
  

Chapter 4Chapter 4 Electric Fields in Matter

DielectricsDielectrics
 Most everyday objects belong to one of 2 large classes: conductors and 

insulators (or dielectrics).

 Conductors are substances that contain an “unlimited” supply of charges that 
are free to move about through the material.

 It means that many of the electrons (1 or 2 per atom, in a typical metal) are not 
associated with any particular nucleus, but roam around at will.

 In dielectrics, all charges are attached to specific atoms or molecules—they’re on 

a tight leash, and all they can do is move a bit within the atom or molecule.

 Such microscopic displacements are not as dramatic as the wholesale 
rearrangement of charge in a conductor, but their cumulative effects account for 
the characteristic behavior of dielectric materials.

 There are actually 2 principal mechanisms by which electric fields can distort 
the charge distribution of a dielectric atom or molecule: stretching and rotating.
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Induced DipolesInduced Dipoles
 Although the atom as a whole is electrically neutral, there is a positively 

charged core (nucleus) and a negatively charged electron cloud surrounding it.

 When a neutral atom is placed in an electric field E, the nucleus is pushed in 
the direction of the field, and the electrons the opposite way.

 If E is large enough, it can pull the atom apart completely, “ionizing” it (the 
substance then becomes a conductor).

 With less extreme fields, the 2 opposing forces—E pulling the electrons and 
nucleus apart, their mutual attraction drawing them back together—reach a 
balance, leaving the atom polarized, with plus charge shifted slightly one way, 
and minus the other.

 The atom now has a tiny dipole moment p, which points in the same direction as 

E. This induced dipole moment is approximately 

proportional to E:

α is called atomic polarizability.

                                                  Example 4.1

p=α E



  

 For molecules the situation is not so simple, 
because they polarize more readily in some 
directions than in others.

 Carbon dioxide has a polarizability of 4.5×10−40 C2·m/N when applying the field 
along the axis of the molecule, but only 2×10−40 for fields ⊥ this direction.

 When the field is at some angle to the axis, you must resolve it into parallel and 
perpendicular components, and multiply each by the pertinent polarizability: 

 p may not even be in the same direction as E:

 For a completely asymmetrical molecule, the relation between E and p is

 Th values of α depend on the orientation of the axes you use, though it is 
always possible to choose “principal” axes such that only the diagonal terms are 
nonvanishing.

p=α⋅E ⇒ [
px

py

pz
]= [
αx x α x y αx z

αy x α y y αy z

α z x αz y αz z
] [

E x

E y

E z
] ⇐ α : polarizability tensor

vs  L= I⋅ω

p=α∥E∥+α E



  

Permanent Dipole MomentsPermanent Dipole Moments
 Some molecules are so constructed that they have electric dipole moments in 

the absence of an electric field. They are unsymmetrical in their normal state.

 By contrast, the hydrogen atom in a field of 1 megavolt per meter, with its 
polarizability, acquires an induced moment < 10−34 coulomb-meter.

 Permanent dipole moments, when they exist, are enormously larger than any 
moment that can be induced by ordinary laboratory electric fields.

 Because of this, the distinction between polar molecules, as molecules with 

“built-in” dipole moments are called, and nonpolar molecules is very sharp.

 The behavior of a polar substance as a dielectric is strikingly different from 
that of material composed of nonpolar molecules. The dielectric constant of 
water is about 80, that of methyl alcohol 33, while a typical nonpolar liquid might 
have a dielectric constant around 2.



  

 In a nonpolar substance the application of 
an electric field induces a slight dipole 
moment in each molecule.

 In the polar substance dipoles are already present in 
great strength but, in the absence of a field, are pointing in random directions so 
that they have no large-scale effect.

 An applied electric field merely aligns them to a certain degree.

 In either process, the macroscopic effects will be determined by the net amount 
of polarization per unit volume.



  



  

Alignment of Polar MoleculesAlignment of Polar Molecules
 A neutral atom had no dipole moment—p was induced by 

the applied field. Some molecules have built-in, permanent 
dipole moments.

 In the water molecule, the electrons tend to cluster around the 
oxygen atom, and since the molecule is bent at 105°, this leaves a 
negative charge at the vertex and a net positive charge on the opposite side. 
(pwater=6.1×10−30 C·m, quite large)

 When such polar molecules are placed in a uniform electric field, the force on 

the positive end F+=q E, exactly cancels the force on the negative end F−=−q E. 

However, there will be a torque:

 N tends to line p up parallel to E; a polar molecule
free to rotate will swing around until it points in the 
direction of the applied field.

 If E is nonuniform, so that F+ does not exactly balance F−, there will be a net 

force on the dipole, in addition to the torque.

N=r×F+ r –×F –=
d
2
×q E +(− d

2
)×(−q E )=q d×E

E  uniform ⇒ N=p×E ($) ⇐ p=q d



  

 But E must change abruptly to be significant variation within 1 molecule, so 
this is not ordinarily a major consideration for the behavior of dielectrics.

 The force on a dipole in a nonuniform field:

 For a “perfect” dipole of infinitesimal length, ($) gives the torque about the 
center of the dipole even in a nonuniform field; about any other point

Δ E x≃∇ E x⋅d ⇒ Δ E≃(d⋅∇)E ⇒ F≃(p⋅∇) E ⇐ q (d⋅∇) E

N=p×E + r×F=p×E + r×(p⋅∇) E

F=F+F –=q (E−E –)=q Δ E



  

PolarizationPolarization
 When a piece of dielectric material is placed in an electric field, if it consists of 

neutral atoms (or nonpolar molecules), the field induces in each a tiny dipole 
moment, pointing in the same direction as the field.

 If the material is made up of polar molecules, each permanent dipole will 
experience a torque, tending to line it up along the field direction.

 Thermal motions compete with the process, so the alignment is never complete, 
especially at higher temperatures, and disappears when the field is removed.

 These 2 mechanisms produce a lot of little dipoles pointing along the direction of 
the field—the material 
   becomes polarized:

 Even in polar molecules there will be some polarization by displacement, but  
the rotation mechanism dominates.

 Some materials can “freeze in” polarization, so that it persists after the field is 
removed. But this will not be discussed here.

polarization P≡ dipole moment
volume

= lim
Δ τ  0

∑ p k

Δ τ



  

The Field of a Polarized Object
Bound ChargesBound Charges
 For polarized material with polarization P, we 

would like to know what the field is produced by 
this object.

