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Chapter A Essential Concepts and Statics Review 

 

A-1 Introduction 

◼ Objective: To develop the relationships between the loads applied to a nonrigid (deformable) body and 

the internal forces and deformation induced in the body. 

◼ Principles and methods: 

1. The equations of equilibrium and free-body diagram (by cutting through a member) 

2. Geometry of the body after the action of loads. 

3. The relationship between the loads and deformation. 

4. The size and shape of the member must be adjusted to keep the stress (force per unit area) below 

the strength of material to avoid failure. 

 

A-2 Support reactions (in Statics) 

If the support presents translation in a given direction (2D: 2; 3D: 3), then a reaction force must be 

developed on the member in that direction. Likewise, if rotation is prevented in a given direction (2D: 1; 3D; 

3), a reaction couple moment must be exerted on the member in that direction. 

(1) Two dimensional supports: 
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(2) Three-dimensional supports 
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A-3 Equilibrium of a rigid body (in Statics) 

     = 0F ;  = 0OM  

◼ 3-D problem: 

    = 0xF ;  = 0yF ;  = 0zF ; 

   ( ) = 0
xOM ; ( ) = 0

yOM ; ( ) = 0
zOM . 

  There are, totally, 6 equilibrium equations. 

◼ 2-D problem: (x-y plane) 

    = 0xF ;  = 0yF ; ( ) = 0
zOM . 

   There are, totally, 3 equilibrium equations. 

 

[Remarks]： 

1. For 2-D problems under the action of concurrent external forces, only 2 equilibrium equations, i.e.,  

 = 0xF  and  = 0yF , are required. 

2. In statics, it is called “statically determinate” if the number of unknown forces is equal to the 

number of equilibrium equations; while it is called “statically indeterminate” if the number of 
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unknown forces is more than the number of equilibrium equations. In statically indeterminate 

problems, the unknown forces cannot completely determined by equilibrium equations. 

However, with the aid of geometry condition of deformation, all the unknown forces can be 

completely determined. 

 

A-4 Internal forces (in Statics) 

In the study of mechanics of materials, it is necessary to examine the internal forces that exist throughout 

the interior by an imaginary cutting plane (or a section) of a body. It is apparent that the internal force 

system is dependent upon both the orientation and location of the section and can be determined by the 

equilibrium equations. Experience indicates that materials behave differently to forces trying to pull 

atoms apart than to forces trying to slide atoms past each other. For convenience a xyz-coordinate system 

is adopted in which x is perpendicular to the section and y and z lie in the section. The component of 

internal force, FR, perpendicular to the section, (FR)x is called an “axial force” or “normal force”, 

generally denoted by symbol N. This force tends either to pull the body apart or to compress the body. 

The components of FR that lie in the section, (FR)y and (FR)z, are called the “shear forces”, generally 

denoted by Vy and Vz. These forces tend to slide one part of the body relative to other part. On the other 

hand, the component of internal couple, MRo, perpendicular to the section, (MRo)x, is called a “twisting 

couple” or “twisting moment”, or “torque”, generally denoted by symbol T. This couple tends to twist 

the body (just like to twistingly dry the clothes). The components of MRo that lie in the section, (MRo )y 

and (MRo )z, are called the “bending couples” or “bending moments”, generally denoted by My and Mz. 

These couples tend to bend the body. 

  

 

Internal forces in slender member: 

3-D problems 
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          2-D                                  3-D 

Sign conventions: An internal force or couple component is defined as positive if the component is 

either in a positive coordinate direction when acting on a positive section or in the negative coordinate 

direction when acting on a negative section. 

 

A-5 Relations between distributed load, shear, and moment (in Statics) 

  



 6 

 

 



 7 

Throughout the book the effects on a deformable body of the components of R and C will be examined 

in detail. 

For instance: 

◼ Axial forces : deformation and stresses induced by axial loading (chap. 4) 

◼ Twisting torque: deformation and stresses induced by torsional loading 

                  (This element is called “shaft”) (chap. 5) 

◼ Shear forces and bending moments: deflection and stresses induced by flexural loading (this 

element is called “beam”) (chaps. 6, 7, and 12) 

◼ Compressively axial force: deformation and stresses induced by compressive loading (this 

element is called “column”) (chap. 13) 

A phenomenon of geometrically unstable deformation “buckling” is introduced (not rupture or 

failure). 

 [Remarks]: The remained 4 chapters are: 

◼ Stresses (chap. 1) 

◼ Strains (chap. 2) 

◼ Stress-strain relationships and material mechanical properties (chap. 3) 

◼ Strain energy method and failure theories (chaps. 14 and 10.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 8 

Chapter 1.  Stress: Definitions and Concepts 

 

1-1 Introduction  

Application of the equations of equilibrium to determine the forces exerted on a body by its supports or 

connections and the internal forces acting on a section is the first step in the solution of engineering 

problems. A second and equally important step is to determine the internal effect of the forces on the body, 

which is related to the behaviors of materials under the action of forces. Safety and economy in a design are 

two considerations for which an engineer must accept responsibility. The intensity of the internal forces, 

called “stress”, to which each part of a machine or structure is subjected and the deformation (the 

intensity deformation is called “strain”) that each part experiences during the performance of its 

intended function should be able to be evaluated. Then, by knowing the properties of the material (the 

relationships between stress and strain) from which the parts will be made, the engineer establishes the 

effective size and shape of the individual parts and the appropriate means of connecting them. In other 

words, a thorough mastery of the physical significance of “stress” and “strain” is paramount. 

 

1-2 Normal stress under axial loading 

“Stress” is the intensity of force. A body must be able to withstand the intensity of an internal force to 

avoid rupture or excessive deformation. Force intensity (stress) is force divided by the area over which 

the force is distributed 

 

              Stress = Force / Area                   (1-1) 

 

If the internal force is normal to the exposed section, this force intensity is called “normal stress” 

denoted by “”. There are two kinds of force intensity. An average force intensity on a section is called 

“average normal stress”, avg 

 

              avg = F/A                                (1-2) 

 

While the stress at the point on the section to whichΔA converges is defined as 
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A

F

A 


=

→
lim

0

                              (1-3) 

 

WhereΔA andΔF denote the small area on the exposed cross section and the resultant of normal 

component of the internal forces transmitted by this small area, respectively. Generally, the normal stress 

at a point has more physical significance than the average normal stress.  

 

1-3 Shearing stress in connections or mechanisms 

Loads applied to a structure or machine are generally transmitted to the individual members through 

connections or mechanisms. In all these connections or mechanisms, one of the most significant stresses 

induced is a shearing stress. As shown in Fig. 2-4, if only one cross section of the bolt is used to affect the 

load transfer between the members, the bolt is said to be in “single shear”. On the other hand, it can be 

observed that two cross sections of the pin are used to sustain the load transfer between the members, the pin 

is said to be in “double shear”. For single shear, V = P, while 2V = P for double shear. In other words, the 

shear force induced by double shear elements is smaller than single shear ones. 

 

                      S. S.           D. S. 

 

 

Similarly, an average shearing stress and shearing stress at a point of section are defined as, respectively: 

 

   avg = V/A                                (1-4) 

 

  
A

V

A 


=

→
lim

0

                               (1-5) 

 

Another type of shear loading related to punch a hole in a metal plate, as shown in Fig. 2-7, is termed 

“punching shear”. 
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EX: The pin is either double-shear or fourfold-shear? 

