
  

Chapter 3Chapter 3 Potentials

IntroductionIntroduction
 The primary task of electrostatics is to find the electric field of a given 

stationary charge distribution:

 Unfortunately, integrals of this type are difficult to calculate for except the 
simplest charge configurations. So the best strategy is to calculate the potential,

 Even this integral is not easy to handle analytically. Moreover, in problems 
involving conductors, charge is free to move around, the only certain thing is the 
total charge of each conductor.

 It is fruitful to recast the problem in 
differential form, ie, Poisson’s equation,

 We are often interested in finding the potential in a region where ρ=0. In this 
case, Poisson’s equation reduces to Laplace’s equation:

 Its solutions are called harmonic functions.
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Laplace’s Equation in 1dLaplace’s Equation in 1d

 It contains 2 undetermined constants (m & b), 
as is appropriate for a 2nd-order (ordinary) 
differential equation.

 2 features of this result:

1. Φ(x) is the average of Φ(x+a) and Φ(x−a), for any a:

 Laplace’s equation is a kind of averaging instruction; it tells you to assign to 
the point x the average of the values to the left and to the right of x.

2. Laplace’s equation tolerates no local maxima or minima; extreme values of Φ 
must occur at the end points.

 If there were a local maximum, Φ would be greater at that point than on either 
side, and therefore could not be the average.

 One expects the 2nd derivative to be negative at a maximum and positive at a 
minimum. Since Laplace’s equation requires, on the contrary, that the 2nd 
derivative is 0, it seems reasonable that solutions should exhibit no extrema.
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Laplace’s Equation in 2dLaplace’s Equation in 2d

 Harmonic functions (the solution) in 2d have the 
same properties in 1d:

1. The value of Φ at a point (x, y) is the average 

of those around the point.

 Draw a circle of any radius R about the point (x, y), the average value of Φ on 

the circle is equal to the value at the center:

 This suggests the method of relaxation for computing: Start with specified 
values for Φ at the boundary, and guesses for Φ on a grid of interior points, then 
reassign to each point the average of its nearest neighbors iteratively until it 
forms a numerical solution to Laplace’s equation.

2. Φ has no local maxima or minima; all extrema occur at the boundaries.

 From a geometrical point of view, just as a straight line is the shortest distance 
between 2 points, so a harmonic function in 2d minimizes the surface area 
spanning the given boundary line. 
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Laplace’s Equation in 3dLaplace’s Equation in 3d
 The same 2 properties of the solutions remain true:

1. Mean value theoremMean value theorem: The value of Φ at r is the average 

value of Φ over a spherical surface of radius R centered at r:

2. As a consequence, Φ has no local maxima or minima; 
the extreme values of Φ must occur at the boundaries.

Proof: find the average Φ over a spherical surface of R due to a point charge q 

located outside the sphere:

exact the potential due to q at the center of the sphere! By the superposition 

principle, the same goes for any collection of charges outside the sphere: their 
average potential over the sphere is equal to the net potential at the center.
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Boundary Conditions and Uniqueness TheoremsBoundary Conditions and Uniqueness Theorems
 Laplace’s equation does not by itself determine Φ; in addition, suitable 

boundary conditions must be supplied.

 What are appropriate boundary conditions, sufficient to determine the answer 
and yet not so strong as to generate inconsistencies?

 The proof that a proposed set of boundary conditions will suffice is usually 
presented in the form of a uniqueness theorem.

11stst uniqueness theorem uniqueness theorem: (Dirichlet boundary conditions): (Dirichlet boundary conditions)
The solution to Laplace’s equation in some volume The solution to Laplace’s equation in some volume V is uniquely determined if  is uniquely determined if Φ  
is specified on the boundary surface is specified on the boundary surface S.. 

Proof: Suppose there were 2 solutions to Laplace’s eqn:

But Laplace’s equation allows no local maxima or minima
—all extrema occur on the boundaries,
                                                                                                         Example 3.1
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 It doesn’t matter how you come by your solution; if (a) it satisfies Laplace’s 
equation and (b) it has the correct value on the boundaries, then it’s right.

 If there was some charge inside the region in question, in which case Φ obeys 
Poisson’s equation, the argument is the same,

CorollaryCorollary::
The potential in a volume The potential in a volume V is uniquely determined if is uniquely determined if
(a) the charge density throughout the region, and (a) the charge density throughout the region, and 
(b) the value of (b) the value of Φ on all boundaries,  on all boundaries, 
are specified.are specified.
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Conductors and the 2Conductors and the 2ndnd Uniqueness Theorem Uniqueness Theorem
 The simplest way to set the boundary conditions for an electrostatic problem is 

to specify the value of Φ on all surfaces surrounding the region of interest.

 In the laboratory, we have conductors connected to batteries, which maintain a 
given potential, or to ground for Φ=0.

 There are other circumstances in which we do not know the potential at the 
boundary, but rather the charges on various conducting surfaces.

 Assume there is some specified charge density ρ in the region between the 
conductors. Is the electric field now uniquely determined? Or are there a number 
of different ways the charges could arrange themselves on their respective 
conductors, each leading to a different field?

22ndnd uniqueness theorem uniqueness theorem: (Neumann boundary condition): (Neumann boundary condition)
In a volume In a volume V surrounded by conductors and containing a specified charge  surrounded by conductors and containing a specified charge 
density density ρ, the electric field is uniquely determined if the total charge on each , the electric field is uniquely determined if the total charge on each 
conductor is given.conductor is given.

