Chapter A Essential Concepts and Statics Review

A-1 Introduction

B Objective: To develop the relationships between the loads applied to a nonrigid (deformable) body and
the internal forces and deformation induced in the body.
B Principles and methods:

The equations of equilibrium and free-body diagram (by cutting through a member)

2. Geometry of the body after the action of loads.
3. The relationship between the loads and deformation.
4.

The size and shape of the member must be adjusted to keep the stress (force per unit area) below
the strength of material to avoid failure.

A-2 Support reactions (in Statics)

If the support presents translation in a given direction (2D: 2; 3D: 3), then a reaction force must be
developed on the member in that direction. Likewise, if rotation is prevented in a given direction (2D: 1; 3D;
3), a reaction couple moment must be exerted on the member in that direction.

(1) Two dimensional supports:
TABLE 5-1 Supports for Rigid Bodies Subjacted to Two-Dimensional Force Systums
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o[ : One wnknown. The reaction is a teasion force which acts
¥ away from the member in the direction of the cable.
cable ',
2)
\ A ) .
byt ) O/ N\ o 9. One unknown. The reaction is o force which ac1s along
L \ \\ the axis of the link.
3 v ¥ v

weightless link

/ / Ome unknown. The reaction is & force which acts
4 perpendcular 1o the surface at the poiat of contact.
.
S ﬁ"
' X
raller ¥
) X
‘/ - One unknown, The reaction is a force which acts
VI /s‘ - perpendicular to the surface at the point of contact,
:
¥
rockar
(5)
—— )
L One unknown. The reaction s a force which acts
) f i perpeadicular to the surface at the poent of coniact
| U -
smuoth contactiag ¥

surface

ki

"% — S 2
v JRREES. or e Onse unknown, The reaction s a force which acis
"V r/"'[’ ‘/.‘r
) B

¥ /R § perpendicalar to the slot.

rodler or pin in
coafized smooth shot

[}

e B One unknown. The reaction is a foree which acts
/"-' /"n' perpendicular to the rod.

member pin coanected
0 coliar on smooth rod



Types of Connection Reaction Number of Unknowns

® F F 5 -
i Two unknowns. The reactions are two components of
0 or () force, or the magnitude and direction ¢ of the resultant
force. Note that ¢ and 6 are not necessarily equal [usually

E: not, unless the rod shown is a link as in (2)].
smooth pin or hinge
9)
Two unknowns. The reactions are the couple moment
T and the force which acts perpendicular to the rod.
F
member fixed connected
10 collar on smooth rod
(10)

F Three unknowns. The reactions are the couple moment
b = or and the two force components, or the couple moment and
the magnitude and direction ¢ of the resultant force.

fixed support

(2) Three-dimensional supports
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A-3 Equilibrium of a rigid body (in Statics)

> F=0; > M,=0

®  3-D problem:
> F.=0; >F,=0; >F=0;
Z(MO)XZO; Z(MO)y:O; Z(MO)Z:O.

There are, totally, 6 equilibrium equations.
B 2-D problem: (x-y plane)

> F=0; DF,=0; > (M,),=0.
There are, totally, 3 equilibrium equations.

[Remarks] : | | |

1. For 2-D problems under the action of concurrent external forces, only 2 equilibrium equations, i.e.,
D> F,=0 and »'F,=0,are required.

2. Instatics, it is called “statically determinate” if the number of unknown forces is equal to the
number of equilibrium equations; while it is called “statically indeterminate” if the number of
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unknown forces is more than the number of equilibrium equations. In statically indeterminate
problems, the unknown forces cannot completely determined by equilibrium equations.
However, with the aid of geometry condition of deformation, all the unknown forces can be
completely determined.

A-4 Internal forces (in Statics)

In the study of mechanics of materials, it is necessary to examine the internal forces that exist throughout
the interior by an imaginary cutting plane (or a section) of a body. It is apparent that the internal force
system is dependent upon both the orientation and location of the section and can be determined by the
equilibrium equations. Experience indicates that materials behave differently to forces trying to pull
atoms apart than to forces trying to slide atoms past each other. For convenience a xyz-coordinate system
is adopted in which x is perpendicular to the section and y and z lie in the section. The component of
internal force, Fr, perpendicular to the section, (Fr)x is called an “axial force” or “normal force”,
generally denoted by symbol N. This force tends either to pull the body apart or to compress the body.
The components of Fr that lie in the section, (Fr)y and (Fr);, are called the “shear forces”, generally
denoted by Vy and V,. These forces tend to slide one part of the body relative to other part. On the other
hand, the component of internal couple, Mro, perpendicular to the section, (Mro)y, is called a “twisting
couple” or “twisting moment”, or “torque”, generally denoted by symbol T. This couple tends to twist
the body (just like to twistingly dry the clothes). The components of Mg, that lie in the section, (Mro )y
and (Mro ), are called the “bending couples” or “bending moments”, generally denoted by My and M,.
These couples tend to bend the body.

Torsional
Moment
T
Ro :”” ///// - /}'\
! ~ \7'\ Normal
: CA N Force ~~ F
, | ER
| |
| i
| |
Bending M%}/(\{
Moment 'V
Shear
Force
F, F,
(d)
3-D problems

Internal forces in slender member:



Bending moment

z
components /‘T M,
Bl - Normal force

z / o Torsional momeni
N\o\rmal force w \I Ny_ ( M, ;
N fcf\ o
M

) N e

— .
Shear force -\ \ Y i | M K i e \ '
Bending moment X~ ~~— Shear force components

(a) x (®)

2-D 3-D
Sign conventions: An internal force or couple component is defined as positive if the component is
either in a positive coordinate direction when acting on a positive section or in the negative coordinate
direction when acting on a negative section.

A-5 Relations between distributed load, shear, and moment (in Statics)

Relation Between the Distributed Load and Sheal

(@) apply the force equation of equilibrium to the segment, then
AF =w(x) Ax
y +13F, =0 V+ wx)Ax— (V+ AV) =0
w(x) - : AV = w(x)Ax y
I
o
L (Ax
: : f:_- _k (A) Dividing by Ax, and letting Ax — 0, we get
I
Ll
V! SRR T \
M M+ AM dv )
1 04 1 b~ wi(x) j
V+AV slopcof  _ distributed load
shear diagram intensity
Ax s Bl
(b)



it we rewrite the above equation in the form dV = w(x)dx and perform
an integration between any two points 8 and € on the beam, we see that

|
|

AV = /w[x)d.t

Arca under =

shear  loading curve

Relation Between the Shear and Moment. Ifwe apply the
moment equation of equilibrium about point @ on the free-body diagram

in Fig. 7-13b, we ge1

C+IMg=0; (M + AM) ~ [wO)AxkAx~ VAT —M = 0

AM = VAx + kwindr

Dividing both sides of this equation by Ax, and letting Ax 0, vields

—=V

moment diagram

|
(7-3)
= Shear |

In particular. notice that the maximum bending moment | M | e Wil
oceur at the point where the slope dif/dy = 0, since this is where the

shear is equal to zero.

If Eq.7-3is rewritten in the form dM = [V dx and integrated between
any two points B and C on the beam, we have

[va

(7-4)
Area under

" shear diagram |

As stated previously, the above eguations do not apply st poinis where
a concentrated force or couple moment acts. These two special cases
crcate discontinuides in the shear and moment diagrams. and as a result,

each deserves separale treatment. ¥

Force. A free-body diagram of a small segment of the beam in .

Fig. 7-13a, taken from under one of the forces, is shown in Fig, 7-14a. mMx Y M+ aM
Here force equilibrium requires ( t 1 3
+15F, =0, =F (7-5) l_ _|V+~W
Since the change in shear is positive, the shear diagram will “jump” Ao

upward when F acts upward on the beam. Likewise, the jump in shear @

(AV) is downward when F acts downward. Fig. 7-14

Fig. 7-14 (cont.)

