
  

Chapter 5Chapter 5 Magnetostatics

Magnetic FieldsMagnetic Fields
 Consider the forces between charges 

in motion.

 The force accounts for the attraction 
of parallel currents and the repulsion of 
antiparallel ones is not electrostatic, but 

a magnetic force.

 Whereas a stationary charge 

produces only an electric field E 
in the space around it, a moving 
charge generates, in addition, a 
magnetic field B.

 Magnetic fields can be easily detected with a compass. And its needle points in 
the direction of the local magnetic field.

 For the earth’s magnetic field, the pointing means north, but in a lab, it is the 
direction of whatever magnetic field is present.

The Lorentz Force Law



  

 The magnetic field does not point toward the wire, nor away from it, but rather 

it circles around the wire.

 If you grab the wire with your right hand—thumb in the direction of the current
—your fingers curl around in the direction of the magnetic field.

 At the 2nd wire, the magnetic field points into the page, the current is upward, 

and yet the resulting force is to the left!



  



  

Magnetic ForcesMagnetic Forces
 The magnetic force on a charge Q, moving with velocity v in a magnetic field B,

 In the presence of both electric and magnetic fields, the net force on Q

 Cyclotron motion: The archetypal motion of a charged particle in a magnetic 
field is circular, with the magnetic force providing the centripetal acceleration.

 The cyclotron formula describes the motion of a particle in a cyclotron—the 
first of the modern particle accelerators.

 To find the momentum of a 
charged particle: send 
it through a region of 
known magnetic 
field, and measure 
the radius of its 
trajectory. 

F=m a=m
v2

R
=Q v B ⇒ p=Q B R ⇐ p=m v

Fmag=Q v×B

F=Q (E +v×B) ⇐ Lorentz force law



  

 If it starts out with some additional speed v‖ parallel to B, this component of 
the motion is unaffected by the magnetic field, and the particle moves in a helix.

 The radius is

Example 5.2: Cycloid Motion: Suppose B 

points in the x-axis, and E in the z-axis. A 
positive charge is released from the origin; 
what path will it follow?

 Initially, the particle is at rest, so the
magnetic force is 0, and the electric 
field accelerates the charge in 
the z-direction.

 As it picks up speed, Fmag develops which pulls the charge around to the right.

 The faster it goes, the stronger Fmag becomes; eventually, it curves the particle 

back around towards the y axis.

 At this point the charge is moving against the electrical force, so it begins to 
slow down—the magnetic force then decreases, and the electrical force takes 
over, bringing the particle to rest at point a, and so on.

m
v

2

R
=Q v B



  

 No force in the x-direction, the position of the particle can be described by the 

vector (0, y(t), z(t)); the velocity is 
 

                                                                   a circle, of radius R, whose center 

(0, R ω t, R) travels in the y-direction at a constant speed

 The particle moves as though it were a spot on the rim of a wheel rolling along 
the y axis. The curve is called a cycloid.

 The overall motion is not in the direction of E, but perpendicular to it.

v×B=|
x̂ ŷ ẑ
0 ẏ ż
B 0 0 |=B ( ż ŷ− ẏ ẑ ) ⇒ F=Q (E +v×B)=Q [E ẑ+B ( ż ŷ− ẏ ẑ )]

=m a=m ( ÿ ŷ + z̈ ẑ )

⇒ m ÿ=Q B ż
m z̈=Q (E−B ẏ)

⇒
ÿ=ω ż

z̈=ω ( E
B
− ẏ ) ⇐ ω≡

Q B
m

cyclotron frequency

⇒

y (t )=C1 cos ω t+C2 sin ω t +
E
B

t+C3=
E

ω B
(ω t− sin ω t )

z (t )=C2 cos ω t−C1 sin ω t +C4=
E

ω B
( 1−cos ω t )

⇐
y (0)= z (0)=0

ẏ (0)= ż (0)=0

R≡
E

ω B
⇒ ( y−R ω t )2+(z−R)2=R2

u=ω R=
E
B

v=(0 , ẏ , ż)



  

 One implication of the Lorentz force law deserves special attention:

 If Q moves an amount

 Magnetic forces may alter the direction in which a particle moves, but they 
cannot speed it up or slow it down.

d ℓ=v d t

⇒ work d W mag=F mag⋅d ℓ=Q (v×B)⋅d ℓ=Q v×B⋅v d t=0

Magnetic forces do no work.



  

CurrentsCurrents
 The current in a wire is the charge per unit time passing a given point:

 −Q moving to the left count the same as +Q to the right.

 Almost all phenomena involving moving charges depend on the product of 
charge & velocity—if you reverse the signs of q & v, you get the same answer, so 
it doesn’t matter which you have — CT invarianceCT invariance.

 The Lorentz force law is a case in point; the Hall effect is a notorious exception.

 It is ordinarily the negatively charged electrons that do the moving—in the 
direction opposite to the electric current.

 To avoid the petty complications, pretend it’s the positive charges that move.

 Current is measured in coulombs-per-second, or amperes (A):

 A line charge λ traveling down a wire at speed v constitutes a current      

because a segment of length v Δt, carrying charge             λ v Δt,                            
passes point P in a time interval Δt.

 Current is actually a vector:

I=
d Q
d t

1 A=1
Coulumb
second

I=λ v

I=λ v



  

Fmag=∫ v×B d q=∫ v×B λ d ℓ=∫ I×B d ℓ  d F= I d ℓ×B

I∥d ℓ ⇒ F mag=∫ I d ℓ×B= I ∫ d ℓ×B ⇐ I=const  

 Because the path of the flow is dictated by the shape of the wire, one doesn’t 
ordinarily bother to display the direction of I explicitly.

 A neutral wire contains as many stationary positive charges as mobile negative 
ones. The former do not contribute to the current—the charge density λ refers 
only to the moving charges.

