
  

Chapter 1Chapter 1 Vector Analysis

Vector OperationsVector Operations
 Displacements, straight line segments 

going from one point to another, have 
direction as well as magnitude (length),

 Such objects are called vectors: velocity, 
acceleration, force and momentum are other examples.

 Quantities that have magnitude but no direction are called scalars: examples 
include mass, charge, density, and temperature.

 The magnitude of a vector A is written |A| or, more simply, A.

 −A is a vector with the same magnitude as A but of opposite direction.

 Define 4 vector operations: addition and 3 kinds
                                               of multiplication:
(i) Addition of 2 vectors

Vector Algebra

A+B=B+A commutative
(A+B)+C=A +(B+C) associative

A−B=A+(−B) subtraction



  

(ii) Multiplication by a scalar:  Multiplication of a vector by a 
positive scalar a multiplies the magnitude but leaves the direction 
unchanged. 

 If a is negative, the direction is reversed.

(iii) Dot product of 2 vectors:

 Geometrically, A⋅B is the product of A(B) times the projection of B(A) 

along A(B).

 If A∥B, then A⋅B=A B.

 For any vector A, A⋅A=A2.

 If A⊥B, then A⋅B=0.

Example 1.1

(iv) Cross product of 2 vectors: 

A⋅B≡ A B cos θ a scalar ⇐ scalar product

a (A +B)=a A+ a B distributive

A×B≡ A B sin θ n̂
where n̂ is a unit vector ⊥ the plane of A and B

A⋅B=B⋅A commutative
A⋅(B+C)=A⋅B+A⋅C distributive



  

 There are 2 directions ⊥ any plane: “in” and “out.”

 The ambiguity is resolved by the right-hand rule: let your fingers point in the 
direction of the 1st vector and curl around (via the smaller angle) toward the 2nd; 
then your thumb indicates the direction of    .

 A×B is itself a vector, ie, vector product:

 Geometrically, |A×B| is the area of the 

parallelogram generated by A and B.

 If 2 vectors are parallel, their cross product is 0.

 A×A =0 for any vector A.

n̂

A×(B +C)=A×B+A×C distributive
A×B=−B×A anti - commutative

n̂



  

Vector Algebra: Component FormVector Algebra: Component Form
 It is often easier to set up Cartesian coordinates x, y, z and work 

with vector components.

 Let   ,   , and    be unit vectors parallel to the x, y, and z axes. 

An arbitrary vector A can be expanded in terms of these 
basis vectors:

 Ax, Ay, Az, are the “components” of A; geometrically, 

they are the projections of A along the 3 coordinate axes.

 Reformulate the vector operations:

Rule (i): To add vectors, add like components.

Rule (ii): To multiply by a scalar, multiply each component.

Rule (iii): To calculate the dot product, multiply like components, and add.

a A=(a Ax) x̂ +(a Ay) ŷ +(a Az) ẑ

x̂ ẑ

x̂ ⊥ ŷ ⊥ ẑ ⇒ x̂⋅x̂= ŷ⋅ŷ= ẑ⋅ẑ=1 , x̂⋅ŷ= x̂⋅ẑ= ŷ⋅ẑ=0
⇒ A⋅B=( Ax x̂ + Ay ŷ + Az ẑ )⋅(Bx x̂ + By ŷ + B z ẑ )= Ax Bx + Ay By + Az B z

A= Ax x̂ + Ay ŷ + Az ẑ

A+B=( Ax x̂ + Ay ŷ + Az ẑ )+(Bx x̂ + By ŷ + B z ẑ )

=( Ax + Bx) x̂ +( Ay + By) ŷ +( Az + B z) ẑ

ŷ

Ax =A⋅x̂ , Ay =A⋅ŷ , Az =A⋅ẑ



  

Let x̂1 = x̂ , x̂2 = ŷ , x̂3 = ẑ , A1 = Ax , A2= Ay , A3 = Az

⇒ A= Ax x̂ + Ay ŷ + Az ẑ = A1 x̂1 + A2 x̂2 + A3 x̂3 =∑
k =1

3

Ak x̂ k

x̂ i⋅x̂ j =δ i j ⇐ δ i j = [1 ,  for i = j
0 ,  for i ≠ j

Kronecker delta

⇒ A⋅B=∑
i

Ai x̂ i⋅∑
j

B j x̂ j =∑
i
∑

j

Ai B j x̂ i⋅x̂ j

=∑
i
∑

j

Ai B j δ i j =∑
i

3

Ai Bi = A1 B1 + A2 B2 + A3 B3

One can get rid of the annoying summation symbol ∑  by allowing

one index up and the same index down to represent the summation.

For example, Ai Bi =∑
i

3

Ai Bi = A1 B1 + A2 B2 + A3 B3

This is called the Einstein notation. We will only use it in Chapter 12.



  

Rule (iv): To calculate the cross product, form the determinant whose 1st row is         
                     ,   ,    , whose 2nd row is A (in component form), and whose 3rd row is B.

Example 1.2

A⋅A= Ax
2
+ Ay

2
+ Az

2
⇒ A=√ Ax

2
+ Ay

2
+ Az

2

x̂× x̂= ŷ× ŷ= ẑ× ẑ=0 ,
x̂× ŷ=− ŷ× x̂= ẑ , ŷ× ẑ=− ẑ× ŷ= x̂ , ẑ× x̂=− x̂× ẑ= ŷ
⇒ A×B=( Ax x̂ + Ay ŷ + Az ẑ )×(Bx x̂ + By ŷ + B z ẑ )

=( Ay B z − Az By) x̂ +( Az Bx − Ax B z) ŷ +( Ax By − Ay Bx) ẑ=|
x̂ ŷ ẑ
Ax Ay A z

Bx By B z
|

x̂ ẑŷ



  

Levi-Civita symbol: ϵi j k = [
+1    if (i , j , k )  is (1,2,3) , (2,3,1) ,  or (3,1,2)

−1   if (i , j , k )  is (1,3,2) , (3,2,1) ,  or (2,1,3)

0  if i = j ,  or j = k ,  or k = i

⇒ x̂ i × x̂ j =∑
k =1

3

ϵi j k x̂ k

⇒ A×B=∑
i

Ai x̂ i ×∑
j

B j x̂ j =∑
i , j

Ai B j x̂ i × x̂ j

=∑
i , j

Ai B j ∑
k

ϵi j k x̂ k =∑
i , j , k

ϵi j k Ai B j x̂ k =|
x̂1 x̂2 x̂3

A1 A2 A3

B1 B2 B3
|

⇒ (A×B)i =∑
j , k

ϵi j k A j Bk

By the way, if M  is a 3×3  matrix, detM=|M|=∑
i , j , k

ϵi j kM1 iM2 jM3 k



  

Triple ProductsTriple Products

(i) Scalar triple product: 

 Geometrically, |A⋅(B×C)| is the volume of the 

parallelepiped generated by A, B, and C, since |B×C| 

is the area of the base, and |A cos θ| is the altitude.