Proof: Suppose there are 2 fields satisfying the conditions of the problem. Both
obey Gauss’s law in the space between the conductors:

∇⋅E=
ρ

ϵ0
, ∇⋅E

=
ρ
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And both obey Gauss’s law for a Gaussian surface enclosing 
each conductor:

For the outer boundary

We don’t know how the charge Qi distributes itself over the i th conductor, but we 

do know that each conductor is an equipotential, and hence Φ″ is a constant over 

each conducting surface.

∮
outer

boundary

E⋅d a=
Q tot

ϵ0
, ∮

outer
boundary

E 
⋅d a=

Qtot

ϵ0

Let E″≡E
−E ⇒ ∇⋅E″=0 , ∮ E″⋅d a=0

∇⋅(Φ″ E″)=Φ″ ∇⋅E″+E″⋅∇ Φ″=−E″ 2
⇐ E″=−∇ Φ″

⇒ − ∫
V

E″ 2 d τ ⇐ ∫
V

∇⋅(Φ″ E″) d τ= ∮
S

Φ″ E″⋅d a

Φi
″
=const ⇒ ∮

S

Φ″ E″⋅d a=∑Φi
″ ∮

S i

E″⋅d a=0 ⇒ ∫
V

E″ 2 d τ=0

⇒ E ″=0   everywhere ⇒ E=E

∮
i th  conducting

surface

E⋅d a=
Qi

ϵ0
, ∮

i th  conducting
surface

E
⋅d a=

Qi

ϵ0



  

 Consider Purcell’s example: 4 conductors with charges ±Q, situated so that the 
plusses are near the minuses. what happens if we join them in pairs, by tiny 
wire?

 One might guess that nothing will happen—the configuration looks stable. But 
it’s wrong and impossible.

 For there are now 2 conductors, and the total charge on each is 0. One possible 
way to distribute 0 charge over these conductors is to have no accumulation of 
charge anywhere, and hence 0 field everywhere.

 By the 2nd uniqueness theorem, this must be the solution: The charge will flow 
down the tiny wires, canceling itself off. 



  

The Method of Images
The Classic Image ProblemThe Classic Image Problem
 A point charge q is held a distance d above an infinite 

grounded conducting plane. What is the potential in the 
region above the plane? 

 Our problem is to solve Poisson’s eqn in the region 
z>0, with a single point charge q at (0, 0, d), subject to 
the boundary conditions:
                                          1. Φ=0 when z=0 (the conducting plane is grounded),

                                          2. Φ0 far from the charge (for x 2+y 2+z 2≫d 2.)

 The 1st uniqueness theorem guarantees that there is only one function that 
meets these requirements.

 Consider a completely different situation. This new configuration

consists of 2 point charges, +q at (0, 0, d) and −q at (0, 0,−d), and 
no conducting plane
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 It follows: 1. Φ(z=0)=0, 2. Φ0 for x 2+y 2+z 2≫d 2; and the only charge in the 

region z>0 is the point charge q at (0,0,d). But these are precisely the conditions 
of the original problem!

 Evidently the 2nd configuration happens to produce exactly the same potential 
as the 1st configuration, in the “upper” region z≥0. So the potential of a point 

charge above an infinite grounded conductor is given by ($) for z≥0.

 The uniqueness theorem plays crucial role here: without it, no one would 
believe this solution, since it was obtained for a completely different charge 
distribution. But the theorem certifies it: If it satisfies Poisson’s equation in the 
region of interest, with the correct value at the boundaries, then it must be right.

−q

  z=0 
plane

q



  

Induced Surface ChargeInduced Surface Charge
 Knowing the potential, it is straightforward to 

compute the surface charge induced on the 
conductor:

 As expected, the induced charge is negative (assuming q is positive) and 

greatest at x=y=0.

 The total induced charge 

 q is attracted toward the plane, because of the negative induced charge.
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Force and EnergyForce and Energy
 Since the potential around q is the same as in the image problem (with q & −q 

but no conductor), so also is the field, and the force:

 Energy is not the same in the 2 problems. With the 2 point charges and no 

conductor,                              . But for a single charge and conducting plane, the 

                                                 energy is half of this: 

 For                                                     , in the image case, both the upper region

 (z>0) and the lower region (z<0) contribute—and by symmetry they contribute 
equally. But in the original case, only the upper region contains a nonzero field, 
and hence the energy is half as great.

 One could also determine the energy by calculating the work required to bring 
q in from ∞ 

 As I move q toward the conductor, I do work only on q, not on the conductor. By 
contrast, if I bring in 2 point charges, I do work on both of them, and the total is 
twice as great.
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Other Image ProblemsOther Image Problems
 Any stationary charge distribution near a grounded conducting plane can be 

treated in the same way, by introducing its mirror image—hence the name 
method of images.

 The image charges have the opposite sign; this is what guarantees that the xy 
plane will be at potential 0.

Example 3.2: q is situated a distance a from the center 
of a grounded conducting sphere of radius R. Find the 
potential outside the sphere. 

 Consider the completely different configuration, consisting of q with another 

point charge                    placed a distance             from the sphere center.

It fits the boundary conditions for our original 
problem, in the exterior region.

 b<R, so the “image” charge q is safely inside 
the sphere—you cannot put image charges in 
the region where you are calculating Φ.
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Try to find q  and b
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 The induced surface charge on the sphere

 The key of the method of images is to figure out 
the right “auxiliary” configuration, and for most 
shapes this is forbiddingly complicated, if not 
Impossible.