 In the unusual situation where both types move,

 The magnetic force on a segment of current-carrying wire is

I=λ v+λ– v –



  

 Example 5.3: The magnetic force upward exactly 
balance the gravitational force downward

 If we now increase the current, then the upward magnetic 

force exceeds the downward force of gravity, and the loop 
rises, lifting the weight and doing work. But we know that 
magnetic forces never do work. What’s going on here?

 Well, when the loop starts to rise, the charges in the wire are                           
no longer moving horizontally—their velocity now acquires an upward component 
u, in addition to the horizontal component w associated with the current I=λw. 

 Fmag, always  the velocity, no longer points straight up, but tilts back. Fmag  

the net displacement of the charge (in the direction 

of v), and therefore it does no work on q.

 It does have a vertical component (qwB); the net 
vertical force on all the charge (λa) in the upper 
segment is                                       as before.

 Now it also has a horizontal component (         ), 
which opposes the current flow.

B

q u B
=λ a u B

F vert=λ a w B= I B a

F mag−F grav= I B a−m g=0 ⇒ I=
m g
B a



  

  The total horizontal force on the top segment is

 In dt, the charges move a horizontal distance dℓ=w dt, so the work done by this 

agency (battery/generator) is

 The work is done by the battery! The magnetic force redirects the horizontal 

force of the battery into the vertical motion of the loop and the weight.

 Slide a trunk up a frictionless ramp by pushing on it horizontally. The normal 
force N does no work, because it  the displacement. But it does have a vertical 
component, and a (backward) horizontal component.

 You do the work but your force does not (directly) lift the box. N plays the same 

passive role as the magnetic force, doing no work itself, but redirects the efforts 
of the active agent.

W battery=∫ F horiz d ℓ=λ a B ∫ u w d t= I B a h

F horiz=λ a u B



  

 When charge flows over a 
surface, we describe it by the 

surface current density, K: 
Consider a “ribbon” of infintesi-
mal width dℓ, running parallel 
to the flow.

 If the current in this ribbon is d I, the surface             current density

 K is the current per unit width: If the surface charge 

density is σ and its velocity is v, then

 If the flow of charge is distributed throughout a 3d 
region, we describe it by the volume current density, J: 

Consider a “tube” of infinitesimal cross section d a, running parallel to the flow. 

 If the current in this tube is d I, the volume current density is

 J is the current per unit area:

 If the (mobile) volume charge density is ρ and the velocity is v, then

 The magnetic force on a volume current

K=σ v

K≡
d I
d ℓ

J≡
d I
d a

I= ∫
S

J⋅d a

J=ρ v

Fmag=∫ v×B ρ d τ=∫ J×B d τ



  

 A current I is uniformly distributed over a 

wire of circular cross section with radius a. 

The area is πa2, so

 If the current density in the wire is proportional to the distance 
from the axis,

 The total current crossing a surface S can be

 The charge per unit time leaving a volume V is

 Because charge is conserved, whatever flows out through the surface must come 
at the expense of what remains inside:

 Summary for 
      translating 
       equations:

J=k s ⇐ k=const , s  is radius ⇒ d I= J d a⊥

⇒ I=∫ d I=∫ (ks) (s d ϕ d s)=2 π k ∫
0

a

s2 d s= 2 π

3
k a3

J=
I

π a2

I= ∫
S

J d a= ∫
S

J⋅d a

∮
S

J⋅d a= ∫
V

∇⋅J d τ

∮
S

J⋅d a=−
d

d t
∫
V

ρ d τ =− ∫
V

∂ ρ

∂ t
d τ ⇒

∂ ρ

∂ t
+∇⋅J=0 continuity

equation

∑
i=1

n

( ) qi v i∼ ∫
line

( ) I d ℓ∼ ∫
surface

( ) K d a∼ ∫
volume

J d τ

vs charge q∼ λ d ℓ∼ σ d a∼ ρ d τ



  

The Biot-Savart Law
Steady CurrentsSteady Currents
 Stationary charges produce electric fields that are constant in time; hence the 

term electrostatics.

 Steady currents produce magnetic fields that are constant in time; the theory of 
steady currents is called magnetostatics.

 By steady current we mean a continuous flow that has been going on forever, 
without change and without charge piling up anywhere.

 Electro/magnetostatics mean                                at all places and all times.

 Electrostatics and magnetostatics represent suitable approximations as long as 
the actual fluctuations are remote, or gradual.

 A moving point charge cannot possibly constitute a steady current. We are 
forced to deal with extended current distributions right from the start.

 When a steady current flows in a wire, its magnitude I must be the same all 
along the line

Stationary charges ⇒ constant electric fields: electrostatics.
Steady currents ⇒ constant magnetic fields: magnetostatics.

∂ ρ

∂ t
=0  in magnetostatics ⇒ ∇⋅J=0 ⇐

∂ ρ

∂ t
+∇⋅J=0

∂ ρ

∂ t
=0 ,

∂ J
∂ t
=0



  

The Magnetic Field of a Steady CurrentThe Magnetic Field of a Steady Current
 The magnetic field of a steady line current is given 

by the Biot-Savart law:

μ0: permeability of free space:

 B’s is newtons per ampere-meter, or teslas (T):

 1 tesla = 104 gauss.

 For magnetostatics, the Biot-Savart law plays a 
role analogous to Coulomb’s law in electrostatics. the  
dependence is common to both laws.

