paramagnetism, ferromagnetism involves the magnetic dipoles associated 
with the spins of unpaired electrons. (An iron atom 26Fe has 2 lone electrons.) 

 The new feature is the interaction between nearby dipoles: In a ferromagnet, 
each dipole “likes” to point in the same direction as its neighbors.

 The reason for this preference is essentially quantum mechanical. The 
correlation is so strong as to align virtually 100% of the unpaired electron spins.

 This kind of alignment occurs in relatively small patches, called domains. Each 
domain contains billions of dipoles, all lined up, but the 
domains themselves are randomly oriented. 

 The household wrench contains an great number
of domains, and their magnetic fields cancel, so the 
wrench as a whole is not magnetized.

 If you put a piece of iron into a strong magnetic field, the torque
N=m×B tends to align the dipoles parallel to the field. Since they like to 
stay parallel to their neighbors, most of the dipoles will resist this torque. 



  



  

 At the boundary between 2 domains, there are competing neighbors, and the 
torque will throw its weight on the side of the domain most nearly parallel to the 
field; this domain will win some converts, at the expense of the less favorably 
oriented one.

 The net effect of the magnetic field is to move the domain boundaries. Domains 
parallel to the field grow, and the others shrink.

 If the field is strong enough, one domain takes over entirely, and the iron is said 
to be saturated.

 This process is not entirely reversible: when the field is switched off, there are 
some return to randomly oriented domains, but there remains a preponderance 
of domains in the original direction—permanent magnet.

 A simple way to accomplish this is to wrap a coil of wire around the object to be 
magnetized.

 As you increase the current, the field increases, 
the domain boundaries move, and the magnetization 
grows. Eventually, you reach the saturation point, 
with all the dipoles aligned, and a further increase 
in current has no effect on M (point b).



  

 Suppose you reduce the current. Instead of retracing the path back to M=0, 

there is only a partial return to randomly oriented domains; M decreases, but 
even with the current off there is some residual magnetization (point c).

 If you want to eliminate the remaining magnetization, you have to run a current 
backwards through the coil (a negative I). Now the external field points to the 
right, and as you increase I (negatively), M drops down to 0 (point d).

 If you turn I still higher, you soon reach saturation in the other direction—all 

the dipoles pointing to the right (point e). At this stage, switching off the current 
will leave the wrench with a permanent magnetization to the right (point f).



  

 To complete the story, turn I on again in the positive sense: M returns to 0 
(point g), and eventually to the forward saturation (point b).

 The path we traced out is called a hysteresis loop. So the magnetization of 
material depends not only on the applied field (ie, on I), but also on its previous 
magnetic “history.”

 It usually draws hysteresis loops as plots of B vs H, rather than M vs I, for

H=n I, B=μ0(H+M)., and usually M≫H.

 A little current is enough when you have ferromagnetic materials. That’s why 
anyone who wants to make a powerful electromagnet wraps the coil around an 
iron. It doesn’t take much of an external field to move the domain boundaries, 
and when you do that, you have all the dipoles in the iron working with you.



  

 Dipoles within a domain in ferromagnetism line up parallel to one another.

 Random thermal motions compete with this ordering, but as long as the 
temperature doesn’t get too high, they cannot budge the dipoles out of line.

 Very high temperatures do destroy the alignment. This occurs at a precise 
temperature of 770˚ C for iron.

 Below this temperature (called the Curie point), iron is ferromagnetic; above, 
it is paramagnetic.

 The Curie point is rather like the boiling/freezing point in that there is no 
gradual transition from ferro- to para-magnetic behavior, any more than there is 
between water and ice.

 These abrupt changes in the properties of a substance, occurring at sharply 
defined temperatures, are known in statistical mechanics as phase transitions.



  

Vector Potential and Vector Potential and 
Aharonov–Bohm effectAharonov–Bohm effect

δ=δ (B=0)+
q

ℏ
ΦB

=δ (B=0)+
q

ℏ
∮ A⋅d ℓ



  

 In the solenoid case, the electrons don’t feel the 
magnetic field inside but only the magnetic vector 
potential outside, and the phase difference change 
still happen.

 Quantum-mechanically, the magnetic vector  
potential A is as real physically as the magnetic 

field B. 

∇×A=0
∇ ⋅ A=0

⇒
A=−∇ Φ

∇
2Φ=0

+ boundary
conditions

⇐ classical
treatment

B=∇×A
=0

A≠0
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