 Other cases:
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Separation of Variables
 The separation of variables method is applicable in circumstances where the 

potential (Φ) or the charge density (σ) is specified on the boundaries of some 
region, and we are asked to find the potential in the interior.

 The basic strategy is very simple: We look for solutions that are products of 
functions, each of which depends on only one of the coordinates.

Cartesian CoordinatesCartesian Coordinates

Example 3.3: 2 infinite grounded metal 
plates lie parallel to the xz-plane, at

y=0 and at y=a. The left end, 
at x=0, is closed off with an 
infinite strip insulated from 
the 2 plates, and maintained at a 
specific potential Φ0(y). Find the     potential inside this “slot.”

The configuration is                 independent of z, so this is really a 2d problem:

                              subject to the boundary conditions,

                               (i)  Φ=0       when y=0,   (ii)  Φ=0 when y=a,
                              (iii) Φ=Φ0(y) when x=0,   (iv) Φ0 as      x∞.
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(iv), although not explicitly stated in the problem, is necessary on physical 
grounds: as it gets farther and farther away from the strip at x=0, Φ0.

Since the potential is specified on all boundaries, the answer is uniquely 
determined.
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⇒ ∑
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∫
0

2 π

sin m x sin n x d x= [π δm n  for m , n≠0
0     for m= n=0

∫
0

2 π

cos m x cos n x d x=[π δm n  for m , n≠0
2 π    for m= n=0

∫
0

2 π

sin m x cos n x d x=0



  

 The success of this method hinged on 2 extraordinary properties of the 
separable solutions: completeness and orthogonality.

 A set of functions fn(y) is said to be complete if any other function f(y) can be 

expressed as a linear combination of them:

               ’s are complete on the interval 0≤y≤a.

 It is guaranteed by Dirichlet’s theorem that the solution can be obtained, given 
the proper choice of the coefficients Cn.

 A set of functions is orthogonal if the integral of the product of any 2 different 

members of the set is 0:

 The sine functions are orthogonal. this is the property 
allowing to solve for the coefficients Cn.

Example 3.4: 2 infinitely-long grounded metal plates 
at y=0 and y=a, are connected at x=±b by metal 
strips maintained at a constant potential Φ0. Find 
the potential inside the resulting rectangular pipe.

∫
0

a

f n ( y) f n (y ) d y=0 for n
≠ n

sin
n π y

a

f (y )=∑
n=1

∞
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Independent of z,                             subject to the boundary conditions,

(i) Φ=0 when y=0, (ii) Φ=0 when y=a, (iii) Φ=Φ0 when x=±b,

∂
2Φ

∂ x2 +
∂

2Φ

∂ y2 =0

Φ (x , y)=(A ek x
+B e− k x

) (C sin k y+D cos k y)

=cosh k x (C sin k y+D cos k y) ⇐ [Φ ( x , y )=Φ (− x , y ) symmetric
ek x

+ e− k x
=2 cosh k x

=C cosh
n π x

a
sin

n π y
a

⇐ D=0 , k=
n π
a

⇒ Φ (x , y )=∑
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∞

C n cosh
n π x

a
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a

general solution

⇒ Φ (b , y)=∑
n=1

∞

C n cosh
n π b

a
sin

n π y
a

=Φ0

⇒ Cn cosh
n π b

a
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π
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n π x
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a
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a
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Example 3.5: An infinitely long rectangular metal pipe 
(sides a & b) is grounded, but one end, at x=0, is 

maintained at a specified potential Φ0(y,z). 
Find the potential inside the pipe.

A 3d problem,

subject to the boundary conditions
                 (i) Φ=0 when y=0,   (ii) Φ=0 when y=a, 
                 (iii) Φ=0 when z=0, (iv) Φ=0 when z=b, 

                 (v) Φ0 as x∞,     (vi) Φ=Φ0(y,z) when x=0

∂
2Φ

∂ x2 +
∂

2Φ

∂ y2 +
∂

2 Φ

∂ z2 =0

Φ (x , y , z)=X (x ) Y (y ) Z (z) ⇒
1
X
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1
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1
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+ ℓ2 x+B e−√ k2

+ ℓ2 x , Y =C sin k y+D cos k y , Z=E sin ℓ z+F cos ℓ z
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2
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⇒ Φ (x , y , z)=∑
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Φn m=∑
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∞

∑
m=1

∞
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a
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m π z
b

=Φ0 (y , z)

⇒ ∑
n=1

∞

∑
m=1

∞

Cn m ∫
0

a

sin
n π y

a
sin

n
π y
a

d y ∫
0

b

sin
m π z

b
sin

m
π z
b

d z

= ∫
0

a

∫
0

b

Φ0 (y , z) sin
n
π y
a

sin
m
π z
b

d y d z

⇒ C n m=
4

a b
∫

0

a ∫
0

b

Φ0 (y , z) sin
n π y

a
sin

m π z
b

d y d z

If Φ0 (y , z)=Φ0=const

⇒ Cn m=
4 Φ0

a b
∫

0

a

sin
n π y

a
d y ∫

0

b

sin
m π z

b
d z= [

0 , if n  or m  is even
16 Φ0

m n π2 , if n  and m  are odd

⇒ Φ (x , y , z)=
16 Φ0

π
2 ∑

n , m=1,3,5⋯

e
− π x √( n

a
)2

+( m
b
)2

n m
sin

n π y
a

sin
m π z

b



  

Spherical CoordinatesSpherical Coordinates
 For round objects, spherical coordinates are more natural.