Couple Moment. If we remove a segment of the beam in Fig. 7-13a
that is located at the couple moment M, the free-body diagram shown in
Fig.7-14b results. In this case letting Ax — 0, moment equilibrium requires

C+3SM = 0; AM = M, (7-6)

Thus, the change in moment is positive, or the moment diagram will
“jump” upward if My is clockwise. Likewise, the jump AM is downward
when M, is counterclockwise.

The examples which follow illustrate application of the above equations
when used to construct the shear and moment diagrams. After working
through these examples, it is recommended that you also go back and
solve Examples 7.6 and 7.7 using this method.



Throughout the book the effects on a deformable body of the components of R and C will be examined
in detail.
For instance:

Axial forces : deformation and stresses induced by axial loading (chap. 4)
Twisting torque: deformation and stresses induced by torsional loading

(This element is called “shaft™) (chap. 5)
Shear forces and bending moments: deflection and stresses induced by flexural loading (this
element is called “beam”) (chaps. 6, 7, and 12)
Compressively axial force: deformation and stresses induced by compressive loading (this
element is called “column”) (chap. 13)
A phenomenon of geometrically unstable deformation “buckling” is introduced (not rupture or
failure).

[Remarks]: The remained 4 chapters are:

Stresses (chap. 1)

Strains (chap. 2)

Stress-strain relationships and material mechanical properties (chap. 3)
Strain energy method and failure theories (chaps. 14 and 10.7)



Chapter 1. Stress: Definitions and Concepts

1-1 Introduction

Application of the equations of equilibrium to determine the forces exerted on a body by its supports or
connections and the internal forces acting on a section is the first step in the solution of engineering
problems. A second and equally important step is to determine the internal effect of the forces on the body,
which is related to the behaviors of materials under the action of forces. Safety and economy in a design are
two considerations for which an engineer must accept responsibility. The intensity of the internal forces,
called “stress”, to which each part of a machine or structure is subjected and the deformation (the
intensity deformation is called “strain”) that each part experiences during the performance of its
intended function should be able to be evaluated. Then, by knowing the properties of the material (the
relationships between stress and strain) from which the parts will be made, the engineer establishes the
effective size and shape of the individual parts and the appropriate means of connecting them. In other
words, a thorough mastery of the physical significance of “stress” and “strain” is paramount.

1-2 Normal stress under axial loading
“Stress” is the intensity of force. A body must be able to withstand the intensity of an internal force to
avoid rupture or excessive deformation. Force intensity (stress) is force divided by the area over which

the force is distributed

Stress = Force / Area (1-1)

AF

o
!

If the internal force is normal to the exposed section, this force intensity is called “normal stress”
denoted by “c™. There are two kinds of force intensity. An average force intensity on a section is called

a—+——fr—a

T

P

S

“average normal stress”, cavg

cavg = FIA (1-2)

While the stress at the point on the section to which A A converges is defined as



o=lim—+; (1-3)

Where AA and AF denote the small area on the exposed cross section and the resultant of normal
component of the internal forces transmitted by this small area, respectively. Generally, the normal stress
at a point has more physical significance than the average normal stress.

1-3 Shearing stress in connections or mechanisms

Loads applied to a structure or machine are generally transmitted to the individual members through
connections or mechanisms. In all these connections or mechanisms, one of the most significant stresses
induced is a shearing stress. As shown in Fig. 2-4, if only one cross section of the bolt is used to affect the
load transfer between the members, the bolt is said to be in “single shear”. On the other hand, it can be
observed that two cross sections of the pin are used to sustain the load transfer between the members, the pin
is said to be in “double shear”. For single shear, V = P, while 2V = P for double shear. In other words, the
shear force induced by double shear elements is smaller than single shear ones.

P —
P < |
Figure 2-4
" 3| o :
W [ TR =
N

Similarly, an average shearing stress and shearing stress at a point of section are defined as, respectively:

Tavg = V/IA (1-4)
. AV

7= — (1-5)
Uy

Another type of shear loading related to punch a hole in a metal plate, as shown in Fig. 2-7, is termed
“punching shear”.



EX: The pin is either double-shear or fourfold-shear?

Steel

1-4 Bearing stress

Bearing stresses (compressive normal stresses) occur on the surface of contact between two interacting
members. Bearing stress is normal component of this contact stress. As shown in Fig. 2-8, bearing stresses
are developed at the contact surfaces between the head of the bolt and the top plate, between the nut and the
bottom plate, and between the shanks of bolts and the sides of the hole.

1-5 Units of stress

The dimensions of stresses: FL

B U.S. customary (FPS) system: psi (pound per square inch); ksi = 1000 psi

B Sl system: Pa (a Newton per square meter, N/m?); MPa = 10° Pa; GPa =10° Pa

1-6 Stresses on an inclined plane in an axially loaded member
As shown in Figs. 2-14~16, stresses on planes inclined to the axis of an axially loaded bar are considered.
The axes and forces are all positive. The x-axis is the outward normal to a section perpendicular to the axis
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of the bar; and the n-axis is the outward normal to the inclined section. The angle &is measured from a
positive x-axis to a positive n-axis; a counterclockwise angle is positive. Positive y- and t-axes are located
using the right-hand rule and a positive angle. The normal and shearing forces shown in Fig. 2-16 are all
positive.

——x t

e

c

/ -
\V—.\

\—e)\n

X

0
B

=

e ,[l/l/l/l

c L

From equilibrium equations:

D> F,=0=N-Pcos#=0=>N =Pcosb;

> R =0=V +Psind=0=V =—Psing

Since the relation between the area of axial cross section, A, and the area of inclined surface, An, is An =
A /cos@; therefore, the normal and shear stresses induced in the inclined surface under the assumption of
uniform distribution are, respectively

; _ﬂ = Pcos¢ :ECOSZ I2; =£(l+ COSZH) (1-7)
A, Alcosd A 2A
T —i=_PS'n6:—Esin0cos:9=—isin 20 (1-8)
A, Alcoso A 2A
p £
40 0’1
1P o
24 a 5"\\
I” T" \\\
0 45 90 ~~_ 135 PP e

As seen in Fig. 2-17, the magnitudes of on and 7 are the function of the angle 6. on is maximum when @ is
0° or 180°; while z is maximum when &is 45° or 135°. Moreover, the magnitudes of the maximum normal
and shearing stresses for axial tensile or compressive loading are

o= PIA (1-9)
.. =PI2A (1-10)
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Laboratory experiments indicate that a brittle material loaded in tension will generally fail in tension on a
transverse plane (8 = 0°), whereas a ductile material loaded in tension will fail in shear on a 45° plane.
(For brittle materials, ostrength < 27strength; Whereas for ductile materials, ostrength > 2 Zatrength)

To define the normal stress and shear stress at an arbitrary point P in a body, for instance, on the yz plane
that has an outward normal along x-axis, these stresses should be designated by two subscripts. The first
subscript designates the normal to the plane on which the stress acts and the second designates the
coordinate axis to which the stress is parallel. Therefore, the normal stress exerted on this plane is
designated by oxx or ox, while the shear stresses acting on this plane which are parallel to y and z axes are
designated by 7y and 7, respectively.

The equality of shearing stresses on orthogonal planes can be demonstrated by applying the equations of
equilibrium to the free-body diagram of a small rectangular block of thickness dz, shown in Fig. 2-19.

> M, =0=> 7, (dxdz)dy =7, (dydz)dx

or Tyx = Txy (1‘11)
It means the shearing stresses are symmetric.