 

1-4 Bearing stress 

Bearing stresses (compressive normal stresses) occur on the surface of contact between two interacting 

members. Bearing stress is normal component of this contact stress. As shown in Fig. 2-8, bearing stresses 

are developed at the contact surfaces between the head of the bolt and the top plate, between the nut and the 

bottom plate, and between the shanks of bolts and the sides of the hole. 

 

 

1-5 Units of stress 

The dimensions of stresses: FL-2  

◼ U.S. customary (FPS) system: psi (pound per square inch); ksi = 1000 psi 

◼ SI system: Pa (a Newton per square meter, N/m2); MPa = 106 Pa; GPa =109 Pa 

 

1-6 Stresses on an inclined plane in an axially loaded member 

As shown in Figs. 2-14~16, stresses on planes inclined to the axis of an axially loaded bar are considered. 

The axes and forces are all positive. The x-axis is the outward normal to a section perpendicular to the axis 
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of the bar; and the n-axis is the outward normal to the inclined section. The angle  is measured from a 

positive x-axis to a positive n-axis; a counterclockwise angle is positive. Positive y- and t-axes are located 

using the right-hand rule and a positive angle. The normal and shearing forces shown in Fig. 2-16 are all 

positive. 

 

From equilibrium equations:  

 cos0cos0 PNPNFn ==−= ; 

 sin0sin0 PVPVFt −==+=  

Since the relation between the area of axial cross section, A, and the area of inclined surface, An, is An = 

A /cos  therefore, the normal and shear stresses induced in the inclined surface under the assumption of 

uniform distribution are, respectively 

 

( )



 2cos1

2
cos

cos/

cos 2 +====
A

P

A

P

A

P

A

N

n

n
              (1-7) 





 2sin

2
cossin

cos/

sin

A

P

A

P

A

P

A

V

n

n −=−=
−

==              (1-8) 

 

As seen in Fig. 2-17, the magnitudes of n and n are the function of the angle . n is maximum when   is 

0o or 180o; while n is maximum when  is 45o or 135o. Moreover, the magnitudes of the maximum normal 

and shearing stresses for axial tensile or compressive loading are 

 

;/max AP=                                           (1-9) 

.2/max AP=                                           (1-10) 
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Laboratory experiments indicate that a brittle material loaded in tension will generally fail in tension on a 

transverse plane ( = 0o), whereas a ductile material loaded in tension will fail in shear on a 45o plane. 

(For brittle materials, strength < 2strength; whereas for ductile materials, strength > 2strength) 

 

To define the normal stress and shear stress at an arbitrary point P in a body, for instance, on the yz plane 

that has an outward normal along x-axis, these stresses should be designated by two subscripts. The first 

subscript designates the normal to the plane on which the stress acts and the second designates the 

coordinate axis to which the stress is parallel. Therefore, the normal stress exerted on this plane is 

designated by xx or x, while the shear stresses acting on this plane which are parallel to y and z axes are 

designated by xy and xz, respectively. 

   The equality of shearing stresses on orthogonal planes can be demonstrated by applying the equations of 

equilibrium to the free-body diagram of a small rectangular block of thickness dz, shown in Fig. 2-19. 

 

( ) ( )dxdydzdydxdzM xyyxz  == 0  

or yx = xy                                                             (1-11) 

It means the shearing stresses are symmetric. 

 

 

 

1-6 Stress at a general point in an arbitrarily loaded member 

In complicated structural members or machine components, the stress distributions are generally not 

uniformly distributed on arbitrary internal planes; therefore, a more general concept of the state of stress at a 

point is needed. The stresses at an arbitrary interior point O of a body in equilibrium can be 

determined as follows: 

Free-body diagram 
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1. We pass an imaginary “cutting plane” through point O of the body, and separate the body into two parts. 

2. One of isolated parts of body is taken as free body, and all the external forces, which include external 

applied forces and distributive internal forces acting on this interior cutting plane with an outward 

normal n, should be in equilibrium.  

3. Generally, the distributions of internal forces acting on the section are not uniform. Any distributed force 

acting on a small areaΔA surrounding a point of interest can be replaced by a statically equivalent 

resultant forceΔFn through O and a coupleΔMn. 

4. The resultant force ΔFn can be resolved into components ΔFnn  normal to the plane and ΔFnt tangent 

to the plane. A normal stress n and a shearing stress n are then defined as 

   
A

Fnn

A
n




=

→
lim

0

   and  
A

Fnt

A
n




=

→
lim

0

                             (1-12) 

5. In a Cartesian coordinate system, the stresses on planes passing through point O having outward normals 

in the x-, y-, and z-directions are usually chosen. Consider the plane yz having an outward normal in the 

x-direction. The resultant forceΔFnt orΔFxt tangent to the yz plane can be resolved into componentsΔFxy 

andΔFxz, consequently, the related stress components are 

   
A

Fxx

A
xxx




==

→
lim

0

 ; 
A

Fxy

A
xy




=

→
lim

0

 ; 
A

Fxz

A
xz




=

→
lim

0

                (1-13) 

Similarly, if the planes xy and zx having outward normals in the z- and y-direction, respectively, the 

corresponding stress components are (z, zx, zy) and (y, yz, yx), respectively. Therefore, the stress state 

at point O can be expressed by a “tensor”, which is neither scalar nor vector mathematically; i.e., 

  
















=

zzyzx

yzyyx

xzxyx








~

                                              (1-14) 

Of the nine components of stress, only six are independent due to the symmetry of shearing stresses. 

[Remarks]: 

◼ An infinite number of Cartesian coordinate systems can be selected, resulting in infinite 

number of stress tensors, which have different components just like the feature of vectors, but 

all of them are equivalent physically. 

◼ It is customary to show the stresses on positive and negative surfaces through a point using a small 
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cubic element as shown in Fig. 2-24. 

 

1-7  Two-dimensional or plane stress 

Plane stress (xy): A kind of stress state in which two parallel faces with outward normal in the 

z-direction of the small cubic element are free of stress; i.e., 

z = zx = zy = 0. In other words, only three stress components, x, y, xy, are non-zero. This stress 

state occurs at points within thin plates where the z-dimension of the body is small and the z-component 

of the external forces is zero. For convenience, this state of stress can be represented by the simple 

two-dimensional sketch, or a plane projection of the three-dimensional element. 
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Chapter 9.  Stress Transformation  

 

9-1 The stress transformation equations for plane stress 

Equations relating the normal and shearing stresses n and nt on an arbitrary plane (whose normal n is 

oriented at an angle  with respect to a reference x-axis; and a counterclockwise angle  is positive) through 

a point and the known stresses x, y and xy on the reference planes can be derived using the free-body 

diagram and the equations of equilibrium as shown in Fig. 2-27. 

 

( ) ( )  sinsincoscos0 dAdAdAF yxnn −−=  ( ) ( ) 0sincoscossin =−−  dAdA xyyx
 

or  cossin2sincos 22

xyyxn ++=                     (9-1) 

By using relations of double angle, above equation becomes 




 2sin2cos
22

xy

yxyx

n +






 −
+







 +
=                    (9-2) 

( ) ( )  cossinsincos0 dAdAdAF yxntt −+=  

        ( ) ( ) 0sinsincoscos =+−  dAdA yxxy
 

or ( ) ( ) 22 sincoscossin −+−−= xyyxnt                 (9-3) 

By using relations of double angle, above equation becomes 




 2cos2sin
2

xy

yx

nt +






 −
−=                             (9-4) 

[Remarks]: When these equations are used, the sign conventions used in their development must be 

rigorously followed. Moreover, it can be found that  

2

2

2

2

22
xy

yx

nt

yx

n 





 +






 −
=+















 +
−                      (9-5) 
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It represents a cycle with center ( )0,
2

yx  +
 and radius 

2

2

2
xy

yx
R 


+







 −
= . 