 Assume the problem has azimuthal symmetry, so that Φ is independent of ϕ

 The solutions of Θ are Legendre polynomials in the variable cos θ.

 Pℓ(x) is most conveniently defined by the Rodrigues formula:

⇒
∂

∂ r
( r2 ∂ Φ

∂ r
)+ 1

sin θ
∂

∂ θ
( sin θ

∂ Φ
∂ θ
)=0

Φ (r , θ)= R (r) Θ (θ) ⇒
1
R

d
d r
( r2 d R

d r
)+ 1

Θ sin θ
d

d θ
( sin θ

d Θ
d θ
)=0

⇒
1
R

d
d r
( r2 d R

d r
)= ℓ (ℓ+1) ,

1
Θ sin θ

d
d θ
( sin θ

d Θ
d θ
)=− ℓ (ℓ+1)

d
d r
( r2 d R

d r
)= ℓ (ℓ+1) R

d
d θ
( sin θ

d Θ
d θ
)=− ℓ (ℓ+1) Θ sin θ

⇒ [R (r )= A r ℓ+
B

r ℓ+1

Θ (θ )=Pℓ (cos θ)

Pℓ ( x)≡ 1
2ℓ ℓ!

d ℓ

d xℓ
(x2

−1)ℓ

1
r2

∂

∂ r
( r2 ∂ Φ

∂ r
)+ 1

r2 sin θ

∂

∂ θ
( sin θ

∂ Φ
∂ θ
)+ 1

r2 sin2
θ

∂
2Φ

∂
2
ϕ
=0



  

Recursion Relation:
(ℓ+1) P ℓ+1 ( x)=(2 ℓ+1) x P ℓ ( x)− ℓ P ℓ−1 (x )



  

 Pℓ(x) is (as the name suggests) an ℓ th-order polynomial in x; it contains only 

even powers, if ℓ is even, and odd powers, if ℓ is odd. And  Pℓ(1)=1 for all ℓ.

 The Rodrigues formula works only for nonnegative integer values of ℓ. And it 
provides us with only 1 solution. A 2nd-order differential equation should possess 
2 independent solutions, for every value of ℓ.

 It turns out that the other solutions blow up at θ=0 and/or θ=π, and are 
unacceptable on physical grounds.

 For instance, the 2nd solution for ℓ=0 is

 Φℓ (r , θ)=( A r ℓ+
B

r ℓ+1
) P ℓ (cos θ ) for each ℓ

⇒ general
solution

Φ (r , θ)=∑Φℓ (r , θ)=∑
ℓ=0

∞ ( Aℓ r ℓ+
Bℓ

r ℓ+1 ) P ℓ (cos θ)

P0 ( x )=1 , P1 ( x )= x , P2 ( x )=
3 x2

−1
2

P3 ( x )=
5 x3

−3 x
2

, P4 ( x)=
35 x4

−30 x2
+3

8
, P5 (x )=

63 x5
−70 x3

+15 x
8

Θ (θ )= ln tan θ
2



  

1
sin θ

d
d θ
( sin θ

d P
d θ
)+ ℓ (ℓ+1) P=0 ⇒

d
d x [(1− x2

)
d P (x )

d x ]+ ℓ (ℓ +1) P ( x )=0 ⇐ x=cos θ

∫
−1

1

P
ℓ
′ [ d

d x
( (1− x2

)
d P ℓ
d x
)+ ℓ (ℓ +1) P ℓ] d x=0

⇒ ∫
−1

1 ( ( x2
−1)

d Pℓ
d x

d Pℓ

d x
+ ℓ (ℓ +1) P ℓ Pℓ) d x=0 ⇐ integration by parts

ℓ↔ ℓ ⇒ [ℓ (ℓ+1)− ℓ (ℓ+1)] ∫
−1

1

Pℓ Pℓ d x=0 ⇒ ∫
−1

1

Pℓ (x ) P ℓ (x ) d x=0  for ℓ≠ ℓ

Use Rodrigues' formula to determine the value for ℓ= ℓ

N ℓ≡ ∫
−1

1

Pℓ
2
( x ) d x=

1
4 ℓ (ℓ!)2

∫
−1

1 ( d ℓ

d x ℓ
( x2

−1)ℓ )( d ℓ

d x ℓ
( x2

−1)ℓ ) d x

=
(−1)ℓ

4 ℓ (ℓ!)2
∫

−1

1

(x2
−1)ℓ

d2 ℓ

d x2 ℓ
( x2

−1)ℓ d x=
(2 ℓ)!

4 ℓ (ℓ!)2
∫

−1

1

(1− x2
)
ℓ d x ⇐

   integration by parts
+ direct differentiation

(1− x2
)
ℓ
=(1− x2

) (1− x2
)
ℓ−1

=(1− x2
)
ℓ−1

+
x

2 ℓ
d

d x
(1− x2

)
ℓ

⇒ N ℓ=
2 ℓ−1

2 ℓ
N ℓ−1+

(2 ℓ−1)!