A
<

Vi ="Tdxdz

dy Vy =T,dydz

dx

X

Free-body diagram

1-6 Stress at a general point in an arbitrarily loaded member

In complicated structural members or machine components, the stress distributions are generally not
uniformly distributed on arbitrary internal planes; therefore, a more general concept of the state of stress at a
point is needed. The stresses at an arbitrary interior point O of a body in equilibrium can be
determined as follows:

12



n

We pass an imaginary “cutting plane” through point O of the body, and separate the body into two parts.
One of isolated parts of body is taken as free body, and all the external forces, which include external
applied forces and distributive internal forces acting on this interior cutting plane with an outward
normal n, should be in equilibrium.

3. Generally, the distributions of internal forces acting on the section are not uniform. Any distributed force
acting on a small area A4 A surrounding a point of interest can be replaced by a statically equivalent
resultant force A Fy, through O and a couple A M.

4. The resultant force AFncan be resolved into components AFs normal to the plane and A Fnetangent
to the plane. A normal stress on and a shearing stress z are then defined as

. AF, . _AF
o, = and 7, = —n
B, U

5. In a Cartesian coordinate system, the stresses on planes passing through point O having outward normals
in the x-, y-, and z-directions are usually chosen. Consider the plane yz having an outward normal in the
x-direction. The resultant force A Fnt or A Fx tangent to the yz plane can be resolved into components A Fyy
and A Fyx, consequently, the related stress components are

o =0, =lim=: 7, = lim=2; o, - |im*e
AA—0 AA AA—O AA AA—O AA
Similarly, if the planes xy and zx having outward normals in the z- and y-direction, respectively, the

corresponding stress components are (oz, %x, 7zy) and (oy, 7z, %), respectively. Therefore, the stress state
at point O can be expressed by a “tensor”, which is neither scalar nor vector mathematically; i.e.,

(1-12)

(1-13)

Oy Xy Ty
o=7, O, T, (1-14)
Ty T, O

Of the nine components of stress, only six are independent due to the symmetry of shearing stresses.
[Remarks]:

B Aninfinite number of Cartesian coordinate systems can be selected, resulting in infinite

number of stress tensors, which have different components just like the feature of vectors, but
all of them are equivalent physically.

B |t is customary to show the stresses on positive and negative surfaces through a point using a small
13



cubic element as shown in Fig. 2-24.

1-7 Two-dimensional or plane stress
Plane stress (xy): A kind of stress state in which two parallel faces with outward normal in the
z-direction of the small cubic element are free of stress; i.e.,
0; = Tix = Ty = 0. In other words, only three stress components, ox, &y, 7y, are non-zero. This stress
state occurs at points within thin plates where the z-dimension of the body is small and the z-component
of the external forces is zero. For convenience, this state of stress can be represented by the simple
two-dimensional sketch, or a plane projection of the three-dimensional element.
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Chapter 9. Stress Transformation

9-1 The stress transformation equations for plane stress

Equations relating the normal and shearing stresses on and zon an arbitrary plane (whose normal n is
oriented at an angle @with respect to a reference x-axis; and a counterclockwise angle @is positive) through
a point and the known stresses ox, oy and 7y on the reference planes can be derived using the free-body
diagram and the equations of equilibrium as shown in Fig. 2-27.

\
\
4 T.r.x \| 7 - 0 .
\a ’
\ Ty
O, <Gy \\ | — O, Oy dA SOS 0 |
1N .
Txy o \ l
N a T,y dA cos ©
o
T
T,,dA sin 6
G, v

O, dA sin 6
(a) (b)

> F,=0=0,dA-0,(dAcost)cosd — o, (dAsin9)sin@ —z,,(dAsind)cosd -z, (dAcosd)sin & =0

or o, =0,c08 8+0,sin’ 0+ 2r,,sinfcosd (9-1)

By using relations of double angle, above equation becomes

o,+o o,— O .
an=[ > yj+( 5 "Jc0520+rxysm2¢9 (9-2)

> F. =0=r,dA+0,(dAcosd)sin 6 — o, (dAsin 0)cosd
—7,,(dAcosd)cosd+ 7, (dAsin O)sin & =0

or 7, = —(Ux -0, )sin 0cos + rxy(cos2 0 —sin? 0) (9-3)

By using relations of double angle, above equation becomes

r =1 2% lsin26+7, cos26 (9-4)
nt 2 Xy

[Remarks]: When these equations are used, the sign conventions used in their development must be
rigorously followed. Moreover, it can be found that

2 2
+ —
{an —(GX 5 %y ﬂ + z-mz = (GX 5 O-yj + z'xyz (9-5)
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2
. O, + 0O . o,— O
It represents a cycle with center ( £.0) and radius R= \/( y) +7, 2,
2 y

9-2 Principal stresses and maximum shearing stress-plane stress

As shown in previous section, the normal and shearing stresses on and z vary with the angle 6. For design
purpose, critical stresses at the point are usually the maximum tensile stress and the maximum shearing
stress. Maximum and minimum values of occur at value of for which dow/d @ is equal to zero. Differentiation
of on with respect to fyields

dd‘g — (0, — 0, )sin26+27, c0s20=0

o, —0,

sin260, +z,,c0s20, =0 (9-6)

27,
= tan26, = — and 7, (Hp): —
o,—0,

Consequently, the shearing stress is zero on plane experiencing maximum and minimum values of normal
stress. Therefore, planes free of shearing stress are known as principal planes; normal stresses occurring on
principle planes are known as principal stresses. A third principal plane for plane stress state has an outward
normal in the z-direction. For a given set of values of ox, oy, %y, there are two values of 24, differing by 180
° and, consequently, two values of &, that are 90° apart. This proves that the principal planes are normal to
each other.

Xy

20,+ ISOOX 26,

Two principal stresses, as shown in Fig. 2-32, can be obtained as given by

2
o,+to o,—O
Cprps = 5 Y i\/( 5 yj +Txy2 9-7)

The third one is op3 = 0z = 0.
The maximum in-plane shearing stress z, occurs on planes located by values of & where dzm¢/d@is equal to

ZEro.
97 _ (5~ )o0s20- 2z, sin20 =0
do
— tan20, = —(GXZ;GV) (9-8)
T

Xy

Since two angles 264, and 26 differ by 90°, &, and &: are 45 ° apart.
16



The maximum in-plane shearing stress z, are

2
O, — O, (O' — O ) o —O0._.
T, = i\/[—x yj + Txyz — 40 P2/ _ “max min (9-9)

2 2 2

When a state of plane stress exists, one of the principal stresses ops is zero. The maximum shearing
stress may be different from the maximum in-plane shearing stress and equal to:

(1) If op1> 0 >op2: The maximum shearing stress equals (op1 - 0p2)/2.

(2) If op1> op2 > 0: The maximum shearing stress equals (op1 - 0)/ 2.

(3) 1f 0> op2> op1: The maximum shearing stress equals (0 - op1) / 2.

Op1 and.O' 2 Cp1 and. Op2
Op1 and Gy, same signs same signs
OPPOSite Signs |Gpl| > |Gp2| |Gpl[ < Icpll

9-3 Mohr % circle for plane stress

The German engineer Otto Mohr (1835-1918) developed a useful graphic interpretation of the
transformation equations for plane stress.

It can be found that

2
. o,to . o,
It represents a cycle with center ( Y,0) andradius R = \/[ yj +7, 2,
2 y

or denoted by [o, —o, [ +7,,° = R?, where ano = (ox + o)/2.

nt

As shown in Figure, we want to verify the stress transformation equations:
on=0C + CF cos (26, -26) = OC + CA cos 26, cos20+ CA sin 26, sin26

where CA cos 26, = (ox - oy)/2; CA sin 26, =1xy; and OC= (ox + oy)/2 = oavg. Therefore,

o,+o o,— O .
an=[ > V}L( 5 chosZQMXysmze

Similarly,
mt = CF sin (24, -20) = CA sin 26, cos28- CA cos 26, sin26
17



Therefore,

T =— Ix 9y sin20 +r,,c0s260
nt 2 Xy

Moreover,

o,+o o,—O ’ 2
opp=0D=0C+CD=0C+CA= > L+ > Lo+,

o,+0o o,— O ’ )
o2=0E=0C-CE=0C-CA= > L — LT

o,— 0O, ’ 2 27,
=CM=CA= +7,, ; tan26, =
2 o,—0,
It can be found all above relations, evaluated through Mohr’s circle, are consistent with the stress
transformation equations.