 For a single dipole p:

 For dipole moment d p = P d τ  in each volume element d τ , the total potential

 The potential (and hence also the field) of a polarized object is the same as that 
produced by a volume charge density                     plus a surface charge densityρb=−∇⋅P

Φ (r )= 1
4 π ϵ0

p⋅�̂
�2

Φ (r )= 1
4 π ϵ0

∫ �̂⋅d p
�2

=
1

4 π ϵ0
∫
V

�̂⋅P (r )
�2

d τ  ⇐ �⃗=r−r  ⇐ r  : source
coordinates

=
1

4 π ϵ0
∫
V

P⋅∇  1
�

d τ  ⇐ �̂

�2
=∇

 1
�
=−∇

1
�

 d a= n̂ d a

=
1

4 π ϵ0
( ∫

V

∇

⋅

P
�

d τ −∫
V

∇

⋅P
�

d τ  )= 1
4 π ϵ0

( ∮
S

P
�
⋅d a−∫

V

∇

⋅P
�

d τ )

=
1

4 π ϵ0
∮
S

σb

�
d a+

1
4 π ϵ0

∫
V

ρb

�
d τ  ⇐ σb≡P⋅n̂ , ρ b≡−∇⋅P

σb=P⋅n̂

�⃗



  

∇⋅P≠0

∇⋅P=0



  

 Instead of integrating the contributions of all the infinitesimal 
dipoles, we could first find those bound charges, and then 
calculate the fields they produce.

Example 4.2: Find the electric field produced by a uniformly 
polarized sphere of radius R.

P=const ⇒ ρb=−∇⋅P=0 , σb=P⋅n̂=P cos θ

Φ (r , θ)= 1
4 π ϵ0

∮ σb

�
d a=[

P
3 ϵ0

r cos θ=
P z
3 ϵ0

, for r≤R

P
3 ϵ0

R3

r2
cos θ=

p⋅r̂
4 π ϵ0 r2

, for r≥R

⇐ Ex. 3.9

⇒ E=−∇ Φ= [
−

P
3 ϵ0

ẑ=−
P

3 ϵ0
, r≤R

p
2 cos θ r̂ +sin θ θ̂

4 π ϵ0 r3
, r≥R

where p=|p| ⇐ p=P×Volume= 4 π
3

R3 P



  

 Calculate the potential directly:

                                          (compare it with Chapter 6)

Choose r=r ẑ ,   put P in the x z -plane 
⇒ P=P sin θ x̂+P cos θ ẑ

And n̂=sin θ cos ϕ x̂+sin θ sin ϕ ŷ+ cos θ ẑ
⇒ σb=P⋅n̂=P (sin θ sin θ cos ϕ+ cos θ cos θ)

⇒ ∮ σb

�
d a=P ∮ sin θ sin θ cos ϕ+ cos θ cos θ

√r2
+ R2

−2 r R cos θ
R2 sin θ d θ d ϕ

=2 π P R2 cos θ ∫
0

π cos θ sin θ d θ

√r2
+ R2

−2 r R cos θ

=
2 π P

3 r2 (R
3
+r3

−|R3
−r3

|) cos θ=
4 π P

3

r<
3

r2 cos θ ⇐ r<=min (r , R)

⇒ Φ (r , θ)=
P

3 ϵ0

r<
3

r2
cos θ= [

P
3 ϵ0

r cos θ=
P z
3 ϵ0

 for r <R  inside

P
3 ϵ0

R3

r2 cos θ for r≥R  outside

P

θ

Φ=
1

4 π ϵ0
∮
S

σb

�
d a

�



  

Physical Interpretation of Bound ChargesPhysical Interpretation of Bound Charges
 The field of a polarized object is identical to the field that would be produced 

by a certain distribution of “bound charges,” σb and ρb.

 So ρb & σb represent perfectly genuine accumulations of charge, not fictitious.

 For a long string of dipoles, the head of one effectively cancels the tail of its 
neighbor, but at the ends there are 2 charges left over: plus at the right end and 
minus at the left.

 In fact no single electron made the whole trip—a lot of tiny displacements add 
up to one large one.

 The net charge at the ends is called a bound charge to remind that it cannot be 
removed; but apart from that, bound charge is no different from any other kind.

 For a given polarization P in a “tube” of dielectric, the dipole moment of chunk 

parallel to P the is P(Ad). In terms of the charge (q) at the end, this same dipole 

moment can be written q d,

 If the ends have been sliced off perpendicularly, σb=
q
A
=P

⇒ p=P A d=q d ⇒ q=P A



  

 For an oblique cut, the
charge is still the same,

 The effect of the polarization, then, is to paint a bound charge                 over 
the surface of the material.

 If the polarization is nonuniform, we get accumulations of bound 
charge within the material, as well as on the surface.

 A diverging P for the figure will result in a pileup of 
negative charge.

 The net bound charge               in a given volume is 
equal and opposite to the amount that has been pushed 
out through the surface.

∫
V

ρb d τ=− ∮
S

P⋅d a=− ∫
V

∇⋅P d τ ⇒ ρ b=−∇⋅P

A= Aend cos θ ⇒ σb=
q

Aend

=P cos θ=P⋅n̂

σb=P⋅n̂

∫ ρb d τ



  

Example 4.3: For 2 spheres of charge: a positive sphere and a 
negative one. Without polarization the two are superimposed 
and cancel completely. But when the material is uniformly 
polarized, all the plus charges move slightly upward (the z 
direction), and all the minus charges move slightly downward. 
The 2 spheres no longer overlap perfectly: at the top there’s a 
cap of leftover positive charge and at the bottom a cap of negative 
charge. This “leftover” charge is the bound surface charge σb.

For the field in the region of overlap between 2 uniformly charged spheres

For points outside, we have a dipole with potential

These answers agree with the results of Ex. 4.2. 

−d
Prob. 2.18⇒ E=E+E–=

ρ

3 ϵ0
(r−r –) ⇐ E±=±

ρ r±
3 ϵ0

=−
ρ d
3 ϵ0

=−
1

4 π ϵ0

q d
R3
=−

P
3 ϵ0

⇐ p=q d= 4 π
3

R3 P

Qb= ∫
V

ρb d τ + ∮
S

σb d a=−∫
V

∇

⋅P d τ + ∮

S

P⋅d a

=−∮
S

P⋅d a+ ∮
S

P⋅d a =0 ⇒ The total bound charge is 0.