4ℓ (ℓ!)2
∫

−1

1

x d (1− x2
)
ℓ
=

2 ℓ−1
2 ℓ

N ℓ−1−
1

2 ℓ
N ℓ ⇐ integration

by parts

⇒ (2 ℓ+1) N ℓ=(2 ℓ−1) N ℓ−1=⋯=(2⋅0+1) N0 ⇒ N ℓ=
2

2 ℓ+1
⇐ N 0=2 ⇐ P0=1

⇒ ∫
−1

1

P ℓ ( x) Pℓ ( x ) d x=
2

2 ℓ+1
δ ℓ ℓ orthogonality condition

Proof for OrthogonalityProof for Orthogonality



  

Example 3.6 & 3.7: The potential Φ0(θ) is specified on the surface of a hollow 

sphere, of radius R. Find the potential inside and outside the sphere.

Inside the sphere, all Bℓ=0 —otherwise the potential would blow up at the origin; 

Outside the sphere Aℓ=0 for all ℓ, or else Φ would not go to 0 at ∞,

The Legendre polynomials (like the sines) constitute a complete set of orthogonal 
functions, on the interval −1≤x≤1 (0≤θ≤π),

⇒ ∫
−1

1

Pℓ ( x ) Pℓ ( x ) d x= ∫
0

π

Pℓ (cos θ ) Pℓ (cos θ) sin θ d θ= 2
2 ℓ+1

δℓ ℓ

⇒ [
A
ℓ
′ Rℓ

′

B
ℓ′

Rℓ
′
+1 ] 2

2 ℓ+1
= ∫

0

π

Φ0 (θ) P
ℓ′
(cos θ) sin θ d θ

⇒ [AℓBℓ ]=
2 ℓ+1

2 [R
− ℓ

Rℓ+1] ∫
0

π

Φ0 (θ) Pℓ (cos θ) sin θ d θ

⇒

Φin (r , θ )=∑
ℓ=0

∞

Aℓ r ℓ Pℓ (cos θ )

Φout (r , θ)=∑
ℓ=0

∞ Bℓ
r ℓ+1

Pℓ (cos θ )
⇒

Φin (R , θ)=∑
ℓ=0

∞

Aℓ Rℓ Pℓ (cos θ )

Φout (R , θ)=∑
ℓ=0

∞ Bℓ
Rℓ+1

Pℓ (cos θ)]=Φ0 (θ)



  

If 

Example 3.8: An uncharged metal sphere of 
radius R is placed in a uniform electric field
              . The field will push positive charge to 
the northern surface of the sphere, and,
symmetrically, negative charge to the southern 
surface. This induced charge, in turn, distorts the 
field in the neighborhood of the sphere. Find the 
potential in the region outside the sphere.

E=E 0 ẑ

Φ0 (θ)= k sin2 θ

2
⇒ Φ0 (θ )=k

1−cos θ
2

=k
P0 (cos θ)−P1 (cos θ )

2

⇒ A0=
k
2

, B0=
k
2

R , A1=−
k

2 R
, B1=−

k
2

R2 , Aℓ=Bℓ=0  for ℓ>1

⇒ Φ (r , θ)= [
k
2
( r0 P0 (cos θ)−

r1

R
P1 (cos θ ))= k

2
( 1−

r
R

cos θ ) , r <R

k
2
( R

r1
P0 (cos θ)−

R2

r2
P1 (cos θ))= k

2
R
r
( 1−

R
r

cos θ ) , r≥R

=
k
2

R
r>

( 1−
r<

r>

cos θ ) ⇐
r<=min (r , R)
r>=max (r , R)



  

The sphere is an equipotential  

By symmetry the entire xy-plane is at potential 0 

Far from the sphere the field is

The boundary conditions for this problem (i) Φ(r=R) = 0, (ii) Φ(r≫R)  −E0r cos θ

The 1st term −E0r cos θ is due to the external field; the contribution attributable 

to the induced charge is

The induced 
charge density 

⇒ Φ (z=0)=0

E 0 ẑ ⇒ Φ−E0 z+C=−E0 z ⇐ Φ (z=0)=0

(i) ⇒ Aℓ Rℓ+
Bℓ

Rℓ+1 =0 ⇒ Bℓ=− Aℓ R2 ℓ+1
⇒ Φ=∑

ℓ=0

∞

Aℓ ( r ℓ−
R2 ℓ+1

r ℓ+1 ) Pℓ (cos θ)

(ii) ⇒ ∑
ℓ=0

∞

Aℓ r ℓ Pℓ (cos θ)=−E0 r cos θ ⇒ A1=− E0 ,  all other Aℓ=0

⇒ Φ (r , θ)=−E 0( r−
R3

r2 ) cos θ

E 0
R3

r2 cos θ

σ (θ )=− ϵ0
∂ Φ
∂ r |r=R

= ϵ0 E0( 1+2
R3

r3 ) cos θ
|r=R

=3 ϵ0 E0 cos θ

⇒ [σ >0  for 0≤θ≤π /2 the northern hemisphere
σ <0  for π /2≤θ≤π the southern hemisphere

⇒ Let Φ (r=R)=0



  

Example 3.9: A specified charge density σ0(θ) is glued over the surface of a 

spherical shell of radius R. Find the potential inside and outside the sphere.