Example 5.5: Find the magnetic field a distance s from 

a long straight wire carrying a steady current I.

d ℓ× �̂⊙ , sin α d ℓ=cos θ d ℓ ⇐ α=θ +
π

2
ℓ= s tan θ , �= s sec θ ⇒ d ℓ= s sec2

θ d θ , �2
= s2 sec2

θ

⇒ B=
μ0 I

4 π
∫

θ1

θ2 s sec2
θ

s2 sec2
θ

cos θ d θ=
μ0 I

4 π s
∫

θ1

θ2

cos θ d θ=
μ0 I

4 π s
(sin θ2−sin θ1)

B (r )=
μ0

4 π
∫ I× �̂

�2
d ℓ=

μ0 I

4 π
∫ d ℓ× �̂

�2

1 T=1 N / (A⋅m)

μ0=
1

ϵ0 c2 ⇔ c2
=

1
ϵ0 μ0

�

μ0=4 π×10−7 N /A2

1
�2

�⃗



  

 A finite segment could never support a steady current, 
but it might be a piece of some closed circuit, and the 
equation represents its contribution to the total field.

 For an infinite wire,                 and            , so

 The magnetic field is inversely proportional to the 
distance from the wire—just like the electric field of 
an infinite line charge.

 In general, B “circles around” the wire, with the right-hand rule:

 Find the force of attraction between 2 long, parallel wires a distance d apart, 

carrying currents I1 and I2. The field at (2) due to (1) is

 The Lorentz force law predicts a force directed towards (1), and

 If the currents are antiparallel (up and down), the force is repulsive.

B=
μ0 I

2 π s
ϕ̂

F= I 2

μ0 I 1

2 π d
∫ d ℓ ⇒ f =

μ0

2 π

I 1 I 2

d
force per unit length

B=
μ0 I 1

2 π d


θ2=
π

2
B=

μ0 I

2 π s
θ1=−

π

2



  

Example 5.6: Find the magnetic field a distance z above the 

center of a circular loop of radius R, with a steady current I.

 d B attributable to the segment d ℓ , integrate d ℓ  around the 

loop, d B sweeps out a cone.

 The horizontal components cancel, the vertical components 

combine, to give

             ; the factor of cos θ  projects out the vertical component.

 cos θ and �2 are constants,

�

B (z)=
μ0 I

4 π
∫ cos θ d ℓ

�2

d ℓ⊥ �⃗

∫ d ℓ=2 π R

⇒ B (z)=
μ0 I

4 π

cos θ

�2 2 π R=
μ0 I

2
R2

(R2
+ z2
)
3 /2 ⇒ B (0)=

μ0 I

2 R



  

 For surface and volume currents, the Biot-Savart law becomes

 It’s wrong to write down the formula for a moving charge

 A point charge does not constitute a steady current, and the Biot-Savart law, 
which only holds for steady currents, does not determine its field.

 The superposition principle also applies to magnetic fields: For a collection of 
source currents, the net field is the sum of the fields from each of them 
separately.

B (r )=
μ0

4 π

q v× �̂
�2

B (r )=
μ0

4 π
∫ K (r )× �̂

�2 d a , & B (r )=
μ0

4 π
∫ J (r )× �̂

�2 d τ




  

d B z (z)=
μ0 d I

2
R2

(R2
+ z2
)
3 /2=

μ0 n I

2
R2

(R2
+ z2
)
3 /2 d z ⇐ d I=n I d z

=
μ0 n I

2
sin3

ϕ (−d cot ϕ) ⇐ sin ϕ=
R

√R2
+ z2

, cot ϕ=−
z
R

=
μ0 n I

2
sin ϕ d ϕ ⇐ d cot ϕ=−csc2

ϕ d ϕ

⇒ B z= ∫
− z1

z2

d B z=
μ0 n I

2
∫

ϕ1

π−ϕ2

sin ϕ d ϕ=−
μ0 n I

2
cos ϕ|

ϕ1

π−ϕ2

=−
μ0 n I

2
[cos (π−ϕ2)−cos ϕ1]=

μ0 n I

2
(cos ϕ1+ cos ϕ2)

For an infinite solinoid ϕ1=ϕ2=0 ⇒ B z=μ0 n I

z
R ϕ2

z2

ϕ1
− z1 O



  

The Divergence and Curl of B
Straight-Line CurrentsStraight-Line Currents
 The magnetic field of an infinite straight wire has 

a nonzero curl:

 The result is independent of s because B decreases 
at the same rate as the circumference increases.

 In fact, any loop that encloses the wire would give the same              answer.

 Use cylindrical coordinates (s, ϕ, z), with the current flowing along the z axis

 Here the loop encircles the wire only once; if it went      around twice, then ϕ 
would run from 0 to 4π, and if it didn’t enclose the wire, 
ϕ would go from ϕ1 to ϕ2 and back again, with Δϕ=0.

 If we have a bundle of straight wires. Each wire that 
passes through our loop contributes μ0 I, and those 

outside contribute nothing. Then∮ B⋅d ℓ=μ0 I enc

∮ B⋅d ℓ=∮ μ0 I

2 π s
d ℓ=

μ0 I

2 π s
∮ d ℓ=μ0 I

B=
μ0 I

2 π s
ϕ̂

d ℓ=d s ŝ+ s d ϕ ϕ̂+d z ẑ
⇒ ∮ B⋅d ℓ=∮ μ0 I

2 π s
s d ϕ=

μ0 I

2 π
∮ d ϕ=μ0 I



  

 If the flow of charge is represented by a volume current 
density J, 

 This derivation is seriously flawed by the restriction to 
infinite straight line currents (and combinations thereof).

 Do it right in the next section.

I enc=∫ J⋅d a ⇒ ∮ B⋅d ℓ=∫ ∇×B⋅d a=μ0 ∫ J⋅d a

Stokes’ theorem
⇒ ∇×B=μ0 J formula for the curl of B



  

The Divergence and Curl of BThe Divergence and Curl of B
 The Biot-Savart law for the general case of a volume current

 This formula gives the magnetic field at r=(x, y, z) in 

terms of an integral over the current distribution J(x, y, z).