 

9-2 Principal stresses and maximum shearing stress-plane stress 

As shown in previous section, the normal and shearing stresses n and nt vary with the angle . For design 

purpose, critical stresses at the point are usually the maximum tensile stress and the maximum shearing 

stress. Maximum and minimum values of occur at value of for which dn/d is equal to zero. Differentiation 

of n with respect to  yields 

   ( ) 02cos22sin =+−−= 



xyyx

n

d

d
 

yx

xy

p





−
=

2
2tan   and ( ) 02cos2sin

2
=+

−
−= pxyp

yx

pnt 


   (9-6) 

Consequently, the shearing stress is zero on plane experiencing maximum and minimum values of normal 

stress. Therefore, planes free of shearing stress are known as principal planes; normal stresses occurring on 

principle planes are known as principal stresses. A third principal plane for plane stress state has an outward 

normal in the z-direction. For a given set of values of x, y, xy, there are two values of 2p differing by 180 

o and, consequently, two values of p that are 90o apart. This proves that the principal planes are normal to 

each other. 

 

Two principal stresses, as shown in Fig. 2-32, can be obtained as given by 

2

2

2,1
22

xy

yxyx

pp 


 +






 −


+
=                         (9-7) 

The third one is p3 = z = 0. 

The maximum in-plane shearing stress p occurs on planes located by values of   where dnt /d is equal to 

zero. 

( ) 02sin22cos =−−−= 



xyyx

nt

d

d
 

( )
xy

yx






2
2tan

−
−=                                     (9-8) 

Since two angles 2p and 2 differ by 90 o, p and  are 45 o apart.  
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The maximum in-plane shearing stress p are 

( )
222

minmax212

2







−
=

−
=+







 −
=

pp

xy

yx

p
            (9-9) 

When a state of plane stress exists, one of the principal stresses p3 is zero. The maximum shearing 

stress may be different from the maximum in-plane shearing stress and equal to: 

(1) If p1 > 0 >p2: The maximum shearing stress equals (p1 - p2)/2. 

(2) If p1 > p2 > 0: The maximum shearing stress equals (p1 -  ) / 2. 

(3) If 0 > p2 > p1: The maximum shearing stress equals ( - p1) / 2. 

 

9-3 Mohr’s circle for plane stress 

The German engineer Otto Mohr (1835-1918) developed a useful graphic interpretation of the 

transformation equations for plane stress. 

It can be found that  

2

2

2

2

22
xy

yx

nt

yx

n 





 +






 −
=+















 +
−                          

It represents a cycle with center ( )0,
2

yx  +
 and radius 

2

2

2
xy

yx
R 


+







 −
= , 

or denoted by   222
Rntnon =+−  , where no = (x + y)/2. 

As shown in Figure, we want to verify the stress transformation equations: 

 

n = OC + CF cos (2p -2 ) = OC + CA cos 2p cos2 + CA sin 2p sin2 

 

where CA cos 2p = (x - y)/2; CA sin 2p =xy; and OC= (x + y)/2 = avg. Therefore,  




 2sin2cos
22

xy

yxyx

n +






 −
+







 +
=  

Similarly,  

nt = CF sin (2p -2 ) = CA sin 2p cos2 - CA cos 2p sin2 
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Therefore, 




 2cos2sin
2

xy

yx

nt +






 −
−=  

Moreover,  

p1 = OD = OC + CD = OC + CA =
2

2

22
xy

yxyx



+







 −
+

+
, 

p2 = OE = OC - CE = OC - CA =
2

2

22
xy

yxyx



+







 −
−

+
. 

p = CM = CA =
2

2

2
xy

yx



+







 −
; 

yx

xy

p





−
=

2
2tan . 

It can be found all above relations, evaluated through Mohr’s circle, are consistent with the stress 

transformation equations. 

 

◼ The procedures to draw Mohr’s circle are: 

(1) Choose a set of x-y reference frame, and identify the stress components x, y and xy and list them 

with the proper sign. 

(2) Draw a set of n -nt coordinate axes with n and nt positive to the right and upward (or 

downward), respectively. 

(3) Plot the point (x, -xy) (or (x, xy) if nt positive downward) and label it point A. 

(4) Plot the point (y, xy) (or (y, -xy) if nt positive downward) and label it point G. 

[Remarks]: or plot the center C: (avg, 0), where avg=(x +y)/2. 

(5) Draw a line between A and G. The intersection of this line and horizontal axis nt establishes the 

center C and the radius R = CA = CG. 

[Remarks]: or draw a line between A and C. 

(6) Draw the circle with center C and the radius R. 

 

Other points of interest in Mohr’s circle are: 

(1) Point D, which provides the maximum principal stress p1 = OD. 

(2) Point E, which provides the maximum principal stress p2 = OE. 

(3) Point M or N, which provides the maximum in-plane shearing stress p = CM. 
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EX: If the stress state of a point A in a deformable body is as follows (z =zx =zy = 0): 

plot the Mohr’s circle, determine the principal stresses and maximum shear stress. 
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9-4 General state of stress at a point 

 

Consider the equilibrium of a small element for an arbitrary point O, as shown in Fig. 2-44, which has an 

oblique surface with outward normal n besides three orthogonal planes with normals in x-, y- and z-direction, 

respectively. The direction cosine of the oblique surface is denoted by l = cosx, m = cosy, and n = cosz, 

respectively. Moreover, the relations of surface area are dAx = ldA, dAy = mdA, dAz= ndA. The equilibrium of 

forces along x-, y-, and z-axis are, respectively, 

00 =−−−= ndAmdAldAdASF zxyxxxx   

00 =−−−= ndAldAmdAdASF zyxyyyy   

00 =−−−= mdAldAndAdASF yzxzzzz   

or nmlS zxyxxx  ++=  

nmlS zyyxyy  ++=                                       (9-10) 

nmlS zyzxzz  +++=  

Since nnS =
nzyx nSmSlS =++ , where n = (l, m, n), 1222 =++ nml  

Therefore, nlmnlmnml zxyzxyzyxn  222222 +++++=          (9-11) 

The corresponding shearing stress nt satisfies the relation: 

222

ntnS  +=                                   

If the oblique plane is just the principal plane, i.e., nt = 0, and S n = p n,  

or lS px = , mS py = , nS pz =  

The equations (9-10) can be rewritten as: 
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 ( ) 0=++− nml zxyxpx  , 

( ) 0=+−+ nml zypyxy  ,                                (9-12) 

( ) 0=−++ nml pzyzxz  ; 

or 0=
































−

−

−

n

m

l

pzyzxz

zypyxy

zxyxpx







.                    (9-13) 

This set of equations has a nontrivial solution only if the determinant of the coefficients of l, m, and n is 

equal to zero. Thus, 

0=

−

−

−

pzyzxz

zypyxy

zxyxpx







.                           (9-14) 

Expansion of the determinant yields the following cubic equation for determining the principal stresses: 