By direct integration,                                   , but separation of variables is easier:

The radial derivative of Φ has 
a discontinuity at the surface:

⇒ −∑
ℓ=0

∞

(ℓ+1)
Bℓ

Rℓ+2
Pℓ (cos θ)−∑

ℓ=0

∞

ℓ Aℓ Rℓ−1 Pℓ (cos θ )=−
σ0 (θ )

ϵ0

⇒ ∑
ℓ=0

∞

(2 ℓ+1) Aℓ Rℓ−1 Pℓ (cos θ )=
σ0 (θ )

ϵ0

( ∂ Φout

∂ r
−
∂ Φin

∂ r
)

r=R

=−
σ0 (θ )

ϵ0

Φ=
1

4 π ϵ0
∫ σ0

�
d a

⇒ [
Φin (r , θ)=∑

ℓ=0

∞

Aℓ r ℓ Pℓ (cos θ ) , r≤R inside

Φout (r , θ)=∑
ℓ=0

∞ Bℓ
r ℓ+1

P ℓ (cos θ ) , r≥R outside

Condition: Φin (r=R)=Φout (r=R) ⇐ potential being continuous

⇒ ∑
ℓ=0

∞

Aℓ Rℓ Pℓ (cos θ)=∑
ℓ=0

∞ Bℓ
Rℓ+1 Pℓ (cos θ ) ⇒ Bℓ= Aℓ R2 ℓ+1



  

⇒ Aℓ=
1

2 ϵ0 Rℓ−1 ∫
0

π

σ0 (θ) Pℓ (cos θ ) sin θ d θ

If σ0 (θ )=k cos θ=k P1 (cos θ) ⇒ all the Aℓ ’s are 0 except

A1=
k

2 ϵ0
∫

0

π

P1
2
(cos θ ) sin θ d θ=

k
3 ϵ0

⇒ [
Φin (r , θ ) =

k
3 ϵ0

r cos θ , r≤R

Φout (r , θ )=
k

3 ϵ0

R3

r2 cos θ , r≥R

⇒ Φ (r , θ)=
k

3 ϵ0

r<
3

r2
cos θ where r<=min (r , R)

If σ0(θ) is the induced charge on a metal sphere in an external

then the potential inside is E0 r cos θ=E0 z, and the field is             —exactly right 
to cancel off the external field. 

Outside the sphere the potential due to this surface charge is 

−E0 ẑ

E 0
R3

r2 cos θ

E 0 ẑ ⇒ k=3 ϵ0 E 0



  

Cylindrical CoordinatesCylindrical Coordinates
 For axis-symmetric objects, cylindrical coordinates are more natural.

                                                                             A general solution requires the
                                                                               knowlege of Bessel functions.

 When the length of the cylindrical geometry is large to its radius, the potential 
may be considered to be independent of z

∂
2Φ

∂ z2 =0 ⇒
1
r

∂

∂ r
( r

∂ Φ
∂ r
)+ 1

r2

∂
2Φ

∂ ϕ
2 =0 ⇐ 2D problem

⇒ Φ (r , ϕ)=R (r )Ψ (ϕ) ⇒
r
R

d
d r
( r

d R
d r
)+ 1
Ψ

d2Ψ

d ϕ2 =0

⇒
r
R

d
d r
( r

d R
d r
)=k 2 , 1

Ψ

d2Ψ

d ϕ2
=− k2

⇐ k  is a constant

If the range of ϕ  is unrestricted ⇒ k=n∈ℤ

⇒

r2 d2 R

d r2 + r
d R
d r

−n2 R=0

d2Ψ

d ϕ2 +n2Ψ=0

⇒
Rn (r )= A r n

+
B
r n

Ψn (ϕ)=C sin n ϕ+D cos n ϕ

⇒ Φn=( An r n
+

Bn

r n ) sin n ϕ+( Cn r n
+

Dn

r n ) cos n ϕ , n≠0

∇
2Φ=

1
r

∂

∂ r
( r

∂ Φ
∂ r
)+ 1

r2

∂
2Φ

∂ ϕ
2 +

∂
2Φ

∂ z2 =0



  

 If the region of interest includes the cylindrical axis r=0, the terms with the  
fac tor cannot exist. If the region of interest includes the point at ∞, the terms 
with the r n factor cannot exist, since the potential must be 0 as r∞.

Example: For a very long coaxial cable, the inner conductor is of radius a and of 

potential Φ0. The outer conductor is of radius b and grounded. 
Find the potential in the space between the conductors.

No z-dependence, and no ϕ-dependence by symmetry  

⇒ k=0 ⇒ Φ= A0 ln r +B0 ⇒
Φ (b)=0 = A0 ln b+B0

Φ (a)=Φ0= A0 ln a+ B0

⇒ A0=−
Φ0

ln (b /a)
, B0=

Φ0 ln b
ln (b /a)

⇒ Φ (r )=
Φ0

ln (b /a)
ln

b
r

k=0 ⇒

d
d r
( r

d R
d r
)=0

d2Ψ

d ϕ2
=0

⇒

R (r )= A0 ln r +B0

Ψ (ϕ)=C0 ϕ+D0

=D0 ⇐ C0=0

⇒ Φ0= A0 ln r +B0

⇒ Φ (r , ϕ)=∑
n=0

∞

Φn=Φ0+∑
n=1

∞

Φn

= A0 ln r +B0+∑
n=1

∞

[( An r n
+

Bn

r n ) sin n ϕ+(C n r n
+

Dn

r n ) cos n ϕ ]

1
r n



  

Example: A long conducting circular tube of radius b is 
split in 2 halves. The upper half is kept at Φ=Φ0 and the 

lower half at Φ=−Φ0. Find the potential both inside and 
outside the tube.