B The procedures to draw Mohr?’s circle are:

(1) Choose a set of x-y reference frame, and identify the stress components ox, oy and 7y and list them
with the proper sign.

(2) Draw a set of on -zt coordinate axes with on and znt positive to the right and upward (or
downward), respectively.

(3) Plot the point (o, -%y) (Or (ox, %y) if 7t positive downward) and label it point A.

(4) Plot the point (ay, %) (Or (oy, -%y) if 7t positive downward) and label it point G.
[Remarks]: or plot the center C: (oavg, 0), where gag=(ox +0y)/2.

(5) Draw a line between A and G. The intersection of this line and horizontal axis zn: establishes the
center C and the radius R = CA=CG.
[Remarks]: or draw a line between A and C.

(6) Draw the circle with center C and the radius R.

Other points of interest in Mohr’s circle are:

(1) Point D, which provides the maximum principal stress op1 = OD.

(2) Point E, which provides the maximum principal stress op2 = OE.

(3) Point M or N, which provides the maximum in-plane shearing stress z, = CM.
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EX: If the stress state of a point A in a deformable body is as follows (0; =zx =5y = 0):
plot the Mohr’s circle, determine the principal stresses and maximum shear stress.

e y
4 120MPa
T» S0MPa

80MP
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EXAMPLE 9.7
— e
| Due to the applied loading, the element at point A on the
tndidshaﬁinﬁg&‘-masubjemdtothemwofsuw
'[down.Determinetheprhcipalmessesaaingatthispoim.
SOLUTION
Construction of the Circle. From Fig. 9-18a,

oy™= =12ksi o, =0 7, =™ —6ksi

The center of the circle is located on the ¢ axis at the point

-12+0
Ca =5 = ~6 ksi

reference point A(~12, ~6) and the center C(-6,0)
plotted in Fig. 9-18b. From the shaded triangle, the
wrcle is constructed having a radius of

R = V(12 = 6 + (6 = 849 ksi

Principal Stress. The principal stresses are indicated by
8¢ coordinates of points B and D. We have, for oy > o,

o, =849 — 6 = 2.49 ksi Ans.
gy = —6 — 849 = —145ksi Ans.

orientation of the element can be determined by calculating the angle
in Fig. 9-18b, which here is measured counterclockwise from CA to CD.
defines the direction 8, of o; and its associated principal plane. We have

26,, = tan”"!
B,, = 225°

TRtk 4

12

element is oriented such that the x’ axis or o, is directed Al
¢ counterclockwise from the horizontal (x axis), as shown

Fig. 9-18¢.

249 ki

145ksi_—*

2.5 =

(c)
Fig. 9-18
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g EXAMPLE 9.8

90 MPa The state of plane stress at a point is shown on the clement in Fig. 9-19.
Determine the maximum in-plane shear stress at this point.

SOLUTION
Construction of the Circle. From the problem data,

o = -20MPa o, =9%MPa 7, =60MPa

The o, r axes are established in Fig. 9-19b. The center of the circle C is

@) located on the o axis, at the point
=20 + 90
- wy=—— =35MPa
Point C and the reference point A(—20, 60) are plotted. Applying the
B4 Pythagorean theorem to the shaded triangle to determine the circle’s

l o (MP2) 1adius CA, we have

= V(60)i + (55 ? = 81.4MPa

Maximum In-Plane Shear Stress. The maximum in-plane shear stress
and the average normal stress are identified by point E (or F ) on the
circle. The coordinates of point E(35, 81.4) give

Tavy = 35 MPa Ans

T, = 81.4 MPa Am

The angle 6, , measured counterclockwise from CA to CE, can be found
from the circle, identified as 24, . We have

20 + 35
60

8, = 213° Amx

2, = i (225) o5

This counterclockwise angle defines the direction of the x’ axis
Fig. 9-19¢. Since point E has positive coordinates, then the average
© normal stress and the maximum in-plane shear stress both act in the

positive x* and y' directions as shown.
Fig. 9-19
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EXAMPLE 9.9

- The state of plane stress at a point is shown on the element in Fig. 9-20a.

Represent this state of stress on an element oriented 30° counterclockwise
Som the position shown.

SOLUTION
Lonstruction of the Circdle. From the problem data,

The o and 7 axes are established in Fig. 9-20b. The center of the circle C
% on the o axis at the point

am--8;12=2ksi

reference point for 8 = (” has coordinates A(—8, —6),
from the shaded triangle the radius CA is

R = V(10 + (6)5 = 11.66

on 30° Element. Since the element is to be
ted 30° counterclockwise, we must construct a radial
CP, 2(30°F) = 6F counterclockwise, measured from
(6 = (r), Fig. 9-20b.The coordinates of point P(er,-, Tr'y)
then be obtained. From the geometry of the circle,

é = tan™! & 3096 ¢ = 60° ~ 30.96° = 29.04°

Oy = 2 — 11.66 cos 29.04° = —8.20 ksi Ans,
Ty = 11,66 sin 29.04° = 5,66 ksi Ans

two stress components act on face BD of the element shown in
9-20c, since the x* axis for this face is oriented 30° counterclockwise
the x axis.

The stress components acting on the adjacent face DE of the element,
“which is 60° clockwise from the positive x axis, Fig. 9-20c, are represented
the coordinates of point Q on the circle. This point lies on the radial
Spe CQ, which is 180° from CP, or 120° clockwise from CA. The
~woordinates of point O are

oy =2 + 11.66 cos 29.04° = 122 ksi Ans.
Tyy = —(11.66 sin 29.04) = ~566 ksi  (check) Ans.
l

| NOTE: Here 7, acts in the —y” direction, Fig. 9-20c.
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.5 ABSOLUTE MAXIMUM SHEAR
STRESS

the strength of a ductile material depends upon its ability to resist
stress, it becomes important to find the absolure maximum shear
in the material when it is subjected to a loading. To show how this
be done, we will confine our attention only to the most common
of plane stress,* as shown in Fig. 9-21a. Here both o, and o, are

. If we view the element in two dimensions at a time, that is, in the
x-z, and x-y planes, Figs 9-215, 9-21¢, and 9-21d, then we can use
s circle to determine the maximum in-planc shear stress for each
For example, Mohr’s circle extends between 0 and o for the case
in Fig. 9-21b. From this circle, Fig. 9-21e, the maximum in-plane
stress is Tpu = 02/2. Mohr's circles for the other two cases are

shown in Fig. 9-21e. Comparing all three circles, the absolute
x shear stress is

st
L B

(9-13)

the same sign

occurs on an element that is rotated 45° about the y axis from the
sent shown in Fig. 9-21a or Fig. 9-21c. It is this out of plane shear
that will cause the material to fail, not 7.

oy

o2

(c)
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[ F

( Maximum in-plane and
absolute maximum shear

(b)
Fig. 9-22

In a similar manner, if one of the in-plane principal stresses has
opposite sign of the other, Fig. 9-22a, then the three Mohr's circles
describe the state of stress for the element when viewed from each
are shown in Fig. 9-22b. Clearly, in this case

oy -0

§

=
L

a and 0y lmw
opposite signs

Here the absolute maximum shear stress is equal to the
in-plane shear stress found from rotating the element
Fig. 9-22a.45° about the 7 axis.