 

B  is a function of (x , y , z) , d τ

=d x  d y d z

J  is a function of ( x , y , z) , �⃗=(x− x ) x̂ +(y− y) ŷ +(z− z) ẑ ,

B (r )=
μ0

4 π
∫ J (r )× �̂

�2 d τ

($)

($) ⇒ ∇×B=
μ0

4 π
∫ ∇×( J× �̂

�2
) d τ



∇×( J× �̂

�2
)=( �̂

�2
⋅∇ ) J (r )−(J⋅∇) �̂

�2
+ J ∇⋅ �̂

�2
−

�̂

�2
∇⋅J (r )

($) ⇒ ∇⋅B=
μ0

4 π
∫ ∇⋅( J × �̂

�2
) d τ



∇⋅( J × �̂

�2 )= �̂

�2⋅(∇× J )− J⋅( ∇× �̂

�2 )=0 ⇐

∇× J (r )=0

∇×
�̂

�2 =0

⇒ ∇⋅B=0 the divergence  of the magnetic field is 0

�



  

−(J⋅∇) �̂
�2=(J⋅∇


)
�̂

�2=∑
j
∂ j
 ( J j �̂

�2 )− �̂

�2 ∇

⋅J ⇐

∇

⋅J=0

for steady current

∑
j

∫
V

∂ j
 ( J j �̂

�2
) d τ


= ∮

S

�̂

�2
(J⋅d a )=0 ⇐ on a large enough boundary,

the current is 0

∇⋅
�̂

�2
=4 π δ

3
( �⃗) ⇒ ∇×B=

μ0

4 π
∫ J (r ) 4 π δ

3
(r−r ) d τ '=μ0 J (r )

⇒ ∇×B=μ0 J  holds generally in magnetostatics

⇒ 0⇐ ∇⋅(∇×B)=μ0 ∇⋅J ⇒ ∇⋅J=0 check



  

Ampère’s LawAmpère’s Law

                       is Ampère’s law (in differential form).

 It can be converted to integral form by Stokes’ theorem:

 This is the integral version of Ampère’s law; it is generalized into arbitrary 
steady currents.

 Use the right-hand rule to decide the direction: If the fingers of your right hand 
indicate the direction of integration around the boundary, your thumb defines the 
direction of a positive current.

 For currents with appropriate symmetry, Ampère’s law in 
integral form is quite useful in calculating the magnetic field.

                                                                            Example 5.7

∇×B=μ0 J

Electrostatics : Coulomb  Gauss
Magnetostatics : Biot−Savart  Ampère

∫ ∇×B⋅d a=∮ B⋅d ℓ=μ0 ∫ J⋅d a

⇒ ∮ B⋅d ℓ=μ0 I enc ⇐ the current enclosed by the Amperian loop



  

Example 5.8: Find the magnetic field 
of an infinite uniform surface current
              , flowing over the xy plane.

 B can only have a y component, and 

it points to the left above the plane and 

to the right below it.

  

K=K x̂

∮ B⋅d ℓ=2 B ℓ=μ0 I enc=μ0 K ℓ Ampere's law

⇒ B=
μ0

2
K ⇒ B=±

μ0

2
K ŷ   for  z≶ 0 const     for all z



  

Example 5.9: Find the magnetic field of a very long solenoid, 
consisting of n closely wound turns per unit length on a cylinder 
of radius R, each carrying a steady current I.

  The point of making the windings so close is that one can 
then pretend each turn is circular.

 There is a net current I in the direction of the solenoid’s 
axis, no matter how tight the winding. Or make a double winding, 
going up to one end and then going back down to eliminate the 
net longitudinal current—unnecessary!

 Imagine a sheet of foil with the uniform surface current K=n I.

 If IBs ⇒−I−Bs. But switching I is equivalent to turning the 

solenoid upside down, and no change for the radial field ⇒ Bs=0.

 For Bϕ,

 So the magnetic field of an infinite, closely wound 
solenoid runs parallel to the axis.

 From the right-hand rule, it points upward inside the 
solenoid and downward outside.

∮ B⋅d ℓ=Bϕ (2 π s)=μ0 I enc=0 ⇒ Bϕ=0



  

 

the field outside does not depend on the distance from the 
axis.

 But it should go to 0 for large s. It must therefore be 

0 everywhere!

 The field inside is uniform—it doesn’t depend on the distance from the axis.

 The solenoid to magnetostatics is the parallel-plate capacitor to electrostatics: 
a simple device for producing strong uniform fields.                                           

∮
2

B⋅d ℓ=B L=μ0 I enc=μ0 n I L ⇐ Boutside=0

⇒ B= [μ0 n I ẑ , inside the solenoid
0 , outside the solenoid

∮
1

B⋅d ℓ=[B (a)−B (b)] L=μ0 I enc=0 ⇒ B (a)=B (b)



  

As the length of the solenoid L ∞

B=[
μ0 n I ẑ    inside the solenoid
μ0 I

2 π ρ
ϕ̂   outside the solenoid



  

 Ampère’s law is always true (for steady currents), but it is not always useful.

 When it does work, it’s the fastest method; when it doesn’t, you have to fall 
back on the Biot-Savart law. 

 The current configurations that can be handled by Ampère’s law are

        1. Infinite straight lines          2. Infinite planes
        3. Infinite solenoids                4. Toroids

Example 5.10: A toroidal coil consists of a circular ring, or 
“donut,” around which a long wire is wrapped. In a toroid, 
the magnetic field of the toroid is circumferential at all points, 
both inside and outside the coil.