Inside the tube, r<b, the r −n factor terms cannot exist, 

z -independence ⇒
1
r

∂

∂ r
( r

∂Φ
∂ r
)+ 1

r2

∂
2Φ

∂ ϕ
2 =0

Φ (b , ϕ)= [ Φ0  for 0<ϕ<π
−Φ0  for π <ϕ<2 π

⇒ Φ (r , ϕ)  is an odd
function of ϕ

⇒ Only the terms with sin n ϕ  in Φ (r , ϕ)  survive.

⇒ Φ (r , ϕ)=∑
n=1

∞

An r n sin n ϕ

⇒ ∑
n=1

∞

An bn sin n ϕ= [ Φ0  for 0<ϕ<π
−Φ0  for π<ϕ<2 π

⇒ An= [
4 Φ0

n π bn  for   odd n

0   for even n

⇒ Φ (r , ϕ)=
4 Φ0

π
∑

odd n

∞ ( r
b
)n sin n ϕ

n
, r <b

=
4 Φ0

π
∑
m=0

∞ ( r
b
)2 m+1 sin (2 m+1)ϕ

2 m+1
, r <b

Φ=−Φ0

−Φ0

Φ=Φ0

Φ (b , ϕ)

Φ0



  

Outside the tube, r>b, the r n factor terms cannot exist,

General expression: 

Φ (r , ϕ)=
4 Φ0

π ∑
odd n

∞ ( r<

r>

)
n

sin n ϕ
n

=
4 Φ0

π ∑
m=0

∞ ( r<

r>

)
2 m+1

sin (2 m+1)ϕ
2 m+1

where r≶=
min
max

(r , b)

⇒ Φ (r , ϕ)=∑
n=1

∞ Bn

r n sin n ϕ

⇒ Φ (b , ϕ)=∑
n=1

∞ Bn

bn sin n ϕ= [ Φ0  for 0<ϕ<π
−Φ0  for π <ϕ<2 π

⇒ Bn= [
4 Φ0 bn

n π
 for  odd n

0   for even n

⇒ Φ (r , ϕ)=
4 Φ0

π ∑
odd n

∞ ( b
r
)n sin n ϕ

n
, r >b

=
4 Φ0

π ∑
m=0

∞ ( b
r
)2 m+1 sin (2 m+1)ϕ

2 m+1
, r >b



  

Multipole Expansion 
Approximate Potentials at Large DistancesApproximate Potentials at Large Distances
 If you are far away from a localized charge distribution, it “looks” like a point 

charge, and the potential is—to good approximation—                 . We have often 
used this as a check on formulas for Φ.

 An electric dipole consists of 2 equal & opposite 
charges (±q) separated by a distance d.

Example 3.10: ind the approximate potential at points 
                        far from the dipole.

 

�–

�

Q
4 π ϵ0 r

Φ (r )= 1
4 π ϵ0

( q
�
+
−q
�–
)= q

4 π ϵ0
( 1

�
−

1
�–
) ⇐ �±=|r∓ d

2|
�±

2
= r2

∓ r d cos θ +
d2

4
=r2( 1∓

d
r

cos θ+
d2

4 r2 )
r ≫ d ⇒

1
�±
≃

1
r
( 1∓

d
r

cos θ )−1/2

≃
1
r
( 1±

d
2 r

cos θ )
⇒

1
�

−
1
�–
≃

d
r2

cos θ ⇒ Φ (r )≃ 1
4 π ϵ0

q d cos θ
r2

Q
4 π ϵ0 r



  

 The potential of a dipole goes like      at large r; it falls off more rapidly than 
that of a point charge.

 If we put together a pair of equal & opposite dipoles to make a quadrupole, 

the potential goes like      ; for back-to-back quadrupoles (an octopole), it goes 

like      ; and so on.

 For an electric monopole (point charge), whose potential goes like    .

 The potential at r for any localized charge distribution  

1
r4

1
r

1
r3

1
r2

�

Φ (r )= 1
4 π ϵ0

∫ ρ (r

)

�
d τ  ⇐

�2
= r2

+ r 2
−2 r r  cos α

=r2( 1+
r 2

r2
−2

r 

r
cos α )

⇒ �=r √1+ϵ ⇐ ϵ≡
r 

r
( r

r
−2 cos α )



  

⇒
1
�
=

1
r

1

√1+ϵ
=

1
r
( 1−

1
2
ϵ+

3
8
ϵ

2
−

5
16
ϵ

3
+⋯)

=
1
r [1− 1

2
r

r
( r 

r
−2 cos α)+ 3

8
r 2

r2 ( r 

r
−2 cos α)2

−
5
16

r 3

r3 ( r 

r
−2 cos α)3

+⋯]
=

1
r [1+ r

r
cos α+( r

r
)2 3 cos2

α−1
2

+( r

r
)3 5 cos3

α−3 cos α
2

+⋯]
=

1
r ∑n=0

∞ ( r 

r
)n

Pn (cos α) ⇒
1
�

: the generating function  for Legendre
polynomials

⇒ Φ (r )= 1
4 π ϵ0

∑
n=0

∞ 1
r n+1 ∫ r n Pn (cos α) ρ (r 

) d τ  (@)

⇒ Φ (r )= 1
4 π ϵ0

( 1
r
∫ ρ (r 

) d τ + 1
r2 ∫ r cos α ρ (r 

) d τ 

+
1
r3
∫ r 2 3 cos2

α−1
2

ρ (r 
) d τ +⋯)



  

 This is the desired result—the multipole expansion of Φ in powers of     .