IMPORTANT POINTS

® If the in-plane principal stresses both have the same sign. the
absolute maximum shear stress will occur out of the plane and
has a value of 7w = Ona /2. This value is greater than the
in-plane shear stress. |
* If the in-plane principal stresses are of opposite signs, then the
absolute maximum shear stress will equal the maximum
in-plane shear stress; that is, 7 s = (Cuux — Tmin) /2
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EXAMPLE 9.11

Duetoanapplicdloading.anelemematapointonamadﬁneshaﬂis
subjected to the state of plane stress shown in Fig. 9-24a. Determine the
principal stresses and the absolute maximum shear stress at the point.

SOLUTION

Principal Stresses.

The in-plane principal stresses can be determined from

Mohr's circle. The center of the circle is on the o axis at

Oy = (=20 + 0)/2 = ~10 psi. Plotting the reference point

A(—20, ~40), the radius CA is established and the circle is
o (psl) drawn as shown in Fig, 9-24b, The radius is

7 (psi}
(b}

¥
312 pci\ x'
51.2 v
380r
X

(c)
zo-mm-rw:loo'A

[ lery, D)

R =V (20 - 10)® + (407 = 412psi
The principal stresses are at the points where the circle intersects
the o axis;ie.,

a; = —10 + 41.2 = 31.2 psi

oy = ~10 — 412 = —512psi
From t.he.cin:le. the counterclockwise angle 28, measured from CA to the
— axis, is

20-tan°’( )=76.0°

20 - 10
Thus,
6 = 38.4r
This counterclockwise rotation defines the direction of the x* axis and o=
Fig. 9-24¢. We have
oy =312psi o, = —512psi Ans

Absolute Maximum Shear Stress. Since these stresses
have opposite signs, applying Eq. 9-14 we have

oy —oy _ 312 - (=512)

< T 2 2 = 41,2 psi Am
] i 312.-512
7 =312 Oy = : = —10psi

These same results can also be obtained by drawing Mohr s
circle for each orientation of an clement about the
x, ¥, and z axcs, Fig. 9-24d. Since o and o are of opposis
signs, then the absolute maximum shear stress as noted equat
the maximum in-plane shear stress.
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9-4 General state of stress at a point

= |
= 0,dA,

Figure 2-44

Consider the equilibrium of a small element for an arbitrary point O, as shown in Fig. 2-44, which has an
oblique surface with outward normal n besides three orthogonal planes with normals in x-, y- and z-direction,
respectively. The direction cosine of the oblique surface is denoted by | = cosé, m = cosé,, and n = cosé,
respectively. Moreover, the relations of surface area are dAx = IdA, dAy = mdA, dA,= ndA. The equilibrium of
forces along x-, y-, and z-axis are, respectively,

> F =0=S,dA-o,ldA-7,mdA—7,ndA=0

> F,=0=S,dA-o,mdA-7,|dA—7,ndA=0

> F,=0=5,dA-o,ndA— 7, IdA—7,mdA=0

or S,=ol+7r,m+7,n
S, =g,/ +tom+z,n (9-10)
S, =7l ++7,M+a,n

Since S-n=0, =S I+Sm+S,n=0,,wheren=(l,m,n), 1>+m?+n*=1

Therefore, o, =o,l* +o,m’ + 0,0 + 2z, Im+ 2z,,mn+ 2,1l (9-11)
The corresponding shearing stress z satisfies the relation:
S*=c’+17)
If the oblique plane is just the principal plane, i.e., m:=0,and Sn = op n,
or S,=0,l, S,=0,m, S,=0,n

The equations (9-10) can be rewritten as:
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(O'X —O'p) +7,m+7,n=0,
r ) +lo, —o, m+7,n=0, (9-12)

7, +Tyzm+(O'Z —O'F))']:O;

or T o,—0C T m|=0. (9-13)

This set of equations has a nontrivial solution only if the determinant of the coefficients of I, m, and n is
equal to zero. Thus,

o,—0C T =0. (9-14)

Expansion of the determinant yields the following cubic equation for determining the principal stresses:

o, — o, +1,0,—1,=0, (9-15)

where |, =0, +o0,+0,

— 2 2 —
|,=0,0,+0,0,+0,0,—7,, 7, —T,=

O-x Tyx X
I 3= Xy Gy sz
T T (o3

The method to determine the principal stresses and their corresponding directions are called the
problem of eigenvalues and eigenvectors. The principal stresses and principle directions are
eigenvalues and eigenvectors, respectively. Since they are independent of the coordinate x-y-z selected,
the coefficients of cubic equation I, I, I3and are also independent of the coordinate, they are called
the first, the second, and the third stress invariants, respectively. After obtain the eigenvalue opi, i = 1, 2,
3, the corresponding unknown eigenfunction (li, m;, n;) can be evaluated by using

X pi yx x i
Xy o, =0y Ty m |=0 (9-16)
Ty z-yz o, — O-pi n;
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Chapter 2 Strain: Definitions and Concepts

2-1 Introduction

In the design of structural elements or machine components, the deformations experienced by the body, as
a result of the applied loads, often represent as important a design consideration as the stresses. Therefore,
the nature of the deformations experienced by a real deformable body as a result of internal force or stress
distributions will be studied, and methods to measure or compute deformations will be established.

2-2 Displacement, deformation, and strain
2-2-1 Displacement

When a system of loads is applied to a machine component or structural element, individual points of the
body generally move. The movement of a point with respect to some reference frame can be represented by
a vector quantity known as a displacement. The displacement of a point may be composed of rigid body
translation, rigid body rotation, and deformation. The latter will cause the size and/or the shape of a
body to be altered, individual points of the body move relative to one another.

J/

Figure 3-1

2-2-2 Deformation

Deformation may be related to force or stress or to a change in temperature. Generally, it leads to the size
and/or the shape of a body to be altered.

2-2-3 Strain

Strain is the quantity used to measure the intensity of a deformation (deformation per unit length) just as

stress is used to measure the intensity of an internal force (force per unit area). Similar to stresses, two kinds

of strains can also be classified:

B Normal strain (&): measures the change in size (elongation or contraction of an arbitrary line segment)
of a body during deformation.

m Shearing strain (): measures the change in shape (change in angle between two lines that are
orthogonal in the undeformed state) of a body during deformation.

The deformation or strain may be the results of a stress, of a change in temperature, or of other

physical processes such as grain growth and film growth.
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2-2-4 Average axial strain

The change in length of a simple bar under an axial load can be illustrated by a normal strain. If the length
and axial deformation of the bar are L and &, respectively,

Then the average axial strain can be expressed by

gavg = (2' 1)

2-2-5 Axial strain at a point

If the deformation is nonuniform along the length, the average axial strain may be significantly different
from the axial strain at an arbitrary point P along the bar. It is better to determine the strain by making the
length over which the axial deformation along x axis is measured smaller and smaller, i.e.,

do,

SiP)= i = @2

2-2-6 Shearing strain
A deformation involving a change in shape can be illustrated by a shearing strain. If the length of angle and
the deformation in a direction normal to the length are L and o, respectively, then

1)

Vavg = TS = tan ¢ (2'3)
Since &/ L is usually very small (typically o5/ L <0.001), sing=tang=¢,
where the angle ¢ is measured in radians. Therefore, y, =@=05;/L isthe decrease in the angle

between two reference lines x and y that are orthogonal in the undeformed state. The shearing strain at a
point can be defined similarly as:
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where & is the angle in the deformed state between two initially orthogonal reference lines.

2-2-7 Units of strains

It is obvious that both normal and shearing strains are dimensionless quantities; however, normal strains are
frequently expressed in units of inch per inch (in./in) or micro-inch per inch (uin./in.), while shearing
stresses are expressed in radians or microradians. The micro- (10°®) is denoted by .