032

2

1

3 =−+− III ppp  ,                                 (9-15) 

where 
zyxI  ++=1
 

222

2 zxyzxyxzzyyxI  −−−++= =
zyz

zyy

zxz

zxx

yxy

yxx












++  

zyzxz

zyyxy

zxyxx

I







=3  

The method to determine the principal stresses and their corresponding directions are called the 

problem of eigenvalues and eigenvectors. The principal stresses and principle directions are 

eigenvalues and eigenvectors, respectively. Since they are independent of the coordinate x-y-z selected, 

the coefficients of cubic equation I1, I2, I3 and are also independent of the coordinate, they are called 

the first, the second, and the third stress invariants, respectively. After obtain the eigenvalue pi, i = 1, 2, 

3, the corresponding unknown eigenfunction (li, mi, ni) can be evaluated by using 

0=
































−

−

−

i

i

i

pizyzxz

zypiyxy

zxyxpix

n

m

l







                          (9-16) 
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Chapter 2 Strain: Definitions and Concepts 

 

2-1 Introduction 

  In the design of structural elements or machine components, the deformations experienced by the body, as 

a result of the applied loads, often represent as important a design consideration as the stresses. Therefore, 

the nature of the deformations experienced by a real deformable body as a result of internal force or stress 

distributions will be studied, and methods to measure or compute deformations will be established. 

 

2-2 Displacement, deformation, and strain 

2-2-1 Displacement 

   When a system of loads is applied to a machine component or structural element, individual points of the 

body generally move. The movement of a point with respect to some reference frame can be represented by 

a vector quantity known as a displacement. The displacement of a point may be composed of rigid body 

translation, rigid body rotation, and deformation. The latter will cause the size and/or the shape of a 

body to be altered, individual points of the body move relative to one another. 

 

2-2-2 Deformation 

Deformation may be related to force or stress or to a change in temperature. Generally, it leads to the size 

and/or the shape of a body to be altered. 

 

2-2-3 Strain 

Strain is the quantity used to measure the intensity of a deformation (deformation per unit length) just as 

stress is used to measure the intensity of an internal force (force per unit area). Similar to stresses, two kinds 

of strains can also be classified: 

◼ Normal strain (): measures the change in size (elongation or contraction of an arbitrary line segment) 

of a body during deformation. 

■  Shearing strain (): measures the change in shape (change in angle between two lines that are 

orthogonal in the undeformed state) of a body during deformation. 

The deformation or strain may be the results of a stress, of a change in temperature, or of other 

physical processes such as grain growth and film growth. 
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2-2-4 Average axial strain 

The change in length of a simple bar under an axial load can be illustrated by a normal strain. If the length 

and axial deformation of the bar are L and n, respectively, 

Then the average axial strain can be expressed by 

   
L

n
avg


 =                                  (2-1) 

 

2-2-5 Axial strain at a point 

If the deformation is nonuniform along the length, the average axial strain may be significantly different 

from the axial strain at an arbitrary point P along the bar. It is better to determine the strain by making the 

length over which the axial deformation along x axis is measured smaller and smaller, i.e.,  

( )
dL

d

L
P nn

L
x


 =




=

→ 0
lim                          (2-2) 

 

2-2-6 Shearing strain 

A deformation involving a change in shape can be illustrated by a shearing strain. If the length of angle and 

the deformation in a direction normal to the length are L and S, respectively, then 




 tan==
L

S
avg                             (2-3) 

Since S / L is usually very small (typically S / L < 0.001),   tansin , 

where the angle  is measured in radians. Therefore, LSavg / ==  is the decrease in the angle 

between two reference lines x and y that are orthogonal in the undeformed state. The shearing strain at a 

point can be defined similarly as: 
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( ) '
2

lim
0







 −===



=

→ dL

d

L
P SS

L
xy ,                          (2-4) 

where ' is the angle in the deformed state between two initially orthogonal reference lines. 

 

2-2-7 Units of strains 

It is obvious that both normal and shearing strains are dimensionless quantities; however, normal strains are 

frequently expressed in units of inch per inch (in./in) or micro-inch per inch (in./in.), while shearing 

stresses are expressed in radians or microradians. The micro- (10-6) is denoted by . 

 

2-2-8 Sign convention for strains 

◼ Normal strains: positive for elongation (tensile strains) and negative for contraction (compressive 

strains). 

◼ Shearing strains: positive as the angle between reference lines decreases and negative as the angle 

increases. 

[Remarks]: For most of engineering materials in the elastic range, neither normal strains nor shearing strains 

seldom exceed values of 0.2%. 

 

2-3 The state of strain at a point 

In many practical engineering problems involving the design of structural or machine elements, it is 

difficult to determine the distributions of stress solely by mathematical analysis; therefore, theoretical 

analysis supplemented by experimental measurement is generally required. Strains can be measured by 

several methods; however, except for the simplest cases with uniform distribution of stress, the stresses 

cannot be obtained directly. Therefore, the usual procedure is to measure the strains and calculate the state of 

stresses by using the stress-strain equations. 

  As shown in Fig. 3-6, the complete state of strain at an arbitrary point P in a body under load can be 

determined by considering the deformation associated with a small volume of material surrounding the point. 

This small volume can be assumed to have the shape of a rectangular parallelepiped with its faces oriented 

perpendicular to the reference axes x, y, and z in the undeformed state. Since the element of volume is very 

small, deformations are assumed to be uniform; therefore, it is reasonable that parallel planes remain plane 

and paralleling, and straight lines remain straight lines after deformation. The strain is also a tensor 

quantity which has 6 independent components, just similar to stress tensor and can be expressed in 

terms of the deformations: 
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, ( )dxdx x+= 1'  
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v
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d
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


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d
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−
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, ( )dzdz z+= 1'                              (2-5) 

y

u

x

v
xyyxxy




+




=−== '

2



 ,  

z

v

y

w
yzzyyz




+




=−== '

2



 ,  

x

w

z

u
zxxzzx




+




=−== '

2



 , 

where dx, dy and dz denote the change of length dx, dy and dz after deformation, respectively; while xy’, 

yz’ and xz’ denote the distorted angles of right angles on the plane xy, yz and xz, respectively; u, v and w 

denote the displacements of an arbitrary point along axes x, y and z, respectively. 

Similarly, for two arbitrary orthogonal lines oriented in the n and t directions in the undeformed element, the 

corresponding strains are given by 

 
dx

d

dn

dndn n
n


 =

−
=

'
, '

2
nttnnt 


 −==                (2-6) 
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Chap. 10 Strain Transformation 

 

10-1 The strain transformation equations for plane strain 

 Consider the case of x-y plane strain, i.e., 0=== zyzxz   

10-1-1 Normal strain n 

 

As shown in Fig. 3-7, the shaded rectangular (a) represents a small unstrained element of material, and the 

parallelepiped denotes the deformed element. The relations of strain components corresponding to the x-y 

and n-t coordinates will be derived. Consider the triangle OC’B’ 

( ) ( ) ( ) ( )( ) 







+−+= xyCBOCCBOCOB 



2
cos''2'''

222
 

( )  ( )  ( ) 222
111 dydxdn yxn  +++=+  

                ( ) ( ) ( )xyyx dydx  sin112 −++−  

By using the relations dx = dncos and dy = dnsin , and neglect the second order terms, such as 2 and  

due to very small strains, as well as the approximation  

sin    







 2sin
2

2cos
22

xyyxyx

n +
−

+
+

=                                (10-1) 

 

10-1-2 Shearing strain nt 

As the material deforms, the n-direction rotates counterclockwise through an angle n, as shown in Fig. 3-8. 