Φ= 1
4 π ϵ0

p⋅r̂
r2



  

The Field Inside a DielectricThe Field Inside a Dielectric
 In developing the theory of bound charges, we assumed the pure kind—perfect 

dipole. And yet, an actual polarized dielectric consists of physical dipoles, albeit 
extremely tiny ones.

 What is more, we represent discrete molecular dipoles by a continuous density 
function P. Outside the dielectric there is no real problem about this. Inside the 
dielectric, however, such a procedure is open to serious challenge.

 The electric field inside matter must be complicated, on the microscopic level. 
Moreover, as the atoms move about, the field alters. This true microscopic field 
would be impossible to calculate, nor would it be of much interest if you could.

 We ignore the microscopic bumps and wrinkles in the electric field inside 
matter, and concentrate on the macroscopic field.

 This is defined as the average field over regions large enough to contain many 
thousands of atoms, and yet small enough to ensure that we do not wash out any 
significant large-scale variations in the field.

 The macroscopic field is also what people mean when they speak of “the” field 
inside matter.

 To calculate the macroscopic field at some point r within a dielectric, we must 
average the true (microscopic) field over an appropriate volume.



  

 The macroscopic field at r consists of 2 parts: the average field 

over the sphere due to all charges outside, plus the average 

due to all charges inside:

 The average field (over a sphere), produced by charges outside, 

is equal to the field they produce at the center, so Eout is the field at 

r due to the dipoles exterior to the sphere

 The dipoles inside the sphere are too close to treat in the same fashion. But all 
we need is their 
      average field, 
 
regardless of the details of the charge distribution within the sphere.

 With a different thought, the sphere is so small that P does not vary much over 
its volume, the term left out of the integral in (!) corresponds to the field at the 

center of a uniformly polarized sphere, ie,            , same as E in above, and 

 Without realizing it, we have been correctly calculating the averaged, 
macroscopic field, for points inside the dielectric. 

E=Eout+E in

−
P

3 ϵ0
⇒ Φ= 1

4 π ϵ0
∫ P (r )⋅�̂

�2
d τ 

⇒Φout=
1

4 π ϵ0
∫

outside

P (r )⋅�̂
�2

d τ  (!)

Prob. 3.47 ⇒ E in=−
1

4 π ϵ0

p
R3
=−

P
3 ϵ0

⇐ p= 4 π
3

R3 P



  

Problem 3.47: Show that the average field inside a sphere of radius R, due to all 

the charge within the sphere, is                              , p is the total dipole moment.

The average field E due to a point charge q at r is, with

The electric field at r due to the uniform charge density ρ over the sphere

From Gauss’s theorem (+ the shell theorem),
(Notice r is a fixed, not random, direction!)

If there are many charges inside the sphere, 

The same argument, but with q outside the sphere, with the outer shell theorem,

E ave=−
1

4 π ϵ0

p
R3

�⃗=r−r 

Eρ=
ρ r
3 ϵ0

=−
q r

4 π ϵ0 R3
=−

pq

4 π ϵ0 R3

E ave=Eρ=
1

4 π ϵ0 r2

4 π
3

R3
ρ r̂=− 1

4 π ϵ0

q

r2 r̂

Eρ=
1

4 π ϵ0
∫ ρ

�2 �̂ d τ  ⇒ Eq , ave=Eρ if ρ≡−
q

4 π R3
/3

Eq , ave=
1

4 π R3
/3
∫ E d τ =

3
4 π R3

−1
4 π ϵ0

∫ q

�2 �̂ d τ 

E ave≡∑
i

E qi , ave=∑
i

−p qi

4 π ϵ0 R3=−
p

4 π ϵ0 R3 ⇐ p≡∑ p qi

�⃗



  

 It all revolves around the curious fact that the average field over any sphere 

(due to the charge inside) is the same as the field at the center of a uniformly 
polarized sphere with the same total dipole moment.

 So no matter how crazy the actual microscopic charge configuration, we can 
replace it by a nice smooth distribution of perfect dipoles, if all we want is the 
macroscopic (average) field.

 The macroscopic field is certainly independent of the geometry of the 
averaging region, not limited to spherical shape.

 For a physical electric dipole, one can show  
contradicting the result of Problem 3.47.

 To correct this, inside an infinitesimal sphere for a pure electric dipole, the 
average electric field can be written as 

E ave,dip=
1

4 π
3

R3
∫

sphere

Edip d τ =0

E ave=−
p

4 π ϵ0 R3
=

1
4 π R3

/3
∫ (− p

3 ϵ0
) δ3

(r ) d τ

⇒ Edip (r )=
1

4 π ϵ0

3 ( r̂⋅p) r̂−p
r3

−
p

3 ϵ0
δ

3
(r ) ⇐ Problem 3.48

⇒ Eave,dip (0)≃
1
V
∫
V

Edip (0) d3 x= 3
4 π R3

( – p
3 ϵ0
)=− 1

4 π ϵ0

p
R3
=−

P
3 ϵ0



  

The Electric Displacement
Gauss’s Law in the Presence of DielectricsGauss’s Law in the Presence of Dielectrics
 The effect of polarization is to produce accumulations of (bound) charge, 
ρb=−∇·P within the dielectric and                  on the surface.

 Within the dielectric, the total charge density

 The integral form is a useful way to express Gauss’s law, in the context of 
dielectrics, because it makes reference only to free charges, and free charge is the 
stuff we control.

 When we put the free charge in place, a certain polarization automatically 
ensues, and this polarization produces the bound charge.

 In a typical problem, therefore, we know ρf, but we do not (initially) know ρb; 
(#) lets us go right to work with the information at hand. 

 Whenever the requisite symmetry is present, 
we can immediately calculate D by the 
standard Gauss’s law methods. 

                                                         Example 4.4

⇒ ϵ0 ∇⋅E=ρ=ρ b+ρ f =−∇⋅P +ρ f ⇒ ∇⋅(ϵ0 E +P )=ρ f

⇒ electric displacement: D≡ ϵ0 E +P ⇒ ∇⋅D=ρ f ⇒ ∮ D⋅d a=Q f enc
(#)

σb=P⋅n̂

ρ=ρb+ρ f ⇐ ρ f :  free charge



  

 It seems that we left out the surface bound charge σb in the derivation.

 We cannot apply Gauss’s law precisely at the surface of a dielectric, for here 

ρb=−∇⋅P blows up, taking the divergence of E with it.

 In fact we picture the edge of the dielectric as having some finite thickness, 
within which the polarization tapers off to 0, then there is no surface bound 

charge; ρb varies rapidly but smoothly within this “skin,” and Gauss’s law can be 

safely applied everywhere.