Proof: According to the Biot-Savart law

 Put r in the xz plane r=(x,0,z), and the source coordinates r=(scosϕ,ssinϕ,z)

 The current has no ϕ component: 

                                
⇒ I× �⃗=|

x̂ ŷ ẑ
I s cos ϕ

 I s sin ϕ
 I z

x− s cos ϕ

− s sin ϕ

 z− z|
= [ I s (z− z)+ I z s] sin ϕ

 x̂
+[ I z x−( I z s+ I s z− I s z) cos ϕ


] ŷ

− I s x sin ϕ
 ẑ

d B (r )=
μ0

4 π

I× �⃗

�3
d ℓ

⇒ �⃗=r−r =(x− s cos ϕ
 ,− s sin ϕ

 , z− z)

I= I s ŝ + I z ẑ=( I s cos ϕ
 , I s sin ϕ

 , I z)



  

�



  

 But there is a symmetrically situated current element at r ″, with the same s, �, 

dℓ, Is, Iz, but negative ϕ.

 Because sin ϕ changes sign, the     and     contributions from r and r ″ cancel, 

leaving only a     term, in general the field points in the     direction.

 To determine the magnitude, apply Ampère’s law to a circle of radius s about 
the axis of the toroid:

N is the total number of turns.

        True toroid =                        Ideal toroid            +           Single coil

                                        =                                            + 

ẑ
ϕ̂

x̂

B 2 π s=μ0 I enc ⇒ B (r )= [
μ0 N I

2 π s
ϕ̂ , for points inside the coil

0 for points outside the coil

ŷ



  

Comparison of Magnetostatics and ElectrostaticsComparison of Magnetostatics and Electrostatics

 The divergence and curl of the electrostatic field

 They are Maxwell’s eqns for electrostatics. With boundary condition (eg, E0 
far from charges), Maxwell’s eqns determine the field, if the source ρ is given.

 They contain essentially the same information as Coulomb’s law plus the 
principle of superposition.

 The divergence and curl of the magnetostatic field

 They are Maxwell’s eqns for magnetostatics. With boundary condition (eg, B0 

far from all currents), Maxwell’s eqns determine the magnetic field, with given J.

 They are equivalent to the Biot-Savart law (plus superposition).

 Maxwell’s eqns and the Lorentz force law                               constitute the 
most elegant formulation of electrostatics and magnetostatics.

 The electric field diverges away from a (positive) charge; the magnetic field line 

curls around a current.

[∇ ⋅ B=0 no magnetic
monopole

∇×B=μ0 J Ampere's law

F=Q (E +v×B)

[∇ ⋅ E=
ρ

ϵ0
Gauss’s law

∇×E=0 Faraday's law



  

 Electric field lines originate on 
positive charges and terminate on 
negative ones; magnetic field lines 
do not begin or end anywhere. They 
typically form closed loops or extend 
out to infinity.

 There are no point sources for B, 

the physical content of ∇⋅B=0.

 Ampère was the first who speculated that all magnetic effects are attributable 
to electric charges in motion (currents).

 B is divergenceless and no magnetic monopoles. It takes a moving electric 

charge to produce a magnetic field, and another moving electric charge to “feel” 
the magnetic field.

 Typically, electric forces are enormously larger than magnetic ones. It is usually 
with the sizes of the fundamental constants ϵ0 and μ0.

 In general, it is only when both the source charges and the test charge are 
moving at velocities comparable to the speed of light that the magnetic force 
approaches the electric force in strength.

 If we arrange to keep the wire neutral, the magnetic field can easily stand out.



  

Magnetic Vector Potential 

The Vector PotentialThe Vector Potential
 ∇×E=0 introduces a scalar potential (Φ) in electrostatics, E = −∇Φ.

 The electric potential had a built-in ambiguity: you can add to Φ any function 

whose gradient is 0 (ie, any constant), without altering the physical quantity E.

 ∇⋅B=0 introduces a vector potential A in magnetostatics: B = ∇×A

 You can add to A any function whose curl vanishes (ie, the gradient of any 
scalar), with no effect on B.
                                                                                                     Coulomb gauge
 We can exploit this freedom to eliminate the divergence of A: ∇⋅A = 0

Proof: Let the original potential, A0, is not divergenceless. Add to it the gradient 
of λ

This is mathematically identical to Poisson’s equation                       with ∇⋅A0 in 
place of ρ/ϵ0 as the “source.”

If ∇⋅A 0 goes to 0 at ∞, λ=
1

4 π
∫ ∇⋅A 0

�
d τ



⇒ ∇×B=∇×(∇×A )=∇ (∇⋅A)−∇2 A=μ0 J

⇒ A=A 0+∇ λ ⇒ ∇⋅A=∇⋅A0+∇
2

λ=0 ⇒ ∇
2

λ=−∇⋅A0

∇
2Φ=−

ρ

ϵ0



  

If ∇⋅A 0 does not go to 0 at ∞, we use other means to discover the appropriate λ.

So it is always possible to make the vector potential divergenceless.

 B=∇×A specifies the curl of A, but it never say anything about the divergence
—we are at will to pick that as we see fit, and 0 is ordinarily the simplest choice.

 With ∇⋅A=0, Ampère’s law becomes

 This again is nothing but Poisson’s eqn, but it is 3 Poisson’s eqns, one for each 
spatial dimension.

 Assuming J goes to 0 at ∞,

 For line and surface currents,

 A is not as useful as Φ because it’s still a vector.

 There is only quite limited usage (when ∇×B=0) with a scalar potential 

B=−∇Ψ because it is incompatible with Ampère’s law, since the curl of a 
gradient is always 0. See Chapter 6 for further discussions.