For the triangle OC’B’ 
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''sin'''sin'' OCBOBBOCCB = , 

or in terms of the strains 

( ) ( ) ( ) 


 −++=







++ nnxyy dndy sin1

2
sin1  

( )  +−−−= 2sincossin xyyxn  

( ) 











 +







+−




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


+




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+−−=




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


+=

2
sin

2
cos

2
sin

2

2

xyyxnt
 

( )  +−−= 2coscossin xyyx  

( ) ( ) 22 sincoscossin2 −+−−=−= xyyxtnnt  

( )






2cos

2
2sin

22

xyyxnt +
−

−=                                      (10-2) 

 

It can be found that if the shearing strains
ij are replaced by ij mathematically, (

ijij  =2/ ), then the 

relations of transformation for strains (3-8a) and (3-8b) are completely identical to stresses.  In other words, 

the Mohr’s cycle of strains is the same as the stresses. 

 

10-2 Principal strains and maximum shear strain 

For case of plane strain, the in-plane principal directions, in-plane principal strains, and the maximum 

in-plane shear strain are 

 

,2tan
yx

xy

p





−
=                                              (10-3) 
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+
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xyyxyx
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 ,                           (10-4) 
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 .                                    (10-5) 
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10-3 Mohr’s circle for plane strain 

The equation of Mohr’s circle for strain and its radius are 

2

2222

2222
R

xyyxntyx

n =







+


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

 −
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


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
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                         (10-6) 
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10-4 Strain measurement and Rosette analysis 

In most experimental work involving strain measurement, the strains are measured on a free surface of a 

member where a state of plane stress exists. Electrical resistance strain gauges have been developed to 

provide accurate measurements of normal strain. Shear strains are difficult to measure directly than normal 

stresses. Generally, shear strains are obtained by measuring normal strains in two or three different 

directions.  
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As shown in Fig. 3-17,  

aaxyayaxa  cossinsincos 22 ++=  

bbxybybxb  cossinsincos 22 ++=  

ccxycycxc  cossinsincos 22 ++=  

After measuring three data of normal strains, three unknown strains x, y and xy can be completely 

determined by three equations. 
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Appendix B:  Basic issue of strain and stress (Theory of Elasticity)         

 

2B-1 Introduction 

  Let us consider a deformable body subjected to the action of external loadings, the resulting 

deformations may be not uniform from point to point due to the non-uniform and multi-directional 

external forces and geometry of body.  Therefore, it is, in general, necessary in elasticity to consider the 

overall behavior of the body from the properties of differentially small elements within the body by 

using three equilibrium equations, compatibility equations, and relations between forces and deformation 

described in the following sections.   

 

2B-2 Stresses 
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   Stress is simply an internal distributed force per unit area in a body and represents interaction 

between neighboring points under the action of external loadings.  Consider an elastic body in 

equilibrium, subjected to the action of external forces F1, F2,…, Fn, as shown in Fig. 2B-1.  To 

determine the stress state at point P, it is necessary to expose a surface containing point P by 

decomposing the body to two portions by a plane passing through point P with normal unit vector n.  

The external forces on the left-hand side portion of body, as well as the resultant forces acting on the cut 

surface shall be equilibrium.  In the general case, the stress distribution will not uniform across the cut 

surface, and the stresses will be neither normal nor tangential to the surface at a given point.  The stress 

distribution at a point, however, will have components in the normal and tangential directions giving rise 

to a normal stress (tensile or compressive) and a tangential stress (shear). 

 

     As shown in the Fig. 2B-1, let the resultant force acting on a small area A around point P be F.  

We define the “stress vector (traction)” 
n

T  acting at point P an a plane with unit normal vector n as 

        
A

F
limT
A

n




=

→ 0
                                 (2B-1) 

If the cut plane intersecting point P is selected with unit vector n just parallel to the x axis of rectangular 

Cartesian frame of reference as shown in Fig. 2B-2.  The stress vector through point P on this plane 

becomes 

          

       
xA

x

A

F
limT

x 


=

→ 0
                                (2B-2) 

 

             Fig. 2B-2 

Since the resultant force acting on point P has three components in the x, y, and z directions, which are 
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Fx, Fy, and Fz, respectively; i.e., 

      kFjFiFF zyx ++=                        (2B-3) 

where i, j, and k are the unit vectors in x, y, and z directions, respectively.  

By inserting Eqs. (2B-3) into (2B-2), we obtain 

    kTjTiTk
A

F
j

A

F
i

A

F
limT

x

z

x

y

x

x
x
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
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


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→ 0
    (2B-4a) 

where  
x

x
x

x
A

F
limT




=     xx      normal stress        (2-4b) 

       
x

y
x

y
A

F
limT




=     xy      shear stress         (2-4c) 

       
x

z
x

z
A

F
limT




=     xz      shear stress         (2-4d) 

Similarly, the cut plane intersecting point P can be selected with unit vector n just parallel to the y, and z 

axes, respectively.  We then obtain the stress components as follows:  

  For the cut plane with normal along y axis: 

      
y

x
y

x
A

F
limT




=     yx      shear stress,         (2B-4e) 

      
y

y
y

y
A

F
limT




=     yy     normal stress,         (2B-4f) 

      
y

z
y

z
A

F
limT




=      yz      shear stress.         (2B-4g) 

 For the cut plane with normal along z axis: 

      
z

x
z

x
A

F
limT




=     zx      shear stress ,        (2B-4h) 

      
z

y
z

y
A

F
limT




=     zy      shear stress ,        (2B-4i) 

      
z

z
z

z
A

F
limT




=      zz     normal stress ,       (2B-4j) 

or symbolically expressed as 

      ij
i

j

A

i

j
A

F
limT

i

=



=

→ 0
,   i, j = x, y, z .             (2B-5) 

Therefore, the stress state at point P, expressed by totally 9 components as shown in Fig. 2B-3, can also 

be represented by a set of new notation  
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

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








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
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zzzyzx
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xzxyxx

ij

i

jT                     (2B-6) 

This is called the stress matrix or stress tensor.  The first and the second subscript indices of stress 

tensor ij, i.e, i and j, represent the normal direction of the plane on which stress acts and the direction of 

stress, respectively. 

 

                   Fig. 2B-3 

2B-3 Deformation and Strain in small deformation theory 

As a body is subjected to the action of external forces, it deforms such that an arbitrary point P(x, y, 

z) in the body will undergo a displacement u = (u, v, w), and move to a new point P’(x’, y’, z’).  They 

have the following relationship: 

        ux'x +=  

        vy'y +=                                    (2B-7) 

        wz'z +=  

In general, the displacement u of a body may be considered to be the summation of three items, i.e., 

rigid-body displacement, rigid-body rotation, and deformation.  And only the deformation is related to 

the strains of the body, which may be classified into deformation due to size change (dilatation due to 

expansion or shrinkage of volume), and due to shape change (distortion of shape with no size change).  