2-2-8 Sign convention for strains

B Normal strains: positive for elongation (tensile strains) and negative for contraction (compressive
strains).

B Shearing strains: positive as the angle between reference lines decreases and negative as the angle
increases.

[Remarks]: For most of engineering materials in the elastic range, neither normal strains nor shearing strains

seldom exceed values of 0.2%.

2-3 The state of strain at a point

In many practical engineering problems involving the design of structural or machine elements, it is
difficult to determine the distributions of stress solely by mathematical analysis; therefore, theoretical
analysis supplemented by experimental measurement is generally required. Strains can be measured by
several methods; however, except for the simplest cases with uniform distribution of stress, the stresses
cannot be obtained directly. Therefore, the usual procedure is to measure the strains and calculate the state of
stresses by using the stress-strain equations.

As shown in Fig. 3-6, the complete state of strain at an arbitrary point P in a body under load can be
determined by considering the deformation associated with a small volume of material surrounding the point.
This small volume can be assumed to have the shape of a rectangular parallelepiped with its faces oriented
perpendicular to the reference axes x, y, and z in the undeformed state. Since the element of volume is very
small, deformations are assumed to be uniform; therefore, it is reasonable that parallel planes remain plane
and paralleling, and straight lines remain straight lines after deformation. The strain is also a tensor
guantity which has 6 independent components, just similar to stress tensor and can be expressed in
terms of the deformations:
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(b)

(a)

. dx'—dx _dgs, _ou
X dx dx  ox
_dy'—dy d5y oV

&, d—y—d—y_&,:dy':(1+gy)dy

= dx'= (1+ &, )dx

&, = dz'—dz = do, :@,: dz'= 1+ &, )dz (2-5)
dz dz oz
T . OV au
7xy:7yx:E_0Xy:&+5'
T : oW ov
7yz:72y25_0ﬂ:5+§’
T . ou  ow

Vo = Vxa :E_ 2 _EJF&’

where dd, doy and do; denote the change of length dx, dy and dz after deformation, respectively; while &y,
6. and 6.’ denote the distorted angles of right angles on the plane xy, yz and xz, respectively; u, vand w
denote the displacements of an arbitrary point along axes x, y and z, respectively.

Similarly, for two arbitrary orthogonal lines oriented in the n and t directions in the undeformed element, the
corresponding strains are given by

dn'=dn dJ T
_dndn _do, - =% 2-6
&y dn dx Vot =74 5 t (2-6)
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Chap. 10 Strain Transformation

10-1 The strain transformation equations for plane strain

Consider the case of x-y plane strain, i.e., ¢, =y, =y, =0

10-1-1 Normal strain &,

y

dnsin 6

dn 6

dy

OFdx=a’n cos 6—>|

(@)

(b)

Figure 3-7

As shown in Fig. 3-7, the shaded rectangular (a) represents a small unstrained element of material, and the
parallelepiped denotes the deformed element. The relations of strain components corresponding to the x-y
and n-t coordinates will be derived. Consider the triangle OC B’

(0B =(0oC'Y +(CB'f - 2(OC')(CB')CO{% + yxy)
=[1+¢ )dn] =[1+¢, Joxf + [(1+ g, )dy]2
~ 2@+, )ax]2+e, dy[-siny,,)

By using the relations dx = dncos@and dy = dnsin@, and neglect the second order terms, such as €2 and ey
due to very small strains, as well as the approximation
siny = y

e+ & E, —& .
=g, = y00320+%sm29 (10-1)

10-1-2 Shearing strain st

As the material deforms, the n-direction rotates counterclockwise through an angle ¢, as shown in Fig. 3-8.
For the triangle OC B’
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B'C'sin LOC'B'=0B'sin #/B'OC',
or in terms of the strains

(L+e, )dysin(% + 7/ij =(1+¢&, )dnsin[0 + (¢, — )]

=>¢ = —(€x —gy)sin 0cosl —y,,sin’ 0+

n

=@ = ¢n(9+%j =—(€X —5y)sin(49+%)co{0+%)—yxysin2(0+%j+z//

=(g, - gy)sin 6cosl—y,,C0s" O +y

Yo =t — ¢ =—2le, - g, JsinOcos6 + ;/Xy(cos2 0—sin?0)

:&:—Msin 20+ cos20 (10-2)

2 2

It can be found that if the shearing strains y; are replaced by &; mathematically, (y; /2=¢;), then the

relations of transformation for strains (3-8a) and (3-8b) are completely identical to stresses. In other words,

the Mohr’s cycle of strains is the same as the stresses.
10-2 Principal strains and maximum shear strain

For case of plane strain, the in-plane principal directions, in-plane principal strains, and the maximum

in-plane shear strain are

tan20, =22 (10-3)

2
g +e& &, —& 7,
:T\/( %) o

ypzz\/(gxgﬂ +[72ny . (10-5)
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10-3 Mohr % circle for plane strain
The equation of Mohr’s circle for strain and its radius are

2 ) 2 2
gn—8X+8y +[& ST I AT -
2 2 2 2

~

|
L 1|5 ——— o2 J

~< +€
<J2 |
<~ |
/\
— €,
€. *€, €€,
;) 7

Figure 3-13
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IEXAMPLE 2.1 |

| Determine the average normal strains in the two wires in Fig. 2-5 if the ring
[.AmovutoA‘.

|

SOLUTION
Geometry. The original length of each wire is

LAU = LAC- V(3m)z + (4"\; =5m

The final lengths are

Los=V(@m - 00Im) + (4m + 0.02m)* = 5.01004 m

Lyc= V(@3m + 001 m)* + (4m + 0.02m)* = 5.02200m

Average Normal Strain.
e = Lo Lan _ SONOAM=IW _, 0109 m/m  Ans
LAB 5m

LAvc = L‘c e 502200m — Sm

e = =440(107)m/m Ans
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EXAMPLE 2.2

When force P is applied to the rigid lever arm ABC in Fig. 2-6a, the arm
rotates counterclockwise about pin A through an angle of 0057, Determine
the normal strain in wire BD.

SOLUTION |

“The orientation of the lever arm zfier it rotates about point A
is shown in Fig, 2-6b. From the geometry of this figure.

Then
¢ =N — a + 0.05° = 90° — 53.1301° + 0.05° = 36.92°

For triangle ABD the Pythagorean theorem gives

Lap = V(300 mm)* + (400 mm)* = 500 mm
Using this result and applying the law of cosines to triangle AB'D,

Lgp = VLip + Lhg = 2ALap) (Lag)cosd
= V(500 mm)? + (400 mm)® — 2(500 mm) (400 mm) cos 36.92°

= 300,2491 mm
300 mm
F“ ‘ Normal Strain,
G o5 Lap — Len
BD an
= AL ot — K0 i = 0.00116 mm,/mm Ans
300 mm
SOLUTION I

Since the strain is small. this same result can be obtained by approximating
the elongation of wire BD as A Lgp, shown in Fig. 2-6b. Here,

ALgp = 0L 5 = [(%) (7 rad)]l (200 mm) = 0.3491 mm

Therefore,

P AlLgn i 0.3491 mm
L Legp 300 mm

= 000116 mm;/mm Ans.
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I EXAMPLE 2.3

The plate shown in Fig. 2-7a is fixed connected along AB and held in
the horizontal guides at its top and bottom, AD and BC. If its right side
D is given a uniform horizontal displacement of 2 mm, determine (a)
the average normal strain along the diagonal AC, and (b) the shear
strain at E relative to the x, y axes.