IdealizedPhysical



  

A Deceptive ParallelA Deceptive Parallel
 The “similar” behavior of D and E in the related equations doesn’t mean that D 

is “just like” E. 

 There is no “Coulomb’s law” for D:                                               , thus the 

conclusion is false. And the parallel between E and D is more subtle than that.

 The curl of E is always 0, but the curl of D is not always 0,

 Because ∇×D ≠ 0, D cannot be expressed as the gradient of a scalar—there is 

no “potential” for D.

 To compute D, first look for symmetry. If the problem exhibits spherical, 

cylindrical, or plane symmetry, you can get D directly from (#) by the usual 
Gauss’s law methods.

 This is because in such cases ∇×P is automatically 0.

 If the requisite symmetry is absent, you’ll have to think of another approach, 
and, in particular, you must not assume that D is determined exclusively by the 
free charge.

∇×D=ϵ0 ∇×E +∇×P=∇×P≠0 in general (&)

D (r )≠ 1
4 π
∫ �̂

�2 ρ f (r

) d τ 



  

Boundary ConditionsBoundary Conditions
 (#) tells us the discontinuity in the component perpendicular to an interface:

 (&) gives the discontinuity in parallel components:

 In the presence of dielectrics, the above 2 equations are sometimes more useful 

than the corresponding boundary conditions on E:

 In general, the following conditions are used

Dabove
∥
−D below

∥
=P above

∥
−P below

∥

Normal : Dabove

−Dbelow


=σ f

Tangential : Eabove
∥
−Ebelow

∥
=0

∮ D⋅d a=Q f enc
⇒ Dabove


−Dbelow


=σ f

E above

−E below


=
σ
ϵ0

E above
∥

−Ebelow
∥

=0



  

Linear Dielectrics 
Susceptibility, Permittivity, Dielectric ConstantSusceptibility, Permittivity, Dielectric Constant
 For nonlinear dielectrics: 

 The polarization of a dielectric ordinarily results from an electric field, which 
lines up the atomic or molecular dipoles. For many substances, the polarization is 
proportional to the field, provided E is not too strong:

 Materials that obey this relation are called linear dielectrics. E in the eqn is 

the total field; it may be due to free charges and to the polarization itself.

 If we put a piece of dielectric into an external field E0, we cannot compute P 
directly from the equation; the external field will polarize the material, and this 
polarization will produce its own field, which then contributes to the total field, 
and this in turn modifies the polarization, etc.

 The simplest approach is to begin with the displacement, at least in those cases 

where D can be deduced directly from the free charge distribution.

 In linear media 

⇒ D=ϵ E ⇐ ϵ≡ ϵ0 (1+χe) permittivity ⇒ ϵ0 :  permittivity of free space

⇒ relative permittivity ϵr=1+χe=
ϵ
ϵ0
≥1 dielectric constant

P i=∑
j
αi j E j+∑

j k
β i j k E j E k +⋯

D=ϵ0 E +P=ϵ0 E+ ϵ0 χe E=ϵ0 (1+χe)E

P= ϵ0 χe E ⇐ χe : electric susceptibility



  

 ϵr can be a function of space coordinates. If ϵr is independent of posi tion, the 

medium is said to be homogenous.

 A linear, homogeneous, and isotropic medium is called a simple medium. The 
relative permittivity of a simple medium is a constant.

 A lossy medium can be rep resented by a complex dielectric constant, whose 
imaginary part provides a mea sure of power loss in the medium and, in general, 
is frequency-dependent.

 For anisotropic materials the dielectric constant is different for different 

directions of the electric field, and D and E vectors generally have different 
directions; permittivity is a tensor.

[
Dx

Dy

Dz
]= [
ϵx x ϵx y ϵx z

ϵy x ϵy y ϵy z

ϵ z x ϵ z y ϵ z z
] [

E x

E y

E z
] ⇒ [

D
x ′

D
y ′

D
z ′
]=[
ϵ1 0 0
0 ϵ2 0
0 0 ϵ3

] [
E

x ′

E
y ′

E
z ′
] ⇐

biaxial
choosing the principal
axes to get rid of the
off-diagonal terms

⇒

D
x ′
=ϵ1 E

x ′

D
y ′
=ϵ2 E

y ′

D
z ′
= ϵ3 E

z ′

⇒
ϵ1=ϵ2

uniaxial
⇒
ϵ1= ϵ2= ϵ3
isotropic



  

Example 4.5: A metal sphere of radius a carries a charge Q. It is surrounded, out 

to radius b, by linear dielectric material of permittivity . Find the potential at the 
center (relative to infinity).

spherically
symmetric

+ ∮ D⋅d a=Q ⇒ D= Q
4 π r2

r̂ , r >a ; E=P=D=0  for r <a

⇒ E= [
Q

4 π ϵ r2 r̂ , a< r <b

Q

4 π ϵ0 r2
r̂ , r≥b

⇒

Φ=−∫
∞

0

E⋅d ℓ= ∫
0

∞

E⋅d r ⇐ d ℓ=−d r

=− ∫
∞

b Q d r
4 π ϵ0 r2

− ∫
b

a Q d r
4 π ϵ r2

− ∫
a

0

0⋅d r

=
Q

4 π
( 1
ϵ0 b

+
1
ϵ a
−

1
ϵ b
)



  

⇒ P=ϵ0 χe E=
ϵ0 χe Q

4 π ϵ r2 r̂ ⇒ ρb=−∇⋅P=0 , σb=P⋅n̂= [
ϵ0 χe Q

4 π ϵ b2 , outer
surface

−
ϵ0 χe Q

4 π ϵ a2 , inner
surface

 Although P & D are now proportional to E, it doesn’t mean that their curls, like 

E’s, vanish.

 The line integral of P around a closed path 

that straddles the boundary between one type of 
material and another need not be 0, although the integral of E around the same 

loop must be. It is because the different proportionality factor ϵ0χe on the 2 sides.

 At the interface between a polarized dielectric and the vacuum, P is 0 on one 

side but not on the other. Around this loop ∮  P · dℓ≠0, and, by Stokes’ theorem, 

∇×P cannot vanish everywhere within the loop.

 If the space is entirely filled with a homogeneous linear dielectric, this objection 
is void; in this rather special circumstance

as if D=ϵ0 Evac ⇐ E vac : electric field from the same
free charge in vacuum

⇒ E=
D
ϵ
=

Evac

ϵr

∇⋅D=ρ f & ∇×D=0



  

 When all space is filled with a homogeneous linear dielectric, the field 
everywhere is simply reduced by a factor of one over the dielectric constant.