Consider a continuous body, which undergoes a small geometrically compatible deformation (i.e., no 

voids or overlapping occur during deformation), an element of infinitesimal dimensions, x, y, and z, 

originating from point P0 can be constructed where the initially undeformed infinitesimal rectangular 

element in the xy plane are indicated by PBCD, as shown in Fig. 2B-4.  
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                         Fig. 2B-4 

For a brief and clear description, let us focus the displacement of point P in the xy plane only.  The 

displacement of point P can be described by continuous functions of x and y 

 

       u = u (x, y),      v = v (x, y).                    (2B-8) 

The functions can be expanded about point P in terms of a Taylor’s series expansion.  If u, ,x/u   

,x/u 22   etc., are evaluated at point P, the displacement for point D, which is x from P, in the x 

direction will be  
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Likewise, if v, ,x/v   ,x/v 22   etc., are evaluated for the point P, the displacement for point D in the 

y direction will be 
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   If x is considered very small, it is satisfactory to neglect the terms higher than the first order.  Thus 

 

      x
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u
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Similarly, if the displacements of point B, which is y from P, are also obtained from a Taylor’s series 
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expansion about point P, and y is considered very small, then 

 

      y
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
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Then the length of P’D’ and P’B’ can be written, respectively, as 

 

      ( )  ( )  x)x/u(xvvuux'D'P
/

DD +−+−+=
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 (2B-13a) 

      ( )  ( )  y)y/v(yuuvvy'B'P
/

BB +−+−+=
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  (2B-13b) 

 

The rate of change in elongation of PD and PB, defined as the normal strain xx and yy, respectively, is 
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                        (2B-15) 

 

As seen in Fig. 2B-4, the reduction in angle DPB is defined as the shear strain xy in point P in the form 

 

      ( ) ( )+=−=
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             (2B-16) 

 

where 
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x

v

x
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
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
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=   and 

( )
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y
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
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=   (2B-17) 

 

However, if the strains are very small, or the angles  and  are very small, then 

tan  and tan , the shear strain xy can be represented by 

 

      yxxy
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u
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The different form of shear strain, xy, defined as half of xy, is generally used in mathematical 

description of elasticity and can be written as 
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The rigid-body rotation of a line segment at point P can be found from the average rotations of the line 

segments PD and PB.  This can be accomplished by determining the rotation of the bisector of PD and PB.  
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The initial angle of the bisector of angle BPD relative to the x axis is /4.  The final angle that the bisector 

of angle B’P’D’ makes with the x axis is: 
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              (2B-19) 

 

Then the rigid-body rotation about z axis, xy, can be obtained by subtracting the initial angle of the bisector 

/4 from the final angle as shown in Eq. (2B-19)  
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                 (2B-20) 

 

Considering w to be the displacement of point P in the z direction and then performing a similar 

analysis in the yz and zx planes, it results in 
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  Therefore, the strain state at point P, expressed by totally 9 components can also be represented by a 

set of new notation in mathematical theory of elasticity 
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This is called the strain matrix or strain tensor, in which only 6 components are independent due to 

symmetry property of shear strain.  Moreover, the rigid-body rotation tensor is anti-symmetric.  If we 

use the notation x1, x2, and x3 to represent x, y, and z, respectively; and u1, u2, and u3 to represent u, v, and 

w, respectively, then the relationship between strains and displacements becomes  
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1
,       i, j = 1, 2, 3         (2B-27) 

[Example]: If the displacement fields in a deformed body along x, y, and z directions are u, v, and w, 

respectively, which can be expressed by 

 

      u(x, y, z) = a1 + b1x + c1y + d1 z 
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      v(x, y, z) = a2 – c1x + c2y + d2 z 

      w(x, y, z) = a3 + d1x − d2y + d3 z 

      

where the parameters ai, bi, ci, and di are all constants. 

Please evaluate the strain tensor and illustrate the physical meaning of all the parameters ai, bi, ci 

and di in the displacement functions. 

 

       

2B-4 The equilibrium equations 

   An elastic body under consideration is subjected to the action of external forces, which can be 

classified into surface tractions and body forces (body moments).  The surface tractions are the 

external forces acting on the surface of body in the unit of force per unit area; for instance, the wind and 

hydrostatic pressure acting on the surface of body.  The body forces, such as gravitational force, electric 

and magnetic forces, etc., are the external forces whose magnitudes are proportional to the volume and 

are exerted on the interior of body in the unit of force per unit volume.  The body moments are similar 

to body forces and are also exerted on the interior of body but in unit of moment per unit volume, such 

as materials with electric and magnetic dipoles.  In this section, the equilibrium equations, formulated 

with respect to rectangular Cartesian frame of reference, are shown only.  The equilibrium condition on 

an arbitrarily and infinitesimal element taken from interior of body, acting by stresses and body forces, 

as shown in Fig. 2B-5, is considered.  The changes in stresses are replaced by Taylor’s series expansion 

terms in which nonlinear higher order terms are neglected.  If Bx, By, and Bz represent the body forces in 

x, y, and z direction, respectively, but without body forces, the force and moment equilibrium conditions 

in x direction are: 
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Simplify this expression and let x, y, z approach zero, we obtain 
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                (2B-28) 
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 Simplify this expression and let x, y, z approach zero, we obtain 

            zyyz =                              (2B-29) 

Similarly, summing forces and moments in the y and z directions, respectively, yields  
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xzzx =                                 (2B-31) 
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                (2B-32) 

yxxy =                                 (2B-32) 

If we use the notation x1, x2, and x3 to represent x, y, and z, respectively, then the force equilibrium 

equations, as shown in Eqs. (2B-28), (2B-30), and (2B-32), can be compactly expressed in tensor form: 

 

          0=+ ij,ij B     i, j = 1, 2, 3              (2B-33) 

 

where the repetition of an index in a term will denote a summation with respect to that index over its 

range; for instance, 3132121111 ,,,j,j ++= ; the subscript “,” means differentiating with respect to 

coordinate, for instance, 312312 x/, = .  Moreover, it is seen that the stresses are symmetric 

without the action of body moment, i.e.,  

 

       jiij =       i, j = 1, 2, 3              (2B-34) 

 

Consequently, only 6 stress components in stress tensor are independent with no body moment. 

[Remarks]: If the body under consideration moves with acceleration, the equilibrium equations shall be 

modified to equations of motions as follows: 
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      iij,ij uB =+     i, j = 1, 2, 3                  (2-33a) 

     where  is the density of body; the dot “.” on the upper side of the variable means differentiating 

with respect to time. 

 

2B-5 Compatibility 

   As we try to find a solution of the stress distribution in a body, the equilibrium equations of the body 

must be satisfied in case the body under consideration is in static equilibrium.  At any given section, it 

may be possible to find many different sets of stress distributions which all satisfy the condition of 

equilibrium.  An acceptable stress distribution is one which ensures a continuous deformation 

distribution of the body.  This is the essential characteristic of compatibility; i.e., the stress 

distribution must be compatible with boundary conditions and a continuous distribution of deformations 

so that no “holes” or “overlapping” of specific points in the body occur.   Sometimes, the stress 

distributions can be uniquely determined by the equilibrium equations and associated traction boundary 

conditions.  If it is needed to evaluate the displacements of the body further, some compatibility 

relations must be used to assure the continuous deformation distribution of the body without generation 

of holes and overlapping.  The six compatibility equations in terms of strains can be derived 
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The first three equations are the in-plane dependent; while the last three equations are the out-of plane 

dependent. 