(ii) Vector triple product:
 The vector triple product can be simplified by the so-called BAC-CAB rule:

                                                                                      entirely different vector

 All higher vector products can be similarly reduced, usually by repeated (*)

A⋅(B×C )

(A×B)⋅(C ×D)=(A⋅C) (B⋅D)−(A⋅D) (B⋅C )

A×[B×(C×D)]=B [A⋅(C×D)]−(A⋅B) (C×D )

(A×B )×C=−C×(A×B)=−A (B⋅C )+B (A⋅C )

A×(B×C)=B (A⋅C )−C (A⋅B) (*)

A⋅(B×C )=B⋅(C×A)=C⋅(A×B) ⇐ cyclic
A⋅(C×B)=B⋅(A×C )=C⋅(B×A)=−A⋅(B×C)

⇒ A⋅(B×C)=|
Ax Ay Az

Bx By B z

C x C y C z
|



  

∑
k

ϵi j k ϵm n k =δ i m δ j n −δi n δ j m , ∑
j , k

ϵi j k ϵℓ j k =2 δi ℓ , ∑
i , j , k

ϵi j k ϵi j k =6

 ∑
k

δ i k δ j k =δ i j , ∑
k

δ k k =3

A⋅(B×C)=∑
i

Ai (B×C )i =∑
i

Ai ∑
j , k

ϵi j k B j C k

=∑
i , j , k

ϵi j k Ai B j C k =|
A1 A2 A3

B1 B2 B3

C1 C2 C3
|=B⋅(C ×A)=C⋅(A×B )

A ×(B×C )=∑
i , j , k

ϵi j k Ai (B×C) j x̂ k =∑
i , j , k

ϵi j k Ai x̂ k ∑
m , n

ϵ j m n Bm Cn

= ∑
i , j , k , m , n

ϵi j k ϵ j m n Ai Bm C n x̂ k =− ∑
i , j , k , m , n

ϵi k j ϵm n j Ai Bm C n x̂ k

=− ∑
i , k , m , n

(δ i m δk n −δi n δk m) Ai Bm Cn x̂ k =∑
i , k

( Ai C i Bk x̂ k − Ai Bi C k x̂ k)

=(∑
i

Ai C i)∑
k

Bk x̂ k −(∑
i

Ai Bi)∑
k

C k x̂ k =(A⋅C) B−(A⋅B)C



  

Position, Displacement, and Separation VectorsPosition, Displacement, and Separation Vectors
 The vector to the location of a point from the origin O 

is called the position vector:

 Its magnitude,

and the unit vector is

 The infinitesimal displacement vector, from 
(x, y, z) to (x+dx, y+dy, z+dz), is

 In electrodynamics, one frequently encounters problems involving 2 points—
typically, a source point r, where an electric charge is located, and a field 

point r, at which you are calculating the electric or magnetic field.

 A short-hand for the separation vector from the source point to the field point

r̂ =
r
r

=
x x̂ + y ŷ + z ẑ

√x2
+ y2

+ z2

d ℓ= d r= d x x̂ + d y ŷ + d z ẑ

�⃗

r = x x̂ + y ŷ + z ẑ

�⃗≡r −r 
⇒ �=|r −r 

| , �̂=
�⃗
�

=
r−r 

|r−r 
|

⇒

�⃗=( x − x
) x̂ +( y − y

) ŷ +(z− z
) ẑ

�=√( x − x
)
2
+(y − y

)
2
+(z − z

)
2

�̂=
( x − x

) x̂ +( y − y
) ŷ +(z− z

) ẑ

√( x − x
)
2
+( y − y

)
2
+(z − z

)
2

r =√ x2
+ y2

+ z2



  

How Vectors TransformHow Vectors Transform
 The definition of a vector as “a quantity with a 

magnitude and direction” is not satisfactory.

 A vector should transform properly when you change 
coordinates.

 The coordinate frame we use to describe positions in 
space is arbitrary, but there is a specific geometrical transformation law for 
converting vector components from one frame to another.

 Let the               system is rotated by angle ϕ, relative to x, y, z, about the 
common           axes:

 For rotation about an arbitrary axis in 3D: 

Ay = A cos θ , A z = A sin θ

⇒
Ay = A cos θ= A cos (θ−ϕ)= A (cos θ cos ϕ+ sin θ sin ϕ)= Ay cos ϕ+ Az sin ϕ
Az = A sin θ= A sin (θ−ϕ)= A (sin θ cos ϕ−cos θ sin ϕ)=− Ay sin ϕ+ Az cos ϕ

⇒ [ Ay

A z ]= [ cos ϕ sin ϕ
−sin ϕ cos ϕ ] [ Ay

Az ]
[
Ax

Ay

Az
]= [

Rx x Rx y R x z

Ry x Ry y Ry z

R z x R z y Rz z
] [

Ax

Ay

Az
]

x = x

⇒ Ai =∑
j=1

3

Ri j A j

x , y , z



  

 Formally, a vector is any set of 3 components that transforms in the same manner 
as a displacement when you change coordinates. As always, displacement is the 

model for the behavior of all vectors.

 A (2nd-rank) tensor is a quantity with 9 components, Tx x, Tx y, Tx z, Ty x, ..., Tz z, 

which transform with 2 factors of R:

 In general, an nth-rank tensor has n indices and 3 n components, and transforms 
with n factors of R.

 A vector is a tensor of rank 1, and a scalar is a tensor of rank 0.

T x x = Rx x (Rx x T x x + Rx y T x y + R x z T x z)

+ Rx y (Rx x T y x + Rx y T y y + Rx z T y z)

+ Rx z (Rx x T z x + Rx y T z y + Rx z T z z) , ⋯

⇒ T i j =∑
k =1

3

∑
ℓ=1

3

Ri k R j ℓ T k ℓ



  

d f
d x

Differential Calculus
““Ordinary” DerivativesOrdinary” Derivatives
 If we have f (x), what does         do for us? It tells us how rapidly f (x) varies 

when we change x by a tiny amount, d x

 If we increment x by d x, then f changes by d f; the derivative is the 
proportionality factor.

 If f varies slowly with x, and the derivative is correspondingly small. If f 
increases rapidly with x, and the derivative is large.

 Geometrical Interpretation: The derivative         is the slope of the graph of f vs x.

⇒ d f =
d f
d x

d x

d f
d x



  

GradientGradient
 If we have a function of 3 variables, T(x,y,z), we want to generalize the notion 

of “derivative” to functions like T, which depend not on one but on 3 variables.

 A derivative is supposed to tell us how fast the function varies for a little 
distance, and on what direction we move.

This tells us how T changes when we alter all 3 variables by dx, dy, dz.

 Rewrite

 ∇T is a vector quantity, a generalized derivative, with 3 components.

Geometrical Interpretation of the GradientGeometrical Interpretation of the Gradient
 Like any vector, the gradient has magnitude and direction:

 If we fix the magnitude |d r| and search around in various directions (vary θ), the 

maximum change in T evidently occurs when θ=0 (for then cos θ=1).

d T = ∇ T⋅d r=|∇ T||d r|cos θ

d T =
∂ T
∂ x

d x +
∂ T
∂ y

d y +
∂ T
∂ z

d z

d T =( ∂ T
∂ x

x̂ +
∂ T
∂ y

ŷ +
∂ T
∂ z

ẑ )⋅(d x x̂ + d y ŷ + d z ẑ )= ∇ T⋅d r

where ∇ T ≡
∂ T
∂ x

x̂ +
∂ T
∂ y

ŷ +
∂ T
∂ z

ẑ ⇐ gradient of T



  



  

 For a fixed |d r|, d T is greatest when moving in the same direction as ∇ T.

 The gradient ∇ T points in the direction of maximum increase of the function T.

 The magnitude |∇ T| gives the slope (increase rate) along this maximal direction.

 The direction of steepest ascent is the direction of the gradient.

 The direction of max descent is opposite to the direction of max ascent, while at 
right angles (θ= 90˚) the slope is 0 (the gradient ⊥ the contour lines).