 If a free charge q is embedded in a large dielectric, the field is

 The force exerted on nearby charges is reduced accordingly. This is because 
the polarization of the medium partially “shields” the charge, by surrounding it 
with bound charge of the opposite sign.

 A crystal is generally easier to polarize in some directions 
than in others, so the proportion is replaced by the general 
linear relation

 The 9 coefficients, χe,x x, χe,x y, ..., constitute the 
susceptibility tensor.

                                                                        Example 4.6

[
P x

P y

P z
]=ϵ0 [

χe , x x χe , x y χe , x z

χe , y x χe , y y χe , y z

χe , z x χe , z y χe , z z
] [

E x

E y

E z
]

E= 1
4 π ϵ

q

r2 r̂



  

Atomic/Molecular Polarizability and Electric SusceptibilityAtomic/Molecular Polarizability and Electric Susceptibility
 Consider the relation between mircoscopically molecular properties, ie, the 

atomic/molecular polarizability α, and the macroscopically defined parameter, 
the electric susceptibility χ e·

                                              =                                              +

 The relation holds best for dilute substances such as gases. For liquids & solids, 
the equation is only approximately valid, especially if the dielectric constant is 
large.

P= ϵ0 χe E inside ,
P
n
⇐ p=α E external ⇒ E inside=E external+(− P

3 ϵ0
) , n=

N
V

⇒
P
ϵ0 χe

=
P

n α
−

P
3 ϵ0

⇒ χe=ϵr−1=
3 n α

3 ϵ0−n α

⇒ α=
3 ϵ0

n
ϵr−1

ϵr+2
Clausius-Mossotti equation

−
P

3 ϵ0
E inside E external



  

Boundary Value Problems with Linear DielectricsBoundary Value Problems with Linear Dielectrics
 In a (homogeneous isotropic) linear dielectric, the bound charge density ρb is 

proportional to the free charge density ρf:

 Unless free charge is actually embedded in the material, ρ=0, and any net 
charge must reside at the surface. Within such a dielectric, the potential obeys 
Laplace’s equation.

 It is convenient to rewrite the boundary conditions in a way that makes 
reference only to the free charge,

ρb=−∇⋅P=−∇⋅
ϵ0 χe D
ϵ

=−
χe

1 +χe

ρ f

[
Dabove

−Dbelow


=ϵabove Eabove


− ϵbelow E below


=σ f

The potential is continuous cross the interface

⇒ ϵabove

∂ Φabove

∂ n
−ϵbelow

∂ Φbelow

∂ n
=−σ f

Φabove−Φbelow= 0



  

Example 4.7: A sphere of homogeneous linear dielectric material is placed in an 
otherwise uniform electric field E0. Find the electric field inside/outside the 
sphere.
You can compare the problem with Ex. 3.8 (uncharged conducting sphere).

To solve Laplace’s equation,

[Φin (r , θ) , r≤R
Φout (r , θ) , r≥R

,  choose Φin (r=0)=0

⇒ [
(i) Φin=Φout , at r=R

(ii) ϵ
∂ Φin

∂ r
=ϵ0

∂ Φout

∂ r
, at r= R

(iii) Φout −E0 r cos θ , for r≫ R

⇒

Φin (r , θ )= ∑
ℓ=0

∞

Aℓ r ℓ Pℓ (cos θ)

Φout (r , θ )=−E 0 r cos θ+∑
ℓ=0

∞ Bℓ
r ℓ+1

Pℓ (cos θ) ⇐ ( iii)

(i) ⇒ ∑
ℓ=0

∞

Aℓ Rℓ Pℓ (cos θ)=−E 0 R cos θ +∑
ℓ=0

∞ Bℓ
Rℓ+1 Pℓ (cos θ )

(ii) ⇒ ϵr∑
ℓ=0

∞

ℓ Aℓ Rℓ−1 Pℓ (cos θ)=−E0 cos θ−∑
ℓ=0

∞

(ℓ+1)
Bℓ

Rℓ+2
Pℓ (cos θ)



  

⇒

A1 R=−E 0 R+
B1

R2 , Aℓ Rℓ =
Bℓ

Rℓ+1 for ℓ≠1

ϵr A1=−E 0−
2 B1

R3
, ϵr ℓ Aℓ Rℓ−1

=−
ℓ+1
Rℓ+2

Bℓ for ℓ≠1

⇒ A1=−
3
ϵr +2

E 0 , B1=
ϵr−1

ϵr+2
R3 E0 , Aℓ=Bℓ=0 for ℓ≠1

⇒

Φin=−
3 E0

ϵr +2
r cos θ=−

3 E0

ϵr +2
z , E in =

3
ϵr+2

E0 ⇐ uniform

Φout=−E0 z+
ϵr−1

ϵr+2
R3

r2
E 0 cos θ , Eout=E0+

ϵr−1

ϵr+2
R3

r3
[3 ( r̂⋅E0) r̂−E0]

⇒ p induced=4 π ϵ0
ϵr−1

ϵr+2
R3 E0 ⇒ P=

p induced

V sphere

=3
ϵr−1

ϵr+2
ϵ0 E0=3 ϵ0 (E0−E in)

⇒ ρb=−∇⋅P=0 , σb=P⋅n̂=P⋅r̂=3
ϵr−1

ϵr+2
ϵ0 E0 cos θ



  

Example: A Long, Dielectric Cylinder in an Electric Field: 
Consider a long, dielectric cylinder of permittivity ϵ 
in a uniform electric field that is normal to its axis.