   [Remarks]: The compatibility equations (2B-35)~(2B-40) can be expressed by tensor notation as 

follows: 

       0=+−− ji,klki,ljjl,kikl,ij , i, j, k, l = 1, 2, 3     

     Above tensor equations can be written to 81 equations; but only 6 of these 81 equations are truly 
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independent. 

 

 

2B-6 Cauchy’s formula   

     The Cauchy’s formula provides the useful relations between tractions acting on a specific surface 

and the stresses at a specific point adjacent to the surface.  Therefore, it is useful to evaluate the 

tractions acting on the surface if the stresses at this point are known; or, on the contrary, to evaluate the 

stresses at a point if the tractions acting on the surface through the point are given.  Moreover, Cauchy’s 

formula can also be applied to perform the stress transformation with respect to different coordinates and 

to evaluate the principal stresses and principal axes.  Consider a tetrahedral element about a point P, 

which has three mutually orthogonal planar surfaces with normals in the x, y, and z directions, 

respectively, while the last surface is an arbitrary oblique plane with unit normal direction n, as shown in 

Fig. 2B-6. 

 

          Fig. 2B-6 
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where xx nAA = , yy nAA = ,and zz nAA =  

Then we can obtain the Cauchy’s formula in x direction by taking the limit h 

approaches zero (the point P is located on the oblique plane): 

zzxyyxxxxx
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nnnT ++=            (2B-41) 

Similarly, Cauchy’s formula in y and z directions can also be obtained 

⚫ = 0
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nnnT ++=     (2B-42) 
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⚫ = 0
i

zF  zzzyyzxxzz

n

nnnT ++=     (2B-43) 

Cauchy’s formula can also be compactly expressed in tensor form 

    jjii

n

nT = ,     i, j = x, y, z              (2B-44) 

 

2B-7 Principal stresses (strains) and maximum shear stress 

   We have shown that the stress state at arbitrary point of the body can be expressed by a stress matrix 

or stress tensor which generally includes both normal and shear stress components.  However, along 

some specific direction, we called the principal axis of stress, the stress matrix becomes diagonalized, 

i.e., all the shear stresses in off-diagonal portion become disappeared and only the normal stresses in the 

diagonal portion still remain.  These three normal stresses are called principal stresses, which are 

independent of the directions of coordinates we select.  Let us consider a point P in the interior of body 

whose stress state is ij.  According to Cauchy’s formula, the traction vector acting on a specific surface 

passing through point P and with unit normal n can then be expressed as 

     jiji

n

nT = ,   i, j = x, y, z  (or 1, 2, 3)                   (2B-45) 

If the unit normal n of the surface is parallel to one of the principal axes, the traction vector acting on the 

surface, represented by the principal stress , shall be normal to the surface, which can be expressed 

mathematically as 
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x nnnnT =++=                       (2B-46a) 

     yzyzyyyxyx

n

y nnnnT =++=                      (2B-46b) 

     zzzzyzyxzx

n

z nnnnT =++=                       (2B-46c) 

or expressed in matrix form 
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               (2B-47a) 

 

[Remarks]: Equation (2-47) can also be derived in tensor notation as: 

( ) 00 =−=−== jijijijijii

nn

nnnnTnT   (2B-47b) 

where the symbol ij is Kronecker delta, defined as ij = 1 if i = j and ij = 0 if 

 ji  .  It is obvious that Eqs. (2-47b) in tensor form and (2-47a) in matrix form are identical. 

 

The evaluation of principal stresses and principal axes as shown in Eq. (2B-47), becomes an eigenvalue 

problem which is of the form: 
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          ssA =                                       (2B-48) 

 

Equation (2-48) can be placed in the form 

 

         ( )  0=− sIA                                   (2B-49) 

 

where [I] is a unit matrix.  Compared Eqs. (2B-49) to (2B-47), it is obvious to find that [A] = [ij],  = 

, and {s} = {ni}.   

To avoid the trivial solution, i.e., {s} = {0}, [A]-[I] is forced to be singular.  That is the determinant is 

set to zero as follows 

 

        0=− IA                                       (2B-50) 

Equation (2B-50) is called the characteristic equation, which yields n roots of  which are the 

eigenvalues of the matrix [A], which, for instance, is n n matrix.  For each eigenvalue i there is an 

associated eigenvector {si} obtained from Eq. (2B-49).  The corresponding three eigenvalues and 

eigenvectors are principal stresses and principal axes, respectively. 

Generally the three principal stresses are denoted as 1, 2, and 3, where the ordering in magnitude is 

generally such that 1 > 2 > 3.  If three principal stresses are distinct from each other in magnitude, 

there exists only one set of principal axes.  If two of the principal stresses are equal, there will exist an 

infinite set of surfaces containing these principal stresses, where the normals of these surfaces are 

perpendicular to the direction of the third principal stress.  If all three principal stresses are equal, a 

hydrostatic state of stress exists, and regardless of orientation all surfaces contain the same principal 

stresses with no shear stress.  The maximum shear stress, max, is equal to half of the difference 

maximum and minimum principal stresses, i.e., 

  

     max = (1 – 3)/2, and min = −(1 – 3)/2,              (2B-51) 

 

The solutions of principal stresses, , are independent of the coordinate system used to define the 

coefficients of the cubic equation for  in the form 

 

     032
2

1
3 =−+− III                         (2B-52) 

 

Therefore, the three coefficients of  in Eq. (2B-52), I1, I2, and I3, are constant and are normally referred 

to as the stress invariants. Thus 

    zzyyxxiiI ++==1                         (2B-53a)               
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==               (2B-53c)  

where erst, the permutation symbol, is defined as: it vanishes whenever the values of any two indices; erst 

= 1 when the subscripts permute like 1, 2, 3; and erst = −1 otherwise.  The Kronecker delta can be 

related to permutation symbol by 

 

       ksjtktjsistijkee −= . 

 

[Example]: For the stress matrix given below, determine the principal stresses and corresponding 

principal axes. 
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2B-8 Stress and strain transformations     

    Relationship of stress tensors between two different coordinates with same origin can be compactly 

derived by tensor notation.  Consider a tetrahedral element about a point P having two different oblique 

planes with unit normals n and n’, respectively, as shown in Fig. 2-8, the corresponding traction vectors 

on these two planes are 
n

T  and 'T
'n

, respectively.  Hence, 

  
n

j

n

jjijiijjii

'n

i

'n

'nT'nT'nnn'nnTn'T =====             (2B-54) 

 

Suppose two different rectangular frames (x1, x2, x3) and (x1’, x2’, x3’) have the same origin P and the 

direction cosine between xi’ and xj is denoted by nij.  If kl’ represents the stress component of traction 

vector 'T
'n

acting on the plane normal to the axis xk’ along the direction of xl’.  In other words, the 

normals n’ and n are parallel to the axes xk’ and of xl’, respectively.   By using the Eq. (2-54), we can 

write 

   ijljkilikjji

n'n

kl nnnn'nTn'T' ====                 (2B-55a) 
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Similarly, we can also obtain 

    'nn ijjlikkl =                                  (2B-55b)  

Equations (2-55a) can also be expressed as 
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                                                 (2B-56)  

Since the coordinate transformation between x’y’z’ system and xyz system can be expressed by 
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The displacements relative to x’y’z’ system can also be related to that of the xyz system as  
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It can be proved in the lengthy procedures that 
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                                                       (2B-59) 

Compared Eqs. (2-59) to (2-56), it is seen that the strain tensor performs the same coordinate 

transformation as that of the stress tensor. 