 If ∇ T=0 at (x, y, z), then d T=0 for small displacements about the point (x, y, z). 
This is, then, a stationary point of T(x, y, z).

 It could be an extremum, ie, maximum (a summit), a minimum (a valley), a 
saddle point (a pass), or a “shoulder.”

 If you want to locate the extrema of a function of 3 variables, set its gradient 
equal to 0.

Example 1.3



  

The Del OperatorThe Del Operator

                                                       , the term in parentheses is called del:

 ∇ is not a vector, but a vector operator that acts upon T (a function).

 There are 3 ways the operator ∇ can act:

   1. On a scalar function T: ∇ T (the gradient);

   2. On a vector function v, via the dot product:    ∇⋅v (the divergence);

   3. On a vector function v, via the cross product: ∇×v (the curl).   

∇ = x̂
∂

∂ x
+ ŷ

∂

∂ y
+ ẑ

∂

∂ z
= x̂ ∂ x + ŷ ∂y + ẑ ∂z = ∑

k =1

3

x̂ k ∂k

∇ T =( x̂ ∂

∂ x
+ ŷ ∂

∂ y
+ ẑ ∂

∂ z
) T



  

The DivergenceThe Divergence

 The divergence of a vector function v is itself a scalar ∇⋅v.

 Geometrical Interpretation: ∇⋅v is a measure of how much the vector v spreads 
out (diverges) from the point in question.

 The vector function in 1st figure has a large (positive) divergence (if the arrows 
pointed in, it would be a negative divergence), the 2nd has 0 divergence, and the 
3rd again has a positive divergence.

 A point of positive divergence is a source, or “faucet”; a point of negative 
divergence is a sink, or “drain.”

                    Example 1.4

∇⋅v=( x̂ ∂

∂ x
+ ŷ ∂

∂ y
+ ẑ ∂

∂ z
)⋅(v x x̂ + vy ŷ + v z ẑ )=

∂ vx

∂ x
+

∂ v y

∂ y
+

∂ vz

∂ z
= ∑

k =1

3 ∂ vk

∂ xk

v c = z ẑ

va = x x̂ + y ŷ + z ẑ

vb = ẑ



  

∇⋅A≡ lim
Δ τ  0

1
Δ τ

∮
S
A⋅d a

∮
S

A⋅d a= [ ∫
front
face

+ ∫
back
face

+ ∫
right
face

+ ∫
left
face

+ ∫
top
face

+ ∫
bottom

face ] A⋅d a

∫
front
face

A⋅d a=A front
face

⋅Δ a front
face

=A front
face

⋅Δ y Δ z x̂

= Ax (x0 + Δ x /2 , y0 , z0) Δ y Δ z

Ax( x0 ±
Δ x
2

, y0 , z0 )= Ax ( x0 , y0 , z0)±
Δ x
2

∂ Ax

∂ x
( x0 , y0 , z0)

+O ((Δ x )
2
)

∫
back
face

A⋅d a=A back
face

⋅Δ aback
face

=A back
face

⋅Δ y Δ z (− x̂ )=− Ax ( x0 −
Δ x
2

, y0 , z0) Δ y Δ z

⇒

[ ∫
front
face

+ ∫
back
face ] A⋅d a = [ ∂ Ax

∂ x
+O ((Δ x )

2
)]

(x0 , y0 , z0)

Δ x Δ y Δ z

[ ∫
right
face

+ ∫
left
face] A⋅d a = [ ∂ Ay

∂ y
+ O ((Δ y)

2
)]

(x0 , y0 , z0)

Δ x Δ y Δ z

[ ∫
top
face

+ ∫
bottom

face ] A⋅d a= [ ∂ Az

∂ z
+O ((Δ z)

2
)]

(x0 , y0 , z0)

Δ x Δ y Δ z



  

Δ τ =Δ x Δ y Δ z

⇒ ∮
S

A⋅d a=( ∂ Ax

∂ x
+

∂ Ay

∂ y
+

∂ Az

∂ z
)

(x0 , y0 , z0)

Δ τ +∑
i=1

3

O ((Δ xi)
2
) Δ τ

⇒ ∇⋅A=
∂ Ax

∂ x
+

∂ Ay

∂ y
+

∂ A z

∂ z
  as  Δ τ  0 ⇐ Δ x i  0

∇⋅A (x i , yi , z i)=
1

d τ i

∮
S i

A⋅d ai ⇒ ∇⋅A (x i , yi , z i) d τ i = ∮
S i

A⋅d ai

⇒ ∫
V

∇⋅A d τ= ∮
S

A⋅d a



  

The CurlThe Curl

 The curl of a vector function v is a vector.

 Geometrical Interpretation: ∇×v is a measure of how much the vector v swirls 
around the point in question.

 The 3 functions in the above have 0 curl, whereas the functions shown have a 
substantial curl, pointing in the z direction (with the right-hand rule).

Example 1.5

∇ ×v=|
x̂ ŷ ẑ
∂

∂ x
∂

∂ y
∂

∂ z
vx vy vz

|=( ∂ v z

∂ y
−

∂ vy

∂ z
) x̂ +( ∂ vx

∂ z
−

∂ vz

∂ x
) ŷ +( ∂ vy

∂ x
−

∂ v x

∂ y
) ẑ

vb = x ŷva =− y x̂ + x ŷ



  

∇ ×A≡ lim
Δ a  0

1
Δ a
( n̂ ∮

C

A⋅d ℓ )
max

⇒ (∇ ×A)i = lim
Δ a i  0

1
Δ ai

∮
C i

A⋅d ℓ ⇒ (∇ ×A)x = lim
Δ y Δ z  0

1
Δ y Δ z

∮
sides

1,2,3,4

A⋅d ℓ

side 1/3: d ℓ=± Δ z ẑ ⇒ A⋅d ℓ=± Az ( x0 , y0 ±
Δ y
2

, z0) Δ z

Az ( x0 , y0 ±
Δ y
2

, z0)= Az (x0 , y0 , z0)±
Δ y
2

∂ Az

∂ y
(x0 , y0 , z0)

+O ((Δ y )
2
)

⇒ ∫
Sides 1/3

A⋅d ℓ= [ Az ( x0 , y0 , z0)±
Δ y
2

∂ A z

∂ y
(x0 , y0 , z0)

+O ((Δ y)
2
)] (± Δ z)

n̂



  

⇒

∫
Sides
1 & 3

A⋅d ℓ= [+
∂ Az

∂ y
(x0 , y0 , z0)

+O ((Δ y)
2
)] Δ y Δ z

∫
Sides
2 & 4

A⋅d ℓ=[−
∂ Ay

∂ z
( x0 , y0 , z0)

+O ((Δ z)
2
)] Δ y Δ z

⇒ (∇ ×A )x =
∂ Az

∂ y
−

∂ Ay

∂ z

⇒ ∇ ×A= x̂ ( ∂ Az

∂ y
−

∂ Ay

∂ z
)+ ŷ ( ∂ Ax

∂ z
−

∂ A z

∂ x
)+ ẑ ( ∂ Ay

∂ x
−

∂ Ax

∂ y
)

⇒ (∇ ×A) j⋅d a j = ∮
C j

A⋅d ℓ

⇒ ∫
S

∇ ×A⋅d a= ∮
C

A⋅d ℓ



  



  

∇⋅F=0 , ∇ ×F=0

∇⋅F≠0 , ∇ ×F≠0

∇⋅F≠0 , ∇ ×F=0∇⋅F=0 , ∇ ×F≠0

∇⋅F=0 , ∇ ×F=0 ∇⋅F=0 , ∇ ×F≠0



  