The “general” solution for ∇ 2 Φ=0 in the cylindrical coordinates

y

⊙z
x

ϵ

RE 0

Φ (r , ϕ)= A0 ln r + B0+∑
n=1

∞

[( An r n
+

Bn

r n ) cos n ϕ+( C n r n
+

Dn

r n ) sin n ϕ ]
(i)  Set Φin (r=0)=0 ⇒ A0=B0=0 , (ii) Φ (r , ϕ)=Φ (r ,−ϕ) ⇒ C n=Dn=0

(iii) Φout (r ∞)−E0 x=−E 0 r cos ϕ ⇒

Φin =∑
n=1

∞

An r n cos n ϕ

Φout=∑
n=1

∞ Bn

r n cos n ϕ−E 0 r cos ϕ

Boundary conditions: Φin∣r=R=Φout∣r=R , ϵ
∂ Φin

∂ r |r=R

= ϵ0
∂ Φin

∂ r |r=R

⇒

∑
n=1

∞

An Rn cos n ϕ=−E0 R cos ϕ+ ∑
n=1

∞ Bn

Rn cos n ϕ

ϵ∑
n=1

∞

n An Rn−1 cos n ϕ=−ϵ0 E 0 cos ϕ−ϵ0∑
n=1

∞

n
Bn

Rn+1 cos n ϕ



  

⇒

A1 R= −E 0 R+
B1

R
, An Rn

=
Bn

Rn for n>1

ϵ A1=−ϵ0( E 0+
B1

R2 ) , ϵ An Rn−1
=−ϵ0

Bn

Rn+1 for n>1

⇒ A1=−
2
ϵr +1

E0 , B1=
ϵr−1

ϵr+1
R2 E 0 ⇐ ϵr=

ϵ
ϵ0

, An=Bn=0 for n>1

⇒

Φin=−
2 E0

ϵr +1
r cos θ=−

2 E 0

ϵr +1
x , E in =

2
ϵr+1

E0 ⇐ uniform

Φout=−E0 x+
ϵr−1

ϵr+1
R2

r
E0 cos θ , Eout=E0+

ϵr−1

ϵr +1
R2

r2
[2 ( r̂⋅E0) r̂−E0]



  

Example: Point Charge on a Plane Interface: 
A point charge q is placed on the plane interface 
of 2 homogeneous infinite dielectrics 1 and 2 
with permittivities ϵ1 and ϵ2, respectively.

Let Φ1 and Φ2 are in region 1 and 2 

⇒ Φ1=C1
q
r
+B1 , Φ2=C2

q
r
+B2

Φ1, 2 (r ∞)=0 ⇒ B1=B2=0
The potential is continuous at the boundary ⇒ C1=C2=C ⇒ Φ1=Φ2=Φ

D=−ϵ ∇ Φ= [
ϵ1
ϵ2]C

q

r2 r̂  in region [12] + ∮
S

D⋅d a=q ⇒ C= 1
2 π (ϵ1+ ϵ2)

⇒ Φ=
1

2 π (ϵ1+ϵ2)
q
r
⇒ E= 1

2 π (ϵ1+ ϵ2)
q
r2 r̂ ⇒ D1, 2=

ϵ1, 2

2 π (ϵ1+ ϵ2)
q
r2 r̂

⇒ P i=D i−ϵ0 E=
ϵi− ϵ0

2 π (ϵ1+ ϵ2)
q

r2 r̂ , i=1, 2 ⇒ ρb=−∇⋅P=0  for r≠0

σb=P⋅n̂=0  on the interface, but σb≠0  close to the charge surface r=d  0

σb , i=P i⋅(− r̂ )=
ϵ0− ϵi

2 π (ϵ1+ϵ2)
q

d2 ⇒ qb=∫ σb d a=
2 ϵ0 q
ϵ1+ϵ2

−q ⇒

Q=q+qb

=
2 ϵ0
ϵ1+ ϵ2

q



  

Example: A Conducting Charged Sphere 
               Between 2 Dielectrics: 
Same as previous example but with a conducting 
charged sphere instead of a point charge.

The same argument leads to 

Φ= 1
2 π (ϵ1+ ϵ2)

q
r
⇒ D1, 2=

ϵ1, 2

2 π (ϵ1+ ϵ2)

q

r2
r̂

The free surface charge density

σ f , i≡− ϵi
∂ Φ
∂ r |R

=Di , r (r=R)=
ϵi

2 π (ϵ1+ ϵ2)

q

R2 , i=1, 2

⇒ Q f =∮ σ f d a=2 π R2
(σ f , 1+σ f , 2)=q

P i=D i−ϵ0 E=
ϵi− ϵ0

2 π (ϵ1+ ϵ2)
q

r2 r̂ ⇒ ρb=−∇⋅P=0  for r> R

σb=P⋅n̂=0  on the interface of the 2 media, but σb , i=P i⋅(− r̂ )=
ϵ0− ϵi

2 π (ϵ1+ ϵ2)
q

R2

⇒ qb=∫ σb d a=2 π R2
(σb , 1+σb , 2)=( 2 ϵ0

ϵ1+ ϵ2
−1) q

⇒ Total charge Q=q+qb=
2 ϵ0
ϵ1+ϵ2

q ⇐ giving the screening effect where the
total charge appears to be less than q

qR



  

E z , q=
−1

4 π ϵ0

q cos θ

r2
+ d2 =

−1
4 π ϵ0

q d

(r2
+d2

)
3 /2

E z , σ=−
σb

2 ϵ0
⇒ σb=ϵ0 χe E z=− ϵ0 χe( 1

4 π ϵ0

q d

(r2
+ d2

)
3/2 +

σb

2 ϵ0
)

⇒ σb=−
1

2 π

χe

χe+2
q d

(r2
+d2

)
3/2

⇒ qb=∫ σb d a=−
χe

χe+2
q total

bound charge

⇒ Eσ=
1

4 π ϵ0
∫ �̂

�2
σb d a ⇒ Eσ (x= d ẑ )=− 1

4 π ϵ0

χe

χe+2
q

4 d2
ẑ

⇒ F=− 1
4 π ϵ0

χe

χe+2
q2

4 d2
ẑ

Problem 4.8: Suppose the entire region below the plane 
z=0 in the figure is filled with uniform linear dielectric 
material of susceptibility χe. Calculate the force on a 

point charge q situated a distance d above the origin.