 

2B-9 Mohr’s circles in two and three dimensions 

Let us start from a simpler two-dimensional case first.  As shown in Fig. 2-9, a transformation of 

stresses is performed between x’y’ system and xy system and z’ keeps concided with z.   Since the 

directional cosines are: 

= cosn x'x , = sinn y'x , 0=z'xn ; −= sinn x'y , = cosn y'y , 0=z'yn ;   

0=x'zn , 0=y'zn , 1=z'zn .                          (2-60) 

 

By substituting Eqs. (2-60) into (2-56), we obtain 

     ++= sincossincos xyyyxx'x'x 222             (2-61a) 
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−+= cossincossin xyyyxx'y'y 222             (2-61b) 

( ) ( )−+−−= 22 sincoscossin xyyyxx'y'x          (2-61c) 

If we are only interested in obtaining the normal stress and shear stress (s, t) on a single surface, say 

the x’ surface, then Eqs. (2-61a) to (2-61c) can be combined to 

++= sincossincos xyyyxx 222                (2-62a) 

( ) ( )−+−−= 22 sincoscossin xyyyxx             (2-62b) 

These equations can be rewritten using the trigonometric identities 

     +
−

+
+

= 22
22

sincos xy
yyxxyyxx

            (2-63a) 

     +
−

−= 22
2

cossin xy
yyxx

                     (2-63b) 

Then, we obtain the equation of Mohr’s circle  

      ( ) 222
Rave =+−                               (2-64a) 

where 
2

yyxx
ave

+
=   and 

2

2

2
xy

yyxx
R +







 −
= .    (2-64b) 

The Mohr’s circle can be shown as in Fig. 2-10. 

 

From the Mohr’s circle it can be seen that the maximum and minimum value of  and  are: 

Rave
min
max =   and  R

min
max =                 (2-65). 

An element in a body undergoing a general state of three-dimensional stress can be transformed to 

an element containing only principal stresses 1, 2, and 3 acting along principal axes 1, 2, and 3, 

respectively.  A transformation of stresses in the 12 plane depends only on 1 and 2; in the 23 plane 

depends only on 2 and 3; and in the 13 plane depends only on 1 and 3.  This means that for each 

case, a plane stress analysis describes the state of stress in each of the three planes, and three Mohr’s 

circles can be constructed to portray each case as shown in Fig. 2-11.  Furthermore, it will shown that 

all possible states of stress (, ) exist either on the circles or within the shaded area as shown in the 

figure. 

For the element containing the principal stresses in the directions 1, 2, and 3, let n1, n2, and n3 be the 

directional cosines of an arbitrary surface relative to the 1, 2, and 3 axes, respectively.  The stress state 

(, ) of the surface can be obtained by Cauchy’s law 

        2
ii

n

nnT == ,   i = 1, 2, 3            (2-66a) 

        ( )222
ii

nn

nTT ==+ ,  i = 1, 2, 3      (2-66b) 
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        1= nn                              (2-66c) 

 The solution of n of above three equations can be obtained  

       
( )( )

( )( )3121

32
2

2
1

−−

−−+
=n ,  

( )( )
( )( )1232

13
2

2
2

−−

−−+
=n ,  

       
( )( )

( )( )2313

21
2

2
3

−−

−−+
=n .                    (2-67) 

If the order of three principal stresses in magnitude is 1 > 2 > 3, then 

Eq. (2-67)  ( )( ) 032
2 −−+                  (2-68a)         

               ( )( ) 013
2 −−+                (2-68b) 

               ( )( ) 021
2 −−+                (2-68c) 

    Since ( )( ) 02 =−−+ ji  represents a circle passing through the points (i, ) and (j, ), 

( )( ) 02 −−+ ji  and ( )( ) 02 −−+ ji  show the regions beyond and within the circle, 

respectively.  Consequently, it is seen the possible stress state shall be located either on the boundaries 

of three circles or within the shaded region shown in Fig. 2-11.  Moreover, the maximum shear stress is 

equal to (1−3)/2 in the direction ( )21021 //n = . 

[Remarks]:  The method to determine the stress state (, ), which directional cosine vector with 

respect to principal axes (n1, n2, n3) is as follows: 

(a) Let ii cosn = , plot a line passing through point (, ) with an angle /2 + 1 with the horizontal 

axis , which will intersect circle C2 at point P. 

(b) Plot a line passing through point (, ) with an angle /2 − 3 with the horizontal axis , which 

will intersect circle C2 at point Q. 

(c) Plot two circular arcs S1 and S2 based on the origin O1, radius O1P and the origin O3, radius O3Q, 

respectively; The intersection point R between these two arcs denotes the stress state of the 

surface in three-dimensional Mohr’s circles. 

 

 

Reference: 

1. Y. C. Fung, Foundations of Solid Mechanics, 1965, Prentice-Hall International, Inc.  

2. R. G. Budynas, Advanced Strength and Applied Stress Analysis, Second ed., 1999, 

McGRAW-HILL International Editions. 

3. Some Elasticity books in Japanese version.  
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 [Appendix 2A-1]:  Formulation of compatibility equations 

   Suppose point P0 (x10, x20, x30) be an arbitrary point in the domain of elastic body under consideration 

with displacement ui0 and rigid body rotation ij0.  Moreover, the domain is assumed to be 

single-connected and strains are C2-level continuous in the domain V.  The displacement and rigid body 

rotation of the other arbitrary point P’ (x1’, x2’, x3’) in the domain V are ui’ and ij’, respectively.  Let us 

connect the points P0 and P’ by using a curve C and then integrate the duj along the curve  

    ( ) 0321
0

jj

'P

P j u'x,'x,'xudu −=                           (A-1) 

and ( )  +=+==
'P

P kjkk

'P

P jkk

'P

P jkjk

'P

P kk,j

'P

P j dxdxdxdxudu
00000

.  (A-2) 

  The second term in the R.H.S. of Eq. (A-2), by using the relation dxk’ = 0 and technique of integration by 

parts, can be changed to 
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    ( ) ( ) j,klk,ljjk,ll,kkj,ll,j ,uu,uu −=+−+=
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2

1
                (A-4) 

Substituting Eqs. (A-2)~(A-4) into (A-1), we obtain 

   ( ) ( ) l

'P

P jlkkjkjj dxUx'xu'x,'x,'xu +−+=
0

000321 ,               (A-5) 

where ( )( )j,klk,ljkkjljl x'xU −−+=                         (A-6) 

By using the hypothesis of continuum mechanics, the displacement at point P’ shall definitely be a 

single value.  In other words, the value of displacement at point P’ shall be independent of the path C; or 

the last term at R.H.S. of Eq. (A-5), Ujldxl, shall be exactly differentiable. The corresponding sufficient and 

necessary conditions of exact differentiation can be written mathematically as    

0=− i,jll,ji UU                               (A-7) 

By inserting Eqs. (A-6) into (A-7), it yields 

( ) ( ) j,klk,ljkii,jlj,kik,ijkll,ij −+−−−  

     ( )( ) 0=+−−−+ ji,klki,ljjl,kikl,ijkk x'x  

         ( ) 0=+−− ji,klki,ljjl,kikl,ij             (A-8)               

Equation (A-8) can be broken down and written to 34 = 81 equations, in which only 6 equations, expressed 
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by Eqs. (2B-35)~(2B-39) are independent. 