Product RulesProduct Rules

 Sum rule:                                          Multiplying by a constant:

 Product rule:                                               Quotient rule:

 Similar relations hold for the vector derivatives:

 2 ways to construct a scalar as the product of 2 functions:

 2 ways to make a vector:

 There are 6 product rules, 2 for gradients:

(i)

(ii) 

d
d x

f
g

=

g
d f
d x

− f
d g
d x

g2

d
d x

(f + g)=
d f
d x

+
d g
d x

d
d x

(k f )= k
d f
d x

∇ ( f + g)= ∇ f + ∇ g , ∇⋅(A+B)= ∇⋅A+ ∇⋅B , ∇ ×(A+B )= ∇ ×A+ ∇ ×B
∇ (k f )= k ∇ f , ∇⋅(k A)= k ∇⋅A , ∇ ×(k A )=k ∇ ×A

f A (scalar times vector )

A×B (cross product of 2 vectors )

d
d x

(f g)= f
d g
d x

+ g
d f
d x

f g (product of 2 scalar functions )

A⋅B (dot product of 2 vector functions )

∇ (A⋅B)=A×(∇ ×B)+B×(∇ ×A )+(A⋅∇ ) B+(B⋅∇) A

∇ ( f g)= f ∇ g + g ∇ f



  

∑
k

ϵi j k ϵm n k =δ i m δ j n −δ i n δ j m , ∂i ≡
∂

∂ xi

A×(∇ ×B)=∑
i , j , k

ϵi j k x̂ i A j (∇ ×B)k =∑
i , j , k

ϵi j k x̂i A j ∑
m , n

ϵk m n ∂m Bn

= ∑
i , j , k , m , n

ϵi j k ϵk m n x̂ i A j ∂m Bn = ∑
i , j , k , m , n

ϵi j k ϵm n k x̂ i A j ∂m Bn

= ∑
i , j , m , n

(δ i m δ j n −δ i n δ j m) x̂ i A j ∂m Bn =∑
i , j

x̂ i A j (∂i B j − ∂ j Bi)

(A⋅∇) B=∑
i , j

A j ∂ j (Bi x̂ i)=∑
i , j

x̂ i A j ∂ j Bi

⇒ A×(∇ ×B)+(A⋅∇ )B=∑
i , j

x̂ i A j ∂i B j

⇒ B×(∇ ×A)+(B⋅∇ ) A=∑
i , j

x̂ i B j ∂i A j

⇒ A×(∇ ×B)+B×(∇ ×A )+(A⋅∇ ) B+(B⋅∇) A

=∑
i , j

x̂ i ( A j ∂i B j + B j ∂i A j)=∑
i , j

x̂ i ∂i ( A j B j)= ∇ (A⋅B)



  

2 for divergences:

(iii)

(iv)

2 for curls:

(v)

(vi)

 The proofs come straight from the product rule for ordinary derivatives, eg,

 It is also possible to formulate 3 quotient rules:

∇⋅(A×B)=B⋅(∇ ×A)−A⋅(∇ ×B)

∇
f
g

=
g ∇ f − f ∇ g

g2
, ∇⋅

A
g

=
g ∇⋅A−A⋅∇ g

g2
, ∇ ×

A
g

=
g ∇ ×A +A× ∇ g

g2

∇ ×(f A)= ∇ f ×A+ f ∇ ×A

∇ ×(A×B)=(B⋅∇ ) A−(A⋅∇ ) B+(∇⋅B) A−(∇⋅A) B

∇⋅(f A )= ∇ f⋅A + f ∇⋅A

∇⋅( f A )=∂ x ( f Ax)+ ∂y ( f Ay)+ ∂z ( f A z)

=( Ax ∂ x f + f ∂ x Ax)+( Ay ∂y f + f ∂y Ay)+( A z ∂z f + f ∂z A z)

= ∇ f ⋅A + f ∇⋅A



  

22ndnd Derivatives Derivatives
 By applying ∇ twice, we can construct 5 species of 2nd derivatives.

 The gradient ∇ T is a vector, so we can take the divergence and curl of it:

(1) Divergence of gradient:

(2) Curl of gradient:

 The divergence ∇⋅v is a scalar—all we can do is take its gradient:

(3) Gradient of divergence:

 The curl ∇×v is a vector, so we can take its divergence and curl:

(4) Divergence of curl:

(5) Curl of curl: 

 This object, which we write as ∇ 2 T for short, is called the Laplacian of T .

 The Laplacian of a scalar is a scalar. ∇
2
≡ ∂

2

∂ x2 + ∂
2

∂ y2 + ∂
2

∂ z2 = ∑
k =1

3
∂

2

∂ xk
2 = ∑

k =1

3

∂k
2

∇
2 T

= ∇⋅∇ T
=( x̂

∂

∂ x
+ ŷ

∂

∂ y
+ ẑ

∂

∂ z
)⋅( x̂

∂ T
∂ x

+ ŷ
∂ T
∂ y

+ ẑ
∂ T
∂ z
)=

∂
2 T

∂ x2 +
∂

2 T

∂ y2 +
∂

2 T

∂ z2

∇ ×∇ T

∇ (∇⋅v )

∇⋅(∇ ×v )

∇⋅∇ T

∇ ×(∇ ×v )



  

 The Laplacian of a vector, ∇ 2 v:

 The curl of a gradient is always 0:

 Its proof hinges on the equality of cross derivatives:

 ∇(∇⋅v) seldom occurs in physical applications,

 The divergence of a curl, like the curl of a gradient, is always 0:

  

∇
2 v=(∇⋅∇ ) v ≠ ∇ (∇⋅v )

∂

∂ x
∂ T
∂ y

=
∂

∂ y
∂ T
∂ x

∇ × ∇ T =0

∇
2 v≡(∇

2 v x) x̂ +(∇
2 v y) ŷ +(∇

2 v z) ẑ

∇⋅(∇ ×v )=0

∇ ×(∇ ×v )= ∇ (∇⋅v )− ∇
2 v

Proof: Let ∂ i≡
∂

∂ xi

∇ ×(∇ ×v )= ∑
i , j , k
ϵi j k x̂ i ∂ j (∇ ×v )k = ∑

i , j , k
ϵi j k x̂ i ∂ j ∑

m , n
ϵk m n ∂m vn

= ∑
i , j , k , m , n

ϵi j k ϵm n k x̂ i ∂ j ∂m vn = ∑
i , j , m , n

(δ i m δ j n −δ i n δ j m) x̂ i ∂ j ∂m vn

=(∑
i
x̂ i ∂i) (∑

j
∂ j v j)−(∑

j
∂ j ∂ j) ∑

i
vi x̂ i = ∇ (∇⋅v )− ∇

2 v



  

Integral Calculus
Line, Surface, and Volume IntegralsLine, Surface, and Volume Integrals
 In electrodynamics, the most important integral are line 

(or path) integrals, surface integrals (or flux), and 
volume integrals.

 Line Integrals:

the integral is to be carried out along a path C from point a to point b.

 If the path forms a closed loop (ie, if b=a), it can be expressed as:

 One example of a line integral is the work done by a force F:

 Ordinarily, the value of a line integral depends critically on the path, but there 
is an important special class of vector functions for which the line integral is 
independent of path and is determined entirely by the end points.
                                                                                                             Example 1.6
 A force that has this property is called conservative.

 Surface Integrals:

the integral is over a specified surface S.