Ez is from (1) q and (2) σb; E z=E z , q+E z , σ

ρb=−∇⋅P ∝ ∇⋅D=ρ f=0
σb=P⋅n̂=P z= ϵ0 χe E z (r , z=0–)



  

x=d ẑ , x =r=r (cos θ x̂ + sin θ ŷ ) ⇒ �⃗= x− x =d ẑ−r

⇒ �2
=r2

+d 2 , �̂=
d ẑ−r

√r2
+d 2

, and σb=−
1

2 π

χe

χe+2
q d

(r2
+d2

)
3/2

⇒ ∫ �̂

�2 σb d a=−
χe q

2 π (χe+2)
∫

0

∞

∫
0

2 π d ẑ−r
(r2
+d 2

)
3/2

d

(r2
+d2

)
3/2 r d θ d r

=−
χe q d 2 ẑ
χe+2

∫
0

∞
d r2

2 (r2
+d2

)
3=−

χe q d2 ẑ
2 (χe+2)

∫
0

∞
d (r2

+ d2
)

(r2
+d2

)
3

=−
χe q d 2 ẑ
2 (χe+2)

⋅(− 1
2
)⋅ 1
(r2
+ d2

)
2|

0

∞

=
χe q d2 ẑ
4 (χe+2)

( 1
∞

4
−

1
d4
)=− χe

χe+2
q

4 d 2
ẑ



  

Φ= [
1

4 π ϵ0
( q

√r2
+(z−d )2

+
q

√r2
+(z+d )2

) for z>0

1
4 π ϵ

q″

√r2
+(z−d )2

, where ϵ= ϵr ϵ0 for z<0

⇒

Dz (r , 0)=Dz (r , 0–)
E r (r , 0)=E r (r , 0–)

boundary condition

⇒
ϵ0 E z (r , 0)=ϵ E z (r , 0–)

E r (r , 0)= E r (r , 0–)
⇒
− ϵ0 ∂z Φ (r , 0)=− ϵ ∂ zΦ (r , 0–)
− ∂r Φ (r , 0)=− ∂r Φ (r , 0–)

⇒ q−q=q″

ϵr (q+ q)=q″

⇒ q=qb , q″=2
χe+1

χe+2
q ⇒ F= 1

4 π ϵ0

q qb

(2 d )2
ẑ=− 1

4 π ϵ0

χe

χe+2
q2

4 d2
ẑ

As in the conducting plane, it is nicer to use the method 
of images. If we replace the dielectric by a single point 

charge q at the image position (r=0,−d), from the area 

z>0, and q″ at (r=0,+d) from the area z<0, then

Selected problems: 9, 10, 13, 15, 21, 24, 38

d
q

ϵ

d

q″ϵ0
q

z<0

d z>0



  

q

d

ϵ0

ϵ



  

Energy in Dielectric SystemsEnergy in Dielectric Systems
 It takes work to charge up a capacitor:

 If the capacitor is filled with linear dielectric, its capacitance exceeds the 
vacuum value by a factor of the dielectric constant,

 The work necessary to charge a dielectric-filled capacitor is increased by the 
same factor. You have to pump on more (free) charge, to achieve a given 
potential, because part of the field is canceled off by the bound charges.

 A general stored energy formula for electrostatic systems:

 For the linear-dielectric-filled capacitor the formula should be changed to

Proof: As ρf is increased by an amount δρf, the work done on the incremental

free charge is

C=ϵr Cvac

δ W=∫ Φ δ ρ f d τ=∫ Φ ∇⋅δ D d τ ⇐ ∇⋅D=ρ f , δ ρ f =∇⋅δ D , D= ϵ E

=∫ ∇⋅(Φ δ D ) d τ +∫ E⋅δ D d τ ⇐ Φ ∇⋅δ D=∇⋅(Φ δ D)−∇ Φ⋅δ D

=δ ( 1
2
∫ D⋅E d τ ) ⇐ δ D⋅E= ϵ δ E⋅E= 1

2
δ (ϵ E2

)=
1
2
δ (D⋅E )

W=
1
2

C V 2

W=
ϵ0

2
∫ E 2 d τ (*)

W=
1
2
∫ ϵ E2 d τ=

ϵ0

2
∫ ϵr E2 d τ ⇒ W=

1
2
∫ D⋅E d τ (@)



  

 The energy of a system here is the work required to assemble the system.

 When dielectrics are involved, there are 2 quite different ways one might 
construe this process:

1. Bring in all the charges (free and bound) and fix each one in its final location.
    Then Eq. (*) is the formula of energy to assemble the system. But this won’t 
    include the work needed in stretching and twisting the dielectric molecules.

2. With the unpolarized dielectric, bring in the free charges & allow the dielectric 
    to respond as it fits. Then Eq. (@) is the formula of energy to  assemble the 
    system. In this case the “spring” energy is included because the force applied
    to the free charge depends on the disposition of the bound charge.

Example 4.9: A sphere of radius R is filled with material of dielectric constant ϵr
and uniform embedded free charge ρf. What is the energy of this configuration?

 The purely electrostatic energy (*) is

∮ D⋅d a=Q f env

ρ f=
Q f

4 π R3
/3

⇒ D (r )=

ρ f

3
r r̂ , r <R

ρ f

3
R3

r2 r̂ , r≥R
⇒ E (r )=

ρ f

3 ϵ0 ϵr

r r̂ , r< R

ρ f

3 ϵ0

R3

r2
r̂ , r≥R

W 1=
ϵ0

2 [(
ρ f

3 ϵ0 ϵr

)
2

∫
0

R

r2 4 π r2 d r +( ρ f R3

3 ϵ0
)

2

∫
R

∞
4 π r2

r4
d r ]= 2 π

9 ϵ0
ρ f

2 R5 5 ϵr
2
+1

5 ϵr
2



  

W 2=
1
2
( ρ f

3

ρ f

3 ϵ0 ϵr
∫

0

R

r2 4 π r2 d r +
ρ f R3

3

ρ f R3

3 ϵ0
∫

R

∞
4 π r2

r4 d r )
=

2 π
9 ϵ0
ρ f

2 R5 5 ϵr+1

5 ϵr

>W 1 ⇐ ϵr >1

 The total 
energy (@):

Bring in d q, filling out the sphere layer by layer. When we have reached radius r,

 This increases the radius (r ):                                , so the total work done, in 

going from r =0 to r =R, is 

E (r)=

ρ f

3 ϵ0 ϵr

r r̂ , r <r 

ρ f

3 ϵ0 ϵr

r  3

r2 r̂ , r <r <R

ρ f

3 ϵ0

r  3

r2 r̂ , r≥R

⇒

work to bring d q  in from ∞  to r

d W=−d q( ∫
∞

R

E⋅d ℓ+ ∫
R

r ′

E⋅d ℓ )

=− d q ( ρ f r  3

3 ϵ0
∫

∞

R
d r
r2
+
ρ f r  3

3 ϵ0 ϵr

∫
R

r ′

d r
r2
)

=
ρ f r  3

3 ϵ0 [
1
R
+

1
ϵr
( 1

r 
−

1
R
)] d q

d q=ρ f 4 π r 2 d r

W=∫ d W=
4 π ρ f

2

3 ϵ0
( ϵr−1

R ϵr

∫
0

R

r 5 d r +
1
ϵr
∫

0

R

r  4 d r )= 2 π
9 ϵ0
ρ f

2 R5 5 ϵr+1

5 ϵr

=W 2

⇒
energy stored
in the springs

W spring=W 2−W 1=
2 π

45 ϵ ϵr

ρ f
2 R5

(ϵr−1) ⇐ ϵ≡ ϵr ϵ0



  

To confirm this in an explicit model, imagine the dielectric as a collection of tiny 
proto-dipoles, each consisting of +q & −q attached to a spring of constant k and 
equilibrium length 0, so without any field the positive & negative ends coincide. 
With the field turned on, the electric force is balanced by the spring force

 To get Eq (@), linearity is necessasry. For nonlinear dielectrics, the eqn is false.