A=
μ0

4 π
∫ I

�
d ℓ=

μ0 I

4 π
∫ d ℓ

�
, A=

μ0

4 π
∫ K

�
d a

∇
2 A=−μ0 J

⇒ A (r )=
μ0

4 π
∫ J (r )

�
d τ





  

The expression of the Vector Potential
∇

2 A=−μ0 J ⇒ ∇
2 Ax=−μ0 J x , ∇

2 Ay=−μ0 J y , ∇
2 Az=−μ0 J z

∇
2Φ=−

ρ

ϵ0
⇒ Φ= 1

4 π ϵ0

∫ ρ

�
d τ



⇒ Ax=
μ0

4 π
∫ J x

�
d τ

 , Ay=
μ0

4 π
∫ J y

�
d τ

 , Az=
μ0

4 π
∫ J z

�
d τ



⇒ A (r )=
μ0

4 π
∫ J (r )

�
d τ


⇐ �⃗=r−r  , �=|⃗�|

Derivation of the Biot-Savart Law from the Vector Potential

B=∇×A=
μ0

4 π
∇×∫ J (r )

�
d τ



=
μ0

4 π
∮ ∇×

I d ℓ

�
=

μ0 I

4 π
∮ ∇× d ℓ

�
⇐ J d τ


= I d ℓ

=
μ0 I

4 π
∮ ( ∇×d ℓ

�
+∇

1
�
×d ℓ)= μ0 I

4 π
∮ (− �̂

�2×d ℓ) ⇐ ∇
1
�
=−

�̂

�2

=
μ0 I

4 π
∮ d ℓ× �̂

�2 ⇒ d B=
μ0 I

4 π

d ℓ× �̂
�2 =

μ0 I

4 π

d ℓ× �⃗
�3 ⇐ B=∮ d B



  

−L

d ℓ=d z ẑ
z

O

Example :

A=
μ0 I

4 π
∫ d ℓ

�
=

μ0 I

4 π
ẑ ∫

− L

L
d z

√s2
+ z 2

=
μ0 I

2 π
ẑ ∫

0

L
d z

√s2
+ z2

 tan θL≡
L
s

=
μ0 I

2 π
ẑ ∫

0

θ L

cos θ d tan θ=
μ0 I

2 π
ẑ ∫

0

θ L

sec θ d θ ⇐ cos θ=
s

√s2
+ z 2

, tan θ=
z

s

=
μ0 I

2 π
ẑ ln (sec θ+ tan θ)|

0

θ L

=
μ0 I

2 π
ln

L+√ s2
+ L2

s
ẑ ⇒ Az=

μ0 I

2 π
ln

L+√s2
+ L2

s

For s≪ L ⇒ A≃
μ0 I

2 π
ln

2 L
s

ẑ ⇒ Az ∞  as 
L
s
∞

⇒ A= Az ẑ ⇐ Az≃−
μ0 I

2 π
ln s + constant

B=∇×A=−
∂ Az

∂ s
ϕ̂=

μ0 I

2 π s
L

√L2
+ s2
ϕ̂

⇒ B=
μ0 I

2 π s
ϕ̂   as  L ∞

⇒ ∇⋅A=0 ?

L

�



  

Example 5.11: A spherical shell of radius R, carrying a uniform 
surface charge σ, spins at angular velocity ω. Find the vector 
potential it produces at r.

 The integration is easier if we let r lie on the z axis, so 

that ω is tilted at an angle θ. We orient the x axis so that ω 
lies in the xz plane.

 For  

∫
0

2 π

sin ϕ
 d ϕ


= ∫

0

2 π

cos ϕ
 d ϕ


=0

⇒ A (r )=−
μ0 σ ω R3 sin θ

2
∫

0

π
cos θ

 sin θ
 d θ



√R2
+ r2

−2 r R cos θ


ŷ

K=σ v , �=√R2
+r2

−2 r R cos θ

⇐ r=r ẑ

v=ω×r =|
x̂ ŷ ẑ

ω sin θ 0 ω cos θ

R sin θ
 cos ϕ

 R sin θ
 sin ϕ

 R cos θ
|

=R ω [ sin θ sin θ
 sin ϕ

 ẑ−cos θ sin θ
 sin ϕ

 x̂
+(cos θ sin θ

 cos ϕ

−sin θ cos θ


) ŷ ]

A (r )=
μ0

4 π
∫ K (r )

�
d a ⇐ d a=R2 sin θ

 d θ
 d ϕ



θ

θ

�



  Example 5.12: Find the vector potential of an infinite solenoid with n turns per 
unit length, radius R, and current I. 

∫
−1

1 u d u

√R2
+ r2

−2 r R u
=−

2
2 r R

∫
−1

1

u d √R2
+r2

−2 r R u ⇐ u=cos θ


=−
u √R2

+r2
−2 r R u

r R |
−1

1

+
1

r R
∫

−1

1

√R2
+r2

−2 r R u d u

=−
|R−r|+R+ r

r R
−

1
2 r2 R2

2
3
(R2
+ r2

−2 r R u)3 /2|
−1

1

 r≶=
min
max

(r , R)

=
(R+r )3−|R−r|3

3 r2 R2 −
|R−r|+R+ r

r R
=

R3
+ r3

−|R3
− r3

|

3 r2 R2 =
2
3

r<

r>
2

⇒ A (r )=
μ0 σ R

3

r<
3

r3 ω×r ⇐ ω×r=− r ω sin θ ŷ

=
μ0 σ R ω

3

r<
3

r2 sin θ ϕ̂ ⇐ revert the coordinates ω∥ẑ , r=(r , θ , ϕ)

⇒ B=∇×A=

2
3

μ0 σ R ω uniform  inside   the spherical shell

1
3

μ0 σ R4 3 (r̂⋅ω) r̂−ω
r3 dipole  outside the spherical shell



  

 Similar with the Ampere’s law                               with BA and μ0 IencΦB.

 If symmetry permits, we can determine A from ΦB in the same way B from Ienc.

 Use a circular “Amperian loop” at radius s inside the solenoid,

 For an Amperian loop outside the solenoid,

 Check if ∇×A = B ? ∇⋅A=0 ?