 If the surface is closed:

W =∫ F⋅d ℓ

∮ v⋅d a

∮ v⋅d ℓ

∫
S

v⋅d a

∫
a

b

v⋅d ℓ



  

 For a closed surface, tradition dictates that “outward” is 
positive, but for open surfaces it’s arbitrary.

 If v describes the flow of a fluid (mass per unit area per 

unit time), then∫ vd a represents the total mass per unit 

time passing through the surface—hence “flux.”

 Ordinarily, the value of a surface integral depends on the particular surface 
chosen, but there is a special class of vector functions for 
which it is independent of the surface and is determined 
entirely by the boundary line.

 Volume Integrals:

because the unit vectors are constants, they come 
outside the integral.

Example 1.7   Example 1.8

∫ v d τ =∫ (v x x̂ + vy ŷ + vz ẑ ) d τ

= x̂ ∫ vx d τ + ŷ ∫ vy d τ + ẑ ∫ vz d τ

∫
V

T d τ ⇐ d τ =d x d y d z

Cartesian coordinates



  

The Fundamental Theorem of CalculusThe Fundamental Theorem of Calculus
 Let f (x) is a function of one variable, the fundamental theorem of calculus:

 Geometrical Interpretation:                        is the infinitesimal change in f when 

you go from x to x+d x. The fundamental theorem says that if you chop the 

interval from a to b into many tiny pieces, d x, and add up the increments d f from 

each little piece, the result is equal to the total change in f: f (b) − f (a).

 2 ways to determine the total change in the function: 
either subtract the values at the ends or go step-by-step, 
adding up all the tiny increments as you go. You’ll get 
the same answer either way.

 So the integral of a derivative over some region is given 
by the value of the function at the end points (boundaries).

 In vector calculus there are 3 species of derivative 
(gradient, divergence, and curl), and each has its own 
“fundamental theorem,” with essentially the same format.

d f =
d f
d x

d x

∫
a

b d f
d x

d x = f (b)− f (a) ⇐ ∫
a

b

F d x = f (b)− f (a) ⇐ F =
d f
d x



  

The Fundamental Theorem for GradientsThe Fundamental Theorem for Gradients
 Let we have a scalar function of 3 variables T(x,y,z). 

Starting at a, we move a small distance d ℓ1. T will 
change by an amount

 Now we move a little further, by an additional small 
displacement d ℓ2; the incremental change in T 

will be ∇ Td ℓ2. By proceeding by infinitesimal steps, we make the journey to b.

 The total change in T in going from a to b (along the path selected) is

                                                                                                         Example 1.9

 The integral (a line integral) of a derivative (the gradient) 
is given by the value of T at the boundaries (a & b).

 Line integrals ordinarily depend on the path from a to b. But the rhs of the eqn 
makes no reference to the path—only to the end points.

 Gradients have the property that the line integrals are path independent:

Corollary 1:                         is independent of the path taken from a to b.

Corollary 2:                         , since the beginning and end points are identical, 
                                               and hence T(b)−T(a)=0. 

d T = ∇ T⋅d ℓ1

∮ ∇ T⋅d ℓ=0

∫
a

b

∇ T⋅d ℓ=T (b )−T (a ) ⇐ fundamental theorem
for gradients

∫ b

∇ T⋅d ℓ
a



  

The Fundamental Theorem for DivergencesThe Fundamental Theorem for Divergences
 The fundamental theorem for divergences states

 It is called as Gauss’s theorem, Green’s theorem, the divergence theorem.

 The integral of a derivative (the divergence) over a region (volume V) is equal to 

the value of the function at the boundary (the surface S that bounds the volume).

 If v represents the flow of an incompressible fluid, then the flux of v is the total 
amount of fluid passing out through the surface, per unit time.

 The divergence measures the “spreading out” of the vectors from a point—a 
place of high divergence is like a “faucet,” pouring out liquid.

 If we have a bunch of faucets in a region filled with 
incompressible fluid, an equal amount of liquid will be 
forced out through the boundaries of the region.

 2 ways to determine how much is being produced: 
(a) count up all the faucets, recording how much each 
      puts out, or 
(b) measure the flow at each point of the boundary, 
      and add it all up:
                                                                                                           Example 1.10∫ (faucets within the volume )= ∮ (flow out through the surface )

∫
V

∇⋅v d τ = ∮
S

v⋅d a



  

The Fundamental Theorem for CurlsThe Fundamental Theorem for Curls
 The fundamental theorem for curls, 

also called Stokes’ theorem:

 The integral of a derivative (the curl) over 

a region (surface S) is equal to the value 

of the function at the boundary (the 
perimeter of the surface, C).

 The curl measures the “twist” of v; a region of high curl is a whirlpool.

 The integral of the curl over some surface (the flux of the curl 

through that surface) represents the “total amount of swirl,” and we 
can determine that by going around the edge and finding how much 
the flow is following the boundary.

               is sometimes called the circulation of v.

 Consistency in Stokes’ theorem is given by the right-hand rule: if your fingers 
point in the direction of the line integral, then your thumb is the direction of d a.

 Ordinarily, a flux integral depends critically on what surface you integrate over, 
but evidently this is not the case with curls.

∮ v⋅d ℓ

∫
S

∇ ×v⋅d a= ∮
C

v⋅d ℓ



  

 Stokes’ theorem says that                       is equal to the line integral of v around 

the boundary, and the latter makes no reference to the surface you choose.

Corollary 1:                       depends only on the boundary line, not on the 
                                            particular surface used.

Corollary 2:                             for any closed surface, since the boundary line,
                                                  like the mouth of a balloon, shrinks down to a
                                                  point, and hence the line integral vanishes.

          Example 1.11

∫
S

∇ × ∇ T⋅d a= ∮
C=∂ S

∇ T⋅d ℓ=0

for arbitrary surface ⇒ ∇ × ∇ T =0

∫
V

∇⋅(∇ ×v ) d τ = ∮
S=∂ V

∇ ×v⋅d a=0

for arbitrary volume ⇒ ∇⋅(∇ ×v )=0

∫ ∇ ×v⋅d a

∫ ∇ ×v⋅d a

∮ ∇ ×v⋅d a=0



  

∫
curve

∇ ϕ⋅d ℓ=ϕ2 −ϕ1∫
volume

∇⋅F d τ = ∮
surface

F⋅d a

In general, ∫
M

d ω= ∫
∂ M

ω

∫
surface

∇ ×A⋅d a= ∮
curve

A⋅d ℓ



  

Integration by PartsIntegration by Parts

                                                                                                            Example 1.12

 It applies to the situation in which you are called upon to integrate the product 
of one function (f) and the derivative of another (g); it says you can transfer the 

derivative from g to f , at the cost of a minus sign and a boundary term.

 The integrand is the product f and the derivative (the divergence) of A, and 

integration by parts licenses us to transfer the derivative from A to f (a gradient), 
at the cost of a minus sign and a boundary term (a surface integral).