 For dissipative systems the whole notion of “stored energy” loses its meaning, 
because the work done depends not only on the final configuration but on how it 
got there.

 If the molecular “springs” are allowed to have some friction, then Wspring can be 
made as large as you like.

q E=k d ⇐ E=
ρ f

3 ϵ
r ⇒ k=

ρ f

3 ϵ d2
P r d τ ⇐ p=q d=P d τ

⇒ d W spring=
1
2

k d2
=
ρ f

6 ϵ
P r d τ ⇒ W spring=

ρ f

6 ϵ
∫ P r d τ

P= ϵ0 χe E= ϵ0 χe

ρ f

3 ϵ
r=
ϵr−1

3 ϵr

ρ f r ⇐ ϵ= ϵr ϵ0

⇒ W spring=
ρ f

6 ϵ

(ϵr−1) ρ f

3 ϵr

4 π ∫
0

R

r4 d r= 2 π
45 ϵ ϵr

ρ f
2 R5

(ϵr−1)



  

Forces on DielectricsForces on Dielectrics
 A dielectric is attracted into 

an electric field, for the bound 
charge tends to accumulate 
near the free charge of the 
opposite sign.

 Consider the case of a slab 
of linear dielectric material, 
partially inserted between the 
plates of a parallel-plate capacitor.

 Ideally the field is uniform inside a parallel-plate capacitor, and 0 outside. If 
this were true, there would be no net force on the dielectric. A fringing field 
around the edges is responsible for the effect.

 The field could not terminate abruptly at the edge 

of the capacitor, for if it did, the line integral of E 
around the closed loop would not be 0.

 It is this nonuniform fringing field that pulls the
dielectric into the capacitor.

 If the dielectric is pulled out an distance dx 

d W a=Fapp d x=−F d x ⇒ F=−
d W a

d x



  

d W a=Fapp d x+V d Q ⇒ F=−
d W a

d x
+V

d Q
d x

=−
V 2

2
d C
d x

+V 2 d C
d x

=
V 2

2
d C
d x

 The − sign shows the force to −x way; the dielectric is pulled into the capacitor.

 It is a common error to use the eqn with V constant, rather than the one with Q 

constant, in computing the force,

 It is possible to maintain the capacitor at a fixed potential, by connecting it up 

to a battery. But in that case the battery also does work as the dielectric moves;

 The force on the dielectric cannot depend on whether you hold Q constant or V 
constant—it is determined entirely by the distribution of charge, free and bound.

 We are able to determine the force without knowing anything about the fringing 
fields that are ultimately responsible for it, by ∇×E=0.

 The energy stored in the fringing fields themselves stays constant, as the slab 
moves; what does change is the energy well inside the capacitor, where the field 
is nice and uniform.

C=ϵ0
w x
d
+ ϵ

w (ℓ− x )
d

=
ϵ0 w

d
(ϵr ℓ−χe x ) , W a=

1
2

C V 2
=

1
2

Q2

C

⇒ F=−
d W a

d x
=

Q2

2 C2

d C
d x

=
V 2

2
d C
d x

=−
ϵ0 χe w

2 d
V 2

⇐
d C
d x

=−
ϵ0 χe w

d

F=−
V 2

2
d C
d x

⇐
wrong sign in computing
total force by the system



  

Example: Force on Plates of Parallel Capacitor  ― Constant Charge:  

1:

2: Consider a small virtual displacement dz of the upper plate of the capacitor 

while keeping Q constant (the system isolated).

−F z d z⇐−d W=+d U=U (z+d z)−U (z)=
Q2

2
( 1

C (z+d z)
−

1
C (z)

)
=

Q2

2
( z+d z
ϵ0 A

−
z
ϵ0 A

)= Q2

2 ϵ0 A
d z

⇒ F z=−
Q2

2 ϵ0 A
 the same

Q=const ⇒ U=W a=
Q2

2 C
⇐ C=ϵ0

A
z

⇒ F z≡−
d U
d z |Q

=−
Q2

2
d

d z
1
C
=−

Q2

2 ϵ0 A



  

Example: Force on Plates of Parallel Capacitor  ― Constant Charge:  

1:

2: Consider a small virtual displacement dz of the upper plate of the capacitor 

while keeping Q constant (the system isolated).

V 2

2
d C ⇐ d U=−F z d z+V d Q=−F z d z+V 2 d C

⇒ F z=
V 2

2
d C
d z

 as derived before

V =const ⇒ U=W a=
1
2

C V 2
⇐ C=ϵ0

A
z

⇒ F z≡
d U
d z |V

=
V 2

2
d C
d z
=

V 2

2
(− ϵ0 A

z2
)=− C2 V 2

2 ϵ0 A
=−

Q2

2 ϵ0 A



  

Problem 4.28: 2 long coaxial cylindrical metal tubes (inner 
radius a, outer radius b) stand vertically in a tank of 

dielectric oil (susceptibility χe, mass density ρ). The inner 

tube is maintained at V, the outer one is grounded. To what 
height (h) does the oil rise, in the space between the tubes?

To find the capacitance C as a function of h out of L

Eair=
λair

2 π ϵ0 r
, E oil=

λoil

2 π ϵ r

⇒ V=
λair

2 π ϵ0
ln

b
a
=
λoil

2 π ϵ
ln

b
a

⇒ Coil=
2 π ϵ h

ln b− ln a
, C air=

2 π ϵ0 (L−h)
ln b− ln a

⇒ C=C air+Coil=2 π
ϵ0 (χe h+ L)
ln b− ln a

⇒ F=
V 2

2
d C
d h

=
π ϵ0 χe V 2

ln b− ln a
=−F app=−F m g=ρ π (b

2
−a2

) h g

⇒ h=
ϵ0 χe V 2

ρ g (b2
−a2

) (ln b− ln a)
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