SOLUTION
Part (a). When the plate is deformed, the diagonal AC becomes

AC’, Fig, 2-7b. The lengths of diagonals AC and AC' can be found
from the Pythagorcan theorem. We have

AC = V(0150m)? + (0.150m)* = 021213 m

AC" = V(0150m)* + (0.152m)? = 021355 m

| Therefore the average normal strain along AC is

AC' — AC _ 021355 m — 021213 m

(eackm =27 021213 m
= 0,00669 mm /mm Ans
Part (b), To find the shear strain at £ relative to the x and y axes,
which are 90° apart, it is necessary to find the change in the angle at b)
L. After deformation, Fig. 2-7h, Fig 2-7
tan(g) _ 76 mm
2 75 mm

w
# = 9759 = (W )(90.759’) = 1.58404 rad

Applying Eq. 2-3, the shear strain at E is therefore the change in the
angle AED,

Yy = 32'- - 158404 rad = —0.0132 rad y o

The negative sign indicates that the once 90" angle becomes larger.
NOTE: If the x and y axes were horizontal and vertical at point E, then

the 90° angle between these axes would not change due to the
deformation, and s0 y,, = 0 at point E.
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Conarter 10 STRAN TRANSFORMATION

Fig. 10-14

*10.4 ABSOLUTE MAXIMUM SH

STRAIN
[n Sec. 9.5 it was pointed out that in the case of plane stress, the
maximum shear stress in an element of material will oceur our of the
when the principal stresses have the same sign, i.e., both are tensile or
are compressive. A similar result occurs for plane strain. For ex
the principal in-plane strains cause elongations, Fig. 10-13a, then the
Mohr's circles describing the normal and shear strain components for
clement rotations about the x, y, and z axes are shown in Fig. 10134
inspection, the largest circle has a radius R = (y,.)ye, /2, and 50

Yags = (Yirdmax = €

¢; and e have the same dgllA

This value gives the absolute maximum shear strain for the
Note that it is larger than the maximum in-plane shear strain.
(Yq)m: =€ ~ €.

Now consider the case where one of the in-plane principal strains
opposite sign to the other in-plane principal strain, so that e,
clongation and e; causes contraction. Fig. 10-14a. The three
circles, which describe the strain components on the element
about the x, y, z axes, are shown in Fig. 10-145. Here

Yix = (y”)l_n&hn- -~

€ and e,iavcoppoﬁmalgm

- IMPORTANT POINTS

® If the in-plane principal strains both have the same sign.
absolute maximum shear strain will occur out of plane and |
a value of ¥ abs = Exay. This valuc is greater than the m:
in-plane shear strain.

@ 1If the in-plane principal strains are of opposite signs, then
absolute maximum shear strain equals the maximum in
shear su'ain.vm.p_; =€ = €
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EXAMPLE 10.7

The state of plane strain at a point has strain components
of €, = —400(107%), €, = 200(10°°), and y,, = 150(10°%), Fig. 10-15a.
Determine the maximum in-plane shear strain and the absolute maximum
shear strain,

, Fig. 10-15
SOLUTION
Maximum In-Plane Shear Strain. We will solve this problem using
Mohr’s circle. The center of the circle is at
€y = M (107%) = ~100(107%)
Since ¥,y /2 = 75(107%), the reference point A has coordinates
| ~400(1075), 75(1075)), Fig. 10-15b. The radius of the circle is therefore
R = [ V(400 - 100)* + (75) ](107%) = 309(107%)
From the circle, the in-planc principal strains are
€ = (=100 + 309)(107%) = 209(10°%)
e = (=100 — 309)(10°%) = —~409(107%)
 Also, the maximum in-plane shear strain is
e = €1 — € = [209 — (—409)](107") = 618(107°) Ans.
Absolute Maximum Shear Strain. Since the principal in-plane strains
opposite signs, the maximum in-plane shear strain is also the
lute maximum shear strain; i.c.,
Yabe = 618(107°) Ans.
The three Mohr's circles, plotted for element orientations about each of
the x. y, 7 axes, are also shown in Fig. 10-15b,
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EXAMPLE 10.4

The state of plane strain at a point has components of €, = 250(107"),
€, = =150(10°°), v,y = 1200107, Fig. 10-10a. Determine the principal
sirains and the orientation of the clement upon which they act.

SOLUTION

Construction of the Circle. The ¢ and y/2 axcs are established in
Fig. 10-10b. Remember that the positive ¥/2 axis must be directed
downward so that counterclockwise rotations of the element correspond
to counterclockwise rotation around the circle, and vice versa. The cenler
* of the circle C is located at

@ _ 200 e g

Conp 2

Since ¥y, /2 = 60(107°), the reference point A (# = 0°) has coordinates
A(250(107%), 60(107%)). From the shaded tringle in Fig. 10-108, the
radius of the circle is

D{-e,.0 Ble;. 0)(

(0 g =[V(250 - 507 + (60 [(10°) = 2088(10°°)

T
Principal Strains. The e coordinates of points B and D are therefore
—20—
(®) € = (50 — 208.8)(107%) = —159(107°) Amg
) s
The direction of the positive principal strain €, in Fig. 10-10b is defined
by the counterclockwise angle 26, measured from CA (8 = (°) to CF
We have
60
tan 26, = 250 — 50)
x' 8, = 835° Ara
— o= <

> l‘ld" Hence, the side dx' of the element is inclined counterclockwise 8357 &
shown in Fig. 10-10c. This also defines the direction of €. The
(<) deformation of the element is also shown in the figure. ‘
Fig. 10-10 |
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I EXAMPLE 10.5

The state of plane strain at a point has components of e, = 250(10°9),
&, = —150(107%), y,, = 120(10"), Fig. 10-11a. Determine the maximum
- in-plane shear strains and the orientation of the element upon which
| they act,
| SOLUTION
b The circle has been established in the previous example and is shown in
- Fig 10115,

Maximum In-Plane Shear Strain. Half the maximum in-plane shear
strain and average normal strain are represented by the coordinates of
point £ or F on the circle, From the coordinates of point E,

(Tn'y‘)u.
2

). = 418(10°%) Any
€y = S0(107%)

To orient the element, we will determine the clockwise angle 26, ,
measured from CA (8 = ) to CE.

= 208.8(107%)

26, = 90° — 2(8.35%)
0; =367 Ans.

This angle is shown in Fig. 10-11¢. Since the shear strain defined from
point E on the circle has a positive value and the average normal strain is
also positive, these strains deform the element into the dashed shape
shown in the figure.

-\

o o

Fig. 10-11
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EXAMPLE 10.6

y ‘The state of plane strain at a point has components of e, = —300(10 ),
et e, = —100(107%), y,, = 100(107), Fig. 10-12a. Determine the state of
PR strain on an element oriented 20° clockwise from this position.
€ ) A i
2 v SOLUTION

Construction of the Circle. The e and y,/2 axes are established in
Fig, 10~12b. The center of the circle is at

~=300 — 100
Chp = A

)(ur") = —200{107%)

The reference point A has coordinates A(~300(107°), 50(10°%)), and so
the radius CA, determined from the shaded triangle, is

€007 R = [/(300 - 200 + (50)° ](10°) = 111.8(10°")

Strains on Inclined Element. Since the element is to be oriented 20°
clockwise, we must consider the radial line CP, 2(20°) = 40° clockwise.
measured from CA (@ = (), Fig. 10-12b. The coordinates of point P are
obtained from the geometry of the circle. Note that

o)
= S0 : : ?
(b) — ~1 ( oy ) ="26.57°. = 40° — 26.57" = 134%
¢ = tan” | 566 200) ¥
¥ y
l’ “m
/ € = —(200 + 1118 cos 13.43°)(10°°)
= —6 Ans
st ‘? 309(10°%) ’
: ~,\ ; Yay . -
Y = —(111.8sin 13.43°)(10°¢
ﬁ'\;fr ; 3 2 ( sin X )
G \Jw\ Yoy = =520(10°9) Ans
% The normal strain €, can be determined from the € coordinate of
© point Q on the circle, Fig. 10-12b.
Fig. 10-12

€, = —(200 — 111.8 cos 13.43°)(10°%) = —-91.3(107%) Ans

As @ result of these strains, the element deforms relative to the x, y" axes
as shown in Fig, 10~12¢.