∇⋅( f A)= f ∇⋅A+A⋅∇ f

⇒ ∫ ∇⋅( f A ) d τ= ∫ f ∇⋅A d τ + ∫ A⋅∇ f d τ =∮ f A⋅d a

⇒ ∫
V

f ∇⋅A d τ = ∮
S

f A⋅d a− ∫
V

A⋅∇ f d τ

d
d x

( f g)= f
d g
d x

+ g
d f
d x

⇒ ∫
a

b d
d x

( f g) d x =( f g)|a

b

= ∫
a

b

f
d g
d x

d x + ∫
a

b

g
d f
d x

d x

⇒ ∫
a

b

f
d g
d x

d x =( f g)|a

b

− ∫
a

b

g
d f
d x

d x



  

Curvilinear Coordinates 
Derivation for a polar coordinateDerivation for a polar coordinate
 In a polar coordinate, the unit vectors are

 The position vector can be written as

and the velocity is

 Since the derivatives of the unit vectors in a polar coordinate are

Therefore,

 With r held constant

 The acceleration is

 With r held constant

êr ( radial direction) and êθ (tangential direction )

r⃗ =r êr

u⃗=
d

d t
r⃗ = êr

d r
d t

+ r
d

d t
êr

d
d t

êr =ω êθ ,
d

d t
êθ=−ω êr ⇐ ω=

d θ
d t

u⃗= ṙ êr +r ω êθ ⇐ ṙ =
d r
d t

u⃗= r ω êθ= v êθ

a⃗=
d

d t
u⃗= r̈ êr + ṙ

d
d t

êr +(ṙ ω+ r ω̇) êθ+r ω
d

d t
êθ

= r̈ êr + ṙ ω êθ+(ṙ ω+ r ω̇) êθ−r ω2 êr

⇒ a⃗ =( r̈ −
v2

r
) êr +(2 ṙ ω+r α) êθ ⇐ α≡ ω̇= θ̈

a⃗=−
v2

r
êr +r α êθ= ar êr + a t êθ

r⃗ ' = r⃗ +Δ r⃗

x

r⃗
êr

êr '

êθ

êθ 'y

êr '

êθ '

êr

êθ

Δ êθ

êr

θ êθ

Δ êr

θ

θ



  

Spherical CoordinatesSpherical Coordinates
 Sometimes it is more convenient to use spherical 

coordinates (r, θ, ϕ) instead of Cartesian coordinates 

(x, y, z); r is the distance from the origin, θ is called 
the polar angle, and ϕ is the azimuthal angle.

  

 3 unit vectors,    ,   ,    , point in the              direction of increase of the          
corresponding coordinates. They form an orthogonal (mutually perpendicular) 
basis set, and any vector A can be expressed as:

 Warning:   ,    ,    are associated with a particular point, and they change 
direction as the point moves around (compared with Cartesian coordinates).

 One could take account of this by explicitly indicating the point of reference:

ϕ̂

x =r sin θ cos ϕ , y =r sin θ sin ϕ , z =r cos θ

θ̂

r̂ (θ , ϕ) , θ̂ (θ , ϕ) , ϕ̂ (θ , ϕ)

A=A r r̂ + A θ θ̂+ A ϕ ϕ̂

[
r̂=sin θ cos ϕ x̂ + sin θ sin ϕ ŷ + cos θ ẑ
θ̂=cos θ cos ϕ x̂ + cos θ sin ϕ ŷ−sin θ ẑ
ϕ̂= −sin ϕ x̂ + cos ϕ ŷ

r̂

r̂

θ̂ ϕ̂



  

[
x =r sin θ cos ϕ
y = r sin θ sin ϕ
z= r cos θ

⇒ [
r = √x2

+ y2
+ z2

θ= tan−1 √ x2
+ y2

z

ϕ= tan−1 y
x

⇒ [
r̂

θ̂

ϕ̂
]= [

r
r
ϕ̂× r̂
ẑ× r̂
sin θ

] ⇒ r̂ ⊥ θ̂ ⊥ ϕ̂



  

⇒ [
r̂
θ̂

ϕ̂ ]= [
sin θ cos ϕ sin θ sin ϕ cos θ
cos θ cos ϕ cos θ sin ϕ −sin θ

−sin ϕ cos ϕ 0 ] [
x̂
ŷ
ẑ ] ⇒ Ŝ=R D̂

⇒ [
x̂
ŷ
ẑ ]= [

sin θ cos ϕ cos θ cos ϕ −sin ϕ
sin θ sin ϕ cos θ sin ϕ cos ϕ
cos θ − sin θ 0 ] [

r̂
θ̂

ϕ̂ ] ⇒ D̂=RT Ŝ=R−1 Ŝ

⇒

∂ r̂
∂ r

=0 ,
∂ θ̂

∂ r
=0 , ∂ ϕ̂

∂ r
=0

∂ r̂
∂ θ

= θ̂ ,
∂ θ̂

∂ θ
=− r̂ , ∂ ϕ̂

∂ θ
=0

∂ r̂
∂ ϕ

=ϕ̂ sin θ ,
∂ θ̂

∂ ϕ
= ϕ̂ cos θ , ∂ ϕ̂

∂ ϕ
=− r̂ sin θ− θ̂ cos θ

r̂ sin θ+ θ̂ cos θ

θ

θ̂ cos θ


ϕ̂

r̂ sin θ

ẑ



  

 Do not naively combine the spherical components of vectors associated with 
different points. Beware of differentiating a vector that is expressed in spherical 
coordinates, since the unit vectors themselves are functions of position. And do 
not take    ,    , and     outside an integral.

 An infinitesimal displacement        in the     direction is:

 An infinitesimal element of length in the     direction is:

 An infinitesimal element of length in the     direction is:

 Thus the general infinitesimal displacement is:

 The infinitesimal volume element in spherical coordinates is the product of the 
3 infinitesimal displacements:

 Surface elements depend on the orientation of the surface. One has to analyze 
the geometry for any given case.

 For the surface of a sphere, r=const, whereas θ and ϕ change, so 

ϕ̂θ̂

d a1= d ℓθ d ℓϕ r̂=r2 sin θ d θ d ϕ r̂

r̂

r̂ d ℓr =d r

d ℓθ= r d θ

d ℓϕ=r sin θ d ϕ

d ℓ= dr r̂ + r d θ θ̂+ r sin θ d ϕ ϕ̂

d τ =d ℓr d ℓθ d ℓϕ=r2 sin θ d r d θ d ϕ

θ̂

ϕ̂



  

 If the surface lies in the xy plane,, so that θ=π/2 

while r and ϕ vary, then

Example 1.13

 Now I would like to “translate” the vector derivatives 
(gradient, divergence, curl, and Laplacian) into r, θ, ϕ notation.

 Since                                              , one can do it in the hard way by translate

 We can do it in an easier way by  

r∈ [ 0 , ∞ ) , θ∈[0 , π ] , ϕ∈[0 , 2 π ]

d a2=d ℓr d ℓϕ θ̂=r d r d ϕ θ̂

∂

∂ x
=

∂ r
∂ x

∂

∂ r
+

∂ θ

∂ x
∂

∂ θ
+

∂ ϕ

∂ x
∂

∂ ϕ
,

∂

∂ y
=⋯ ,

∂

∂ z
=⋯

x̂= x̂ ( r̂ , θ̂ , ϕ̂) , ŷ= ŷ ( r̂ , θ̂ , ϕ̂) , ẑ= ẑ ( r̂ , θ̂ , ϕ̂) , ⋯

ℓr ≡r , ℓθ≡r θ [with r  fixed ] , ℓϕ≡(r sin θ )ϕ [with r , θ  fixed ]

⇒ hr =1 , hθ=r , hϕ=r sin θ ⇐ hi : metric coefficients

⇒ ∇ T = r̂ ∂ T
∂ ℓr

+ θ̂
∂ T
∂ ℓθ

+ϕ̂
∂ T
∂ ℓϕ

= r̂ ∂ T
∂ r

+
θ̂

r
∂ T
∂ θ

+
ϕ̂

r sin θ
∂ T
∂ ϕ

∇ T = x̂ ∂ T
∂ x

+ ŷ ∂ T
∂ y

+ ẑ ∂ T
∂ z



  