 Ordinarily, the direction of A mimics the direction of the current. If all the 

current flows in one direction, A must point that way, too.

 You can always add an arbitrary constant vector to A —analogous to changing 

the reference point for Φ, and it won’t affect the divergence or curl of A, which is 
all that matters.

ΦB=∫ B⋅d a=μ0 n I (π R2
) ⇒ A=

μ0 n I

2
R2

s
ϕ̂  for s>R

∮ B⋅d ℓ=μ0 I enc

ΦB=∫ B⋅d a=∫ ∇×A⋅d a=∮ A⋅d ℓ ⇐ ΦB : magnetic flux
through the loop

∮ A⋅d ℓ= A (2 π s)=∫ B⋅d a=μ0 n I (π s2
) ⇒ A=

μ0 n I

2
s ϕ̂  for s<R



  

Boundary ConditionsBoundary Conditions
 The magnetic field is discontinuous at a surface 

current, but it is about the tangential component. 

 A wafer-thin pillbox straddling the surface

 For the tangential components, an 
Amperian loop running  the current,

 The component of B that is ∥ the surface but  the current is discontinuous in 

the amount μ0 K.

∮ B⋅d ℓ=(Babove
∥
−Bbelow

∥
) ℓ=μ0 I enc=μ0 K ℓ

⇒ Babove
∥

−Bbelow
∥

=μ0 K

∮ B⋅d a=0 ⇒ Babove

=Bbelow





  

 A similar Amperian loop ∥ the current reveals that the parallel component is 

continuous.

 The vector potential is continuous across any boundary: A above= A below, for      

   ∇⋅A=0 guarantees that the normal component is continuous.

                                                                   means that the tangential components

are continuous (the flux through an Amperian loop of vanishing thickness is 0).

 A’s derivative inherits the discontinuity of B:
∂

∂ n
A above−

∂

∂ n
A below=−μ0 K

B=∇×A= n̂
∂ Ak

∂ ℓ
− ℓ̂

∂ Ak

∂ n
= n̂

∂ Ak

∂ ℓ
−
∂ A
∂ n

× n̂ ⇐ A= Ak k̂ ⇐
K≡K k̂
ℓ̂= k̂× n̂

Babove

=Bbelow



∇⋅A=0
⇒

∂

∂ ℓ
A above=

∂

∂ ℓ
A below ,

∂

∂ k
Aabove=

∂

∂ k
A below=0

⇒ Babove−Bbelow=−( ∂

∂ n
A above−

∂

∂ n
A below)× n̂=μ0 K× n̂

⇒
∂

∂ n
Aabove−

∂

∂ n
A below=−μ0 K

Babove−Bbelow=μ0 K× n̂ ⇐ n̂ :  unit vector ⊥ the surface, pointing upward .

∇×A=B ⇒ ∮ A⋅d ℓ=∫ B⋅d a=ΦB



  

Example: Consider an infinitely long cylindrical conductor of radius a, with a 

constant current I flowing in. Find the magnetic vector potential.

Take the z-axis along the axis of the conductor,

⇒ ∇
2 Az=−μ0 J z ⇐ J= J z ẑ= J ẑ , A= Az ẑ ⇐ J=

I
π a2

Θ(a− s)

symmetry
in z  & ϕ

⇒
1
s

d
d s
( s

d Az

d s
)=−μ0 J ⇒ d ( s

d Az

d s
)=−μ0 J s d s

For s<a : s
d Az

d s
=−

μ0 J

2
s2
⇐ ∫

0

s

d ( s
d Az

d s
)=−μ0 ∫

0

s

J (s) s d s

⇒ Az (s)− Az (0)= ∫
0

s

−
μ0 J

2
s d s=−

μ0 I

4 π

s2

a2
⇒ Az (s)=−

μ0 I

4 π

s2

a2
+ Az (0)

For s≥a : s
d A z

d s
=a

d Az

d s
(a) ⇐ ∫

a

s

d ( s
d Az

d s
)=−μ0 ∫

a

s

J (s) s d s=0

surface current density vanishes ⇒ a
d Az

d s
(a)=a

d Az

d s
(a–)=−

μ0 I

2 π



  

⇒ Az (s)− Az (a

)=−

μ0 I

2 π
∫

a

s
d s

s
=−

μ0 I

2 π
ln

s
a

⇒ Az (s)=−
μ0 I

2 π
ln

s
a
−

μ0 I

4 π
+ A z (0) ⇐ Az (a

–
)= Az (a


)

⇒ Az=−
μ0 I

4 π [
s2

a2

ln
s2

a2
+1 ]+ A z (0) , B=

μ0 I

2 π [
s
a2

1
s
] ϕ̂ , for [

s≤a

s> a ]
⇒ Az=−

μ0 I

4 π
( s2

s>
2
+2 ln

s>

a
)+ Az (0) , B=

μ0 I

2 π

s
s>

2
ϕ̂ ⇐ s>=max (s , a)



  

Multipole Expansion of the Vector PotentialMultipole Expansion of the Vector Potential
 The idea of a multipole expansion is to write the 

potential in the form of a power series in     , 
where r is the distance to the point. 

 If r is sufficiently large, the series will 
be dominated by the lowest nonvanishing 
contribution, and the higher terms can be ignored.

 

 We call the 1st term (with     ) the monopole term, the 2nd (with       ) dipole, 

the 3rd quadrupole, and so on.