 The 1st term (n=0) is the monopole contribution (    ); the 2nd (n=1) is the dipole 

(     ); the 3rd is quadrupole; the 4th is octopole; and so on.

 α is the angle of r & r , the integrals depend on the direction to the field point.

 For the potential along the z -axis, then α is the usual polar angle θ .

 (@) is exact, but it is useful primarily as an approximation scheme: the lowest 

nonzero term in the expansion provides the approximate potential at large r, and 
the successive terms tell us how to improve the approximation if greater 
precision is required.

1
r

1
r1

r2



  

The Monopole and Dipole TermsThe Monopole and Dipole Terms
 The multipole expansion is dominated (at large r) by the monopole term:

 For a point charge at the origin, Φmon is the exact potential, not merely a 1st  

approximation at large r; in this case, all the higher multipoles vanish.

 If the total charge is 0, the dominant term in the potential will be the dipole:

 The dipole moment is determined by the geometry (size, shape, and density) of 
the charge distribution.

 The dipole moment of a collection of point charges is

 For a physical dipole (equal & opposite charges, ±q),

Φdip (r )=
1

4 π ϵ0

1
r2 ∫ r ρ (r 

) cos α d τ 

=
1

4 π ϵ0

r̂
r2
⋅∫ r 

ρ (r 
) d τ  ⇐ r̂⋅r 

=r  cos α

⇒ Φdip (r )=
1

4 π ϵ0

p⋅r̂
r2 ⇐ p≡∫ r 

ρ (r 
) d τ  dipole moment

p=q r


−q r –



=q (r


−r –


)=q d

Φmon (r )=
1

4 π ϵ0

Q
r

⇐ Q=∫ ρ d τ total charge

p=∑
i=1

n

qi r i




  

 The result in Ex 3.10 is only the approximate potential of the 
physical dipole—evidently there are higher multipole contributions.

 As you go farther and farther away, Φdip becomes a better 
and better approximation, since the higher terms die off more rapidly with 
increasing r.

 Dipole moments are vectors, and they add accordingly: if you have 2 dipoles, p1 

and p2, the total dipole moment is p1+p2.

 With 4 charges at the corners of a square, the net dipole moment is 0.

 This is a quadrupole, and its potential is dominated by the quadrupole term in 
the multipole expansion.

 The total potential can be expressed as

Φ (r )= 1
4 π ϵ0

( Q
r
+

p⋅r̂
r2

+
1

2 r3 ∑
i , j

Qi j

x i x j

r2
+⋯)



  

Origin of Coordinates in Multipole ExpansionsOrigin of Coordinates in Multipole Expansions
 If a point charge is not at the origin, it’s no longer a pure 

monopole.

 The monopole potential is not                for this configuration; 

rather, the exact potential is                .

 The multipole expansion is a series in inverse powers

of r (the distance to the origin), and when we expand      , we get all powers, not 

just the 1st. So moving the origin can radically alter a multipole expansion.

 The monopole moment Q does not change, since the total charge is obviously 
independent of the coordinate system. But the other multipoles are not.

 If the total charge is 0, the dipole moment is independent of the choice of origin.

 If we displace the origin by an amount a, the new dipole moment is then 
 

p̄=∫ r̄ 
ρ (r 

) d τ =∫ (r 
−a ) ρ (r 

) d τ =∫ r 
ρ (r 

) d τ −a ∫ ρ (r 
) d τ 

=p−Q a ⇒ when Q=0 ⇒ p̄=p

1
r

p=q d ŷ

q
4 π ϵ0 r

q
4 π ϵ0 �

�



  

 If someone asks for the dipole moment in Fig. a, you can answer with 
confidence “q d” (because Q=0), but if you’re asked for the dipole moment in Fig. 

(b), the appropriate response would be “With respect to what origin” (because 
Q≠0)?

 Theorem: For an arbitrary charge distribution ρ(r) the components of the first 
nonvanishing multipole are independent of the origin of the coordinate axes, but 
the values of all higher multipole moments do in general depend on the choice of 
origin.



  

The Electric Field of a DipoleThe Electric Field of a Dipole
 Let p is at the origin and points in the z direction,

 This formula makes explicit reference to a particular coordinate system 
(spherical) and assumes a particular orientation for p (along z). It can be recast 
in a coordinate-free form (see Prob. 3.36).

 The dipole field falls off as the inverse cube of r; the monopole field goes as the 

inverse square. Quadrupole fields go like      , octopole like      , and so on.

Selected problems: 5, 11, 16, 19, 32, 43

Φdip (r , θ )=
r̂⋅p

4 π ϵ0 r2
=

p cos θ

4 π ϵ0 r2
⇐

p= p ẑ
= p ( r̂ cos θ− θ̂ sin θ )

⇒ [
E r=−

∂ Φdip

∂ r
=

p cos θ

2 π ϵ0 r3

E θ=−
1
r
∂ Φdip

∂ θ
=

p sin θ
4 π ϵ0 r3

E ϕ=−
1

r sin θ
∂ Φdip

∂ ϕ
=0

⇒ Edip (r , θ)=
p

4 π ϵ0 r3
(2 cos θ r̂ +sin θ θ̂)

=
1

4 π ϵ0

3 (r̂⋅p) r̂ −p
r3

1
r5

1
r4
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Quadrupole E & Φ
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