Gradient:

Divergence:

Curl:

Laplacian:

∇ ×v=
r̂

r sin θ [ ∂

∂ θ
(vϕ sin θ)−

∂ vθ
∂ ϕ ] +

θ̂

r [ 1
sin θ

∂ vr

∂ ϕ
−

∂

∂ r
(r vϕ)]

+
ϕ̂

r [ ∂

∂ r
(r vθ)−

∂ vr

∂ θ ]= 1
r2 sin θ |

r̂ r θ̂ r sin θ ϕ̂
∂r ∂θ ∂ϕ

vr r vθ r sin θ vϕ |

∇ T =( r̂ ∂

∂ r
+
θ̂

r
∂

∂ θ
+
ϕ̂

r sin θ
∂

∂ ϕ
) T = r̂ ∂ T

∂ r
+
θ̂

r
∂ T
∂ θ

+
ϕ̂

r sin θ
∂ T
∂ ϕ

∇
2 T =

1
r2

∂

∂ r
( r2 ∂ T

∂ r
)+

1
r2 sin θ

∂

∂ θ
( sin θ

∂ T
∂ θ
)+

1
r2 sin2

θ

∂
2 T

∂
2
ϕ

∇⋅v=
1
r2

∂

∂ r
(r2 vr )+

1
r sin θ

∂

∂ θ
(vθ sin θ )+

1
r sin θ

∂ vϕ
∂ ϕ

=
1

r2 sin θ
[∂r (vr r2 sin θ )+ ∂θ (vθ r sin θ )+ ∂ϕ (vϕ r )]



  

∇⋅v=( r̂ ∂

∂ ℓr

+ θ̂
∂

∂ ℓθ
+ϕ̂

∂

∂ ℓϕ
)⋅(vr r̂+ vθ θ̂+ vϕ ϕ̂)

= r̂⋅ ∂

∂ r
(vr r̂+ vθ θ̂+ vϕ ϕ̂)+ θ̂⋅

1
r

∂

∂ θ
(vr r̂+ vθ θ̂+ vϕ ϕ̂)

+ϕ̂⋅
1

r sin θ
∂

∂ ϕ
(vr r̂ + vθ θ̂+ vϕ ϕ̂ )

=
∂ vr

∂ r
+ 0 + 0 + r̂ ⋅( vr

∂ r̂
∂ r

+ vθ
∂ θ̂

∂ r
+ vϕ

∂ ϕ̂

∂ r
)

+ 0 +
1
r

∂ vθ
∂ θ

+ 0 +
θ̂

r
⋅( v r

∂ r̂
∂ θ

+ vθ
∂ θ̂

∂ θ
+ vϕ

∂ ϕ̂

∂ θ
)

+ 0 + 0 +
1

r sin θ
∂ vϕ
∂ ϕ

+
ϕ̂

r sin θ
⋅( vr

∂ r̂
∂ ϕ

+ vθ
∂ θ̂

∂ ϕ
+ vϕ

∂ ϕ̂

∂ ϕ
)

=
∂ vr

∂ r
+

1
r

∂ vθ
∂ θ

+
vr

r
+ 0+

1
r sin θ

∂ vϕ
∂ ϕ

+
vr

r
+

vθ cos θ
r sin θ

+ 0

=
∂ vr

∂ r
+

2 vr

r
+

1
r

∂ vθ
∂ θ

+
vθ cos θ
r sin θ

+
1

r sin θ
∂ vϕ
∂ ϕ

=
1
r2

∂

∂ r
(r2 vr)+

1
r sin θ

∂

∂ θ
(vθ sin θ)+

1
r sin θ

∂ vϕ
∂ ϕ



  

For Curvilinear Coordinates

d ℓ= n̂1 h1 d u1 + n̂2 h2 d u2 + n̂3 h3 d u3 ⇒ d τ= h1 h2 h3 d u1 d u2 d u3

⇒ d a1 = n̂1 h2 h3 d u2 d u3 , d a2 = n̂2 h3 h1 d u3 d u1 , d a3= n̂3 h1 h2 d u1 d u2

∇ =
n̂1

h1

∂

∂ u1

+
n̂2

h2

∂

∂ u2

+
n̂3

h3

∂

∂ u3

=
n̂1

h1

∂u1
+
n̂2

h2

∂u2
+
n̂3

h3

∂u3
=∑

i =1

3 n̂ j

h j

∂

∂ u j

∇⋅A=
∂u1

( A1 h2 h3)+∂u2
(h1 A2 h3)+∂u3

(h1 h2 A3)

h1 h2 h3

∇ ×A=
1

h1 h2 h3 |
h1 n̂1 h2 n̂2 h3 n̂3

∂u1
∂u2

∂u3

h1 A1 h2 A2 h3 A3
|= 1

h1 h2 h3
∑

i , j , k
ϵ

i j k hi n̂ i

∂ hk Ak

∂ u j

∇
2 V

= ∇⋅∇ V
=

1
h1 h2 h3

[∂u1
( ∂u1

V

h1

h2 h3)+ ∂u2
( h1

∂u2
V

h2

h3)+∂u3
( h1 h2

∂u3
V

h3

)]



  

Cylindrical CoordinatesCylindrical Coordinates
 In the cylindrical coordinates (s, ϕ, z), ϕ has the 

same meaning as in spherical coordinates, and z is 

the same as Cartesian; s is the distance to P from 
the z axis.

Gradient:

Divergence:  

x = s cos ϕ , y =s sin ϕ , z =z

[
ŝ= cos ϕ x̂ + sin ϕ ŷ
ϕ̂= −sin ϕ x̂ + cos ϕ ŷ
ẑ= ẑ

d ℓs = d s , d ℓϕ= s d ϕ , d ℓ z = d z
⇒ d ℓ= d s ŝ+ s d ϕ ϕ̂+ d z ẑ , d τ= s d s d ϕ d z

⇐ hs =1 , hϕ= s , hz =1

s∈ [ 0 , ∞ ) , ϕ∈[0 , 2 π ] , z ∈(−∞ , ∞)

∇ T =( ŝ ∂

∂ s
+
ϕ̂

s
∂

∂ ϕ
+ ẑ ∂

∂ z
) T = ŝ ∂ T

∂ s
+
ϕ̂

s
∂ T
∂ ϕ

+ ẑ ∂ T
∂ z

∇⋅v=
1
s

∂

∂ s
(s vs)+

1
s

∂ vϕ
∂ ϕ

+
∂ vz

∂ z
=

1
s

[∂s (s vs)+ ∂ϕ vϕ+∂z (s v z)]



  

Curl:

Laplacian:

∇ ×v=( 1
s

∂ vz

∂ ϕ
−

∂ vϕ
∂ z
) ŝ +( ∂ v s

∂ z
−

∂ v z

∂ s
) ϕ̂+

1
s [ ∂

∂ s
(s vϕ)−

∂ v s

∂ ϕ ] ẑ

=
1
s |

ŝ s ϕ̂ ẑ
∂s ∂ϕ ∂z

v s s vϕ vz
|

∇
2 T =

1
s

∂

∂ s
( s

∂ T
∂ s
)+

1
s2

∂
2 T

∂ ϕ
2 +

∂
2 T

∂ z2



  

The Divergence ofThe Divergence of
               is directed radially outward; it is likely to have a 

large positive divergence from it. But

 If we integrate over a sphere of radius R, centered at the origin, the   surface 
integral is

 But the volume integral,                       , if we are really to believe Eq. (?). Does 
this mean that the divergence theorem is false?