 The magnetic monopole term is always 0, for the integral is just the total vector 
displacement around a closed loop:

1
�
=

1

√r2
+ r 2

−2 r r  cos α
=

1
r ∑n=0

∞ ( r

r
)n

Pn (cos α)

⇒ A (r )=
μ0 I

4 π
∮ d ℓ

�
=

μ0 I

4 π
∑
n=0

∞ 1
rn+1 ∮ r  n Pn (cos α) d ℓ

=
μ0 I

4 π
( 1

r
∮ d ℓ+ 1

r2
∮ r cos α d ℓ+ 1

r3
∮ r 2 3 cos2

α−1
2

d ℓ+⋯)
1
r2

∮ d ℓ=0

1
r

1
r

�



  

 This reflects the fact that there are no magnetic monopoles in nature

 So the dominant term is the dipole:

here a is the “vector area” of the loop; if the loop is flat, a is the ordinary area 
enclosed, with the direction by the usual right-hand rule.

 

Example 5.13:

Adip (r )=
μ0 I

4 π r2
∮ r cos α d ℓ=

μ0 I

4 π r2
∮ r̂⋅r  d ℓ

∮ r̂⋅r  d ℓ=−∫ ∇

( r̂⋅r )×d a=− r̂×∫ d a=∫ d a× r̂

⇒ Adip (r )=
μ0

4 π

m× r̂
r2

=−
μ0

4 π
m×∇ 1

r
⇐ m≡ I ∫ d a= I a : magnetic

dipole moment

d a =
r ×d ℓ

2
⇒ m= I ∫ r ×d ℓ

2
=

1
2
∫ r ×( I d ℓ)= 1

2
∫ r × J d τ



⇒ d m= 1
2

r × J d τ


∇⋅B=0



  

∫ (∇ ×v )⋅d a=∮ v⋅d ℓ ⇐ Stokes's theorem

Let v=T c   where c  is constant ⇒ ∇×c=0 ⇒ ∇×(T c )=∇ T×c

⇒
∫ [∇×(T c )]⋅d a=∫ (∇ T×c )⋅d a=c⋅∫ d a×∇ T

∮ T c⋅d ℓ = c⋅∮ T d ℓ

⇒ ∫
S

d a×∇ T=− ∫
S

∇ T×d a= ∮
C

T d ℓ ⇐ c  can be any constant.

Check Problem 1.61(e).

(r ×d r )×r=−(r⋅d r ) r +(r⋅r ) d r  ⇐ d ℓ d r   in general
d [(r⋅r ) r ] = (r⋅d r ) r +(r⋅r ) d r  due to small change d r   in r 

⇒ (r⋅r ) d r =
r ×d r 

2
×r+ 1

2
d [r  (r⋅r )] ⇒ total derivative in a closed

path for an integral

⇒ ( r̂⋅r ) d ℓ=
r ×d ℓ

2
× r̂=d a × r̂



  

 It is clear that the magnetic dipole moment is independent of the choice of 
origin since the magnetic monopole moment is always 0.

 Although the dipole term dominates the multipole expansion   
and thus offers a good approximation to the true potential, it 
is not ordinarily the exact potential; there will be higher 
multipoles’ influence.

 The magnetic field of a (perfect) dipole is easiest to 

calculate if we put m at the origin and let it point in 

the z-direction,

Selected problems: 11, 13, 26, 30, 44, 48, 51

⇒ Adip (r )=
μ0

4 π

m sin θ

r2
ϕ̂ ⇐

μ0

4 π

m× r̂
r2

⇒ Bdip=∇×A=
μ0 m

4 π r3
(2 cos θ r̂ +sin θ θ̂)

=
μ0

4 π

3 ( r̂⋅m ) r̂−m
r3



  

 This is identical in structure to the field of an electric dipole.

Postulates of Magnetostatics in Free Space
Differential Form Integral Form

∇ ⋅B=0 ∮
S

B⋅d a=0

∇×B=μ0 J ∮
C

B⋅d ℓ=μ0 I



  

Problem 5.59: Prove that the average magnetic field, over a 
sphere of radius R, due to steady currents inside the sphere, is

                       , m is the total dipole moment of the sphere.

The average field B due to the current density J at r is,

Bave=
μ0

2 π

m
R3

Bave=
1

4 π R3
/3
∫ B d τ =

3
4 π R3 ∫ ∇×A d τ =

3
4 π R3 ∮ d a×A

=
3

4 π R3

μ0

4 π
∮ d a×∫ J

�
d τ


=

3 μ0

16 π
2 R3
∫ ( ∮ d a

�
)× J d τ



∮ d a
�
= ẑ ∫ cos θ R2 sin θ d θ d ϕ

√r 2
+ R2

−2 r  R cos θ
⇐ let r = r ẑ , d a=R2 sin θ d θ d ϕ r̂
+ Ex. 5.11 experience

=−2 π R2 ẑ ∫
0

π cos θ d cos θ

√r 2
+R2

−2 r R cos θ
=

4 π

3
r  ẑ= 4 π

3
r  ⇐ R>r 

⇒ Bave=
3 μ0

16 π
2 R3 ∫ 4 π

3
r × J d τ


=

μ0

2 π

m
R3 ⇒

1
4 π R3

/3
∫ 2 μ0

3
m δ

3
(r ) d τ

by turning into an infinitestimal sphere centered at a pure dipole m

⇒ Bdip (r )=
μ0

4 π

3 ( r̂⋅m ) r̂−m
r3

+
2 μ0

3
m δ

3
(r ) ⇐ Problem 5.61

�



  



  

∫ ∇⋅v d τ=∮ v⋅d a ⇐ divergence theorem

Let v  v×c   where c  is a constant vector ⇒ ∇×c=0

∇⋅(u×w)=w⋅(∇×u )−u⋅(∇×w)

⇒
∫ ∇⋅(v×c ) d τ =∫ [c⋅(∇×v )−v⋅(∇×c )] d τ =c⋅∫ ∇×v d τ

∮ (v×c )⋅d a= c⋅∮ d a×v

⇒ ∫
V

∇×v d τ = ∮
S

d a×v=− ∮
S

v×d a ⇐ c  can be any constant.

Check Problem 1.61(b).
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