 The source of the problem is at r=0, where v blows up. It is true that ∇⋅v=0 

everywhere except the origin, but right at the origin the situation is complicated.

 The surface integral ($) is independent of R; if the divergence theorem is right 

(and it is), we should get                            for any sphere centered at the origin, 
no matter how small. So the entire contribution must come from the point r=0.

 Thus, ∇⋅v has the bizarre property that it vanishes everywhere except at one 
point, and yet its integral (over any volume containing that point) is 4π.

 This is where the Dirac delta function comes in.

The Dirac Delta Function
r̂ /r2

∫ v⋅d a=∫ r̂
R2

⋅R2 sin θ d θ d ϕ r̂= ∫
0

π

sin θ d θ ∫
0

2 π

d ϕ=4 π ($)

v= r̂ /r2

∫ ∇⋅v d τ=4 π

∇⋅v=
1
r2

∂

∂ r
( r2 1

r2 )=
1
r2

∂

∂ r
(1)=0 ? (?)

∫ ∇⋅v d τ=0



  

The One-Dimensional Dirac Delta FunctionThe One-Dimensional Dirac Delta Function
 The 1d Dirac delta function, δ(x), can be pictured as an 

infinitely high, infinitesimally narrow “spike,” ie,

 δ(x) is not a function at all, since its value is not finite at
x=0; so it is a generalized function, or distribution.

 It is the limit of a sequence of functions,   such as rectangles   Rn(x),   of height 

n and width 1/n, or isosceles triangles 

Tn(x), of height n and base 2/n.

 If f(x) is some “ordinary” function 
thus continuous, then the product 
f(x)δ(x) is 0 everywhere except 

at x=0,

 Under an integral, the delta function “picks out” the value of f(x) at x=0.

 The integral need not run from −∞ to +∞; it is sufficient that the domain 
extend across the delta function, and −ϵ to +ϵ would do as well. 

[δ ( x)]=
1
L

δ (x )= [0  if x ≠0
∞ if x =0

 and ∫
−∞

∞

δ (x ) d x =1

⇒ f ( x) δ ( x )= f (0) δ (x ) ⇒ ∫
−∞

∞

f ( x) δ ( x ) d x = f (0) ∫
−∞

∞

δ (x ) d x = f (0)



  

 we can shift the spike from x=0 to some 

other point, x=a: 

 Although δ isn’t a legitimate function, integrals over δ are perfectly acceptable.

 It is best to think of the delta function as something that is always intended for 
use under an integral sign.

 In particular, 2 expressions involving delta functions (say, D1(x) and D2(x)) are 

considered equal if, for all (“ordinary”) functions f(x),

Example 1.14,  Example1.15

δ (x −a)= [0   if x ≠ a
∞  if x = a

 with ∫
−∞

∞

δ ( x − a) d x =1

⇒ f ( x) δ ( x − a)= f (a) δ ( x − a)

⇒ ∫
−∞

∞

f ( x ) δ (x −a) d x = f (a)

∫
−∞

∞

f ( x ) D1 (x ) d x = ∫
−∞

∞

f ( x) D2 (x ) d x



  

The Three-Dimensional Delta FunctionThe Three-Dimensional Delta Function
 It is easy to generalize the delta function to 3d:

 This 3d delta function is 0 everywhere except at (0, 0, 0), where it blows up. Its 
volume integral is 1: 

Integration with δ picks out the value of f at the location of the spike.

 The divergence of       is 0 everywhere except at the origin, and yet its integral 

over any volume containing the origin is a constant (4π). These are precisely the 
defining conditions for the Dirac delta function;

Example 1.16 

δ
3
(r )=δ (x ) δ (y ) δ (z)

∫
all space

δ
3
(r ) d τ= ∫

−∞

∞

∫
−∞

∞

∫
−∞

∞

δ (x ) δ (y ) δ (z) d x d y d z =1

⇒ ∫
all space

f (r ) δ
3
(r −a ) d τ = f (a ) ⇐ [δ

3
(r )]=

1
L3

r̂
r2

⇒ ∇⋅
r̂
r2

=4 π δ3
(r ) ⇒ ∇⋅

�̂

�2
=4 π δ3

( �⃗) ⇐ �⃗=r −r 

⇒ ∇
2 1
�

=−4 π δ3
( �⃗) ⇐ ∇

1
�

=−
�̂

�2
⇒ ∇

2 1
|r −r 

|
=−4 π δ3

(r−r 
)



  

 Useful in solving the problems with various boundaries.

 In general, ∇
2 G (r , r 

)=−4 π q δ3
(r −r 

) ⇐ G :  Green function

q

Φ
(R)=Φ0 ⇐ boundary condition

Φ
(r )=Φ (r )+ F (r ) ⇐ ∇

2 F (r )=0

⇒ ∇
2Φ

(r )=−4 π q δ3
(r )

q
Φ (∞)  0 ⇐ boundary condition

⇒ Φ (r )=
q
r

⇒ ∇
2Φ (r )=−4 π q δ3

(r )



  

The Helmholtz TheoremThe Helmholtz Theorem
 Maxwell reduced the entire EM theory to 4 equations, specifying respectively 

the divergence and the curl of the electric field E and the magnetic field B.

 To what extent is a vector function determined by its divergence and curl? Let

 To solve a differential equation you must also be supplied with appropriate 
boundary conditions.

 In electrodynamics we typically require that the fields go to 0 “at infinity”.

 With the extra information, the Helmholtz theorem guarantees that the field 
is uniquely determined by its divergence and curl.

The Theory of Vector Fields

∇ ⋅ F= D
∇ ×F=C ⇐ ∇⋅C=0

⇒ Can F  be determined?



  

PotentialsPotentials
 If the curl of a vector field (F) vanishes (everywhere), then F can be written as 

the gradient of a scalar potential (Φ):

Theorem 1Theorem 1
Curl-less (or “irrotational”) fields. The following conditions are equivalent 
(that is, F satisfies one if and only if it satisfies all the others):

(a)                  everywhere.

(b)                  is independent of path, for any given end points.

(c)                       for any closed loop.

(d) F is the gradient of some scalar function:                   .

 The potential is not unique—any constant can be added to Φ with impunity, 
since this will not affect its gradient.

 If the divergence of a vector field (F) vanishes (everywhere), then F can be 

expressed as the curl of a vector potential (A):

∮ F⋅d ℓ=0

F=− ∇ Φ

∇ ×F=0

∫
a

b

F⋅d ℓ

∇⋅F=0 ⇔ F=− ∇ ×A

∇ ×F=0 ⇔ F=− ∇ Φ



  

Theorem 2Theorem 2
Divergence-less (or “solenoidal”) fields. The following conditions are 
equivalent:

(a)                everywhere.

(b)                is independent of surface, for any given boundary line.

(c)                      for any closed surface.

(d) F is the curl of some vector function:                   .

 The vector potential is not unique—the gradient of any scalar function can be 
added to A without affecting the curl, since the curl of a gradient is 0.

 In all cases (whatever its curl and divergence may be) a vector field F can be 
written as the gradient of a scalar plus the curl of a vector:

Selected problems: 6, 8, 13, 43, 47, 56

∮ F⋅d a=0

F=− ∇ Φ+ ∇ ×A +C (always) ⇐ C= constant vector

∇⋅F=0

∫ F⋅d a

F= ∇ ×A
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