10-4 Strain measurement and Rosette analysis

In most experimental work involving strain measurement, the strains are measured on a free surface of a
member where a state of plane stress exists. Electrical resistance strain gauges have been developed to
provide accurate measurements of normal strain. Shear strains are difficult to measure directly than normal

stresses. Generally, shear strains are obtained by measuring normal strains in two or three different
directions.
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a

Figure 3-17

Figure 3-16

Figure 3-18

As shown in Fig. 3-17,

&, =&,C05 6, +¢&,5in* 6, +7,,5in 6, coso,
& = £,C08 G, +¢&,5in* G, +7,,5in 6, cOsH,

& =&,C08 0, +¢&,5in° , +7,,5in 6, cOSH,

After measuring three data of normal strains, three unknown strains &, & and yy can be completely
determined by three equations.
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LEXAMPLE 10.8

The state of strain at point A on the bracket in Fig. 10-17a is measured
asing the strain rosette shown in Fig. 10-17b, The readings from the
zages give e, = 60(107%), e = 135(107°). and e, = 264(107°).
Determine the in-plane principal strains at the point and the directions
m which they act.

SOLUTION ;
We will use Egs. 10-16 for the solution. Establishing an x axis, Fig. 10-17b,
ind measuring the angles counterclockwise from this axis to the centerlines
of each gage, we have 4, = (°, 6, = 60°, and 0. = 120°, Substituting
these results, along with the problem data, into the equations gives

60{(10°5 ) = €, cos® OF + €, sin® 0° + y,, sin 0P cos (P

()

20 (1)
135(107%) = ¢, cos® 60° + €, sin® 60° + v, sin 60° cos 6°

= 0.25¢, + 0.75¢, + 0433y, (2) '
264(107%) = ¢, cos® 120° + €, sin® 120° + Y1y S0 120° cos 120°

= 0.25¢, + 0.75¢, — 0.433y,, (3)

Using Eq. 1 and solving Egs. 2 and 3 simultaneously, we get
€, =60(107") ¢, =246(107°) v, = ~149%(107%)

These same results can also be obtained in 2 more direct manner from
Eq. 10-17

The in-plane principal strains will be determined using Mohr's circle.
The center, C, is at €, = 153(107), and the reference point on the
srcle is at A[60{107°), —74.5(107%)], Fig. 10-17c. From the shaded
mangle, the radius is

R = [V(153 - 60) + (7450 ](107") = 119.1(107%)
The in-plane principal strains are therefore

€, = 153(107%) + 119.1(107% ) = 272(107%) Ans
€ = 153(107%) — 119.1(107% ) = 33,9(10°%) Ans.
74.5
28, =tan! ———— =387
s TR Ty
8y, = 19.3° Ans

NOTE: The deformed element is shown in the dashed position in
Fig. 10-17d. Realize that, due to the Poisson cffect, the element is also
wubjected to an out-of-plane strain, i.e., in the z direction, although
this value will not influence the calculated results,

Appendix B: Basic issue of strain and stress (Theory of Elasticity)

2B-1 Introduction
Let us consider a deformable body subjected to the action of external loadings, the resulting
deformations may be not uniform from point to point due to the non-uniform and multi-directional
external forces and geometry of body. Therefore, it is, in general, necessary in elasticity to consider the
overall behavior of the body from the properties of differentially small elements within the body by
using three equilibrium equations, compatibility equations, and relations between forces and deformation
described in the following sections.

2B-2 Stresses
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Stress is simply an internal distributed force per unit area in a body and represents interaction
between neighboring points under the action of external loadings. Consider an elastic body in
equilibrium, subjected to the action of external forces Fi, Fa,..., Fn, as shown in Fig. 2B-1. To
determine the stress state at point P, it is necessary to expose a surface containing point P by
decomposing the body to two portions by a plane passing through point P with normal unit vector n.
The external forces on the left-hand side portion of body, as well as the resultant forces acting on the cut
surface shall be equilibrium. In the general case, the stress distribution will not uniform across the cut
surface, and the stresses will be neither normal nor tangential to the surface at a given point. The stress
distribution at a point, however, will have components in the normal and tangential directions giving rise
to a normal stress (tensile or compressive) and a tangential stress (shear).

As shown in the Fig. 2B-1, let the resultant force acting on a small area AA around point P be AF.
n
We define the “stress vector (traction)” T acting at point P an a plane with unit normal vector n as

T= lim = (2B-1)

If the cut plane intersecting point P is selected with unit vector n just parallel to the x axis of rectangular
Cartesian frame of reference as shown in Fig. 2B-2. The stress vector through point P on this plane
becomes

(2B-2)

Fig. 2B-2
Since the resultant force acting on point P has three components in the x, y, and z directions, which are
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AFy, AFy, and AF;, respectively; i.e.,
AF = AFRyi + AR j + ARk (2B-3)

where i, j, and k are the unit vectors in x, y, and z directions, respectively.
By inserting Egs. (2B-3) into (2B-2), we obtain

X AF X X X
T= lim | 25,2y j+ AF =T, i+Ty j+T,k (2B-4a)
A0 AA AA AA,
X
where T, =lim ARy = Oy normal stress (2-4b)
X
X AF
T, =lim—2 =Gy shear stress (2-4c)
X
X
T, =lim AR, =0y shear stress (2-4d)
AA,

Similarly, the cut plane intersecting point P can be selected with unit vector n just parallel to the y, and z
axes, respectively. We then obtain the stress components as follows:
For the cut plane with normal along y axis:

y

T, =lim ARy = shear stress, (2B-4e)
AAy

y AF

T, =lim—2 =c,,  hormalstress, (2B-4f)
AA,

TyZ =lim AR, =0 shear stress. (2B-49)
AA, v

z
T, =lim ARy =X shear stress , (2B-4h)
A'A\Z
2 AF, _
T, =lim = Oy shear stress , (2B-4i)
A Z
Z AF, .
T, =lim =0, normal stress , (2B-4))
AA,
or symbolically expressed as
T = lim AF =%y, z (2B-5)
. = | — = 0O;; s , = , , . -
b An—0 AN ” : y

Therefore, the stress state at point P, expressed by totally 9 components as shown in Fig. 2B-3, can also
be represented by a set of new notation
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: Ox Oy Ox
Tj=0jj=|0y Oy Oy (2B-6)

Gzx Ozy Oy
This is called the stress matrix or stress tensor. The first and the second subscript indices of stress

tensor ajj, i.e, i and j, represent the normal direction of the plane on which stress acts and the direction of
stress, respectively.

Sy

Fig. 2B-3
2B-3 Deformation and Strain in small deformation theory
As a body is subjected to the action of external forces, it deforms such that an arbitrary point P(x, y,

z) in the body will undergo a displacement u = (u, v, w), and move to a new point P’(x’, y’, z’). They
have the following relationship:

X=X+U

y=y+v (2B-7)

I’=7+W
In general, the displacement u of a body may be considered to be the summation of three items, i.e.,
rigid-body displacement, rigid-body rotation, and deformation. And only the deformation is related to
the strains of the body, which may be classified into deformation due to size change (dilatation due to
expansion or shrinkage of volume), and due to shape change (distortion of shape with no size change).
Consider a continuous body, which undergoes a small geometrically compatible deformation (i.e., no
voids or overlapping occur during deformation), an element of infinitesimal dimensions, Ax, Ay, and Az,
originating from point Po can be constructed where the initially undeformed infinitesimal rectangular
element in the xy plane are indicated by PBCD, as shown in Fig. 2B-4.
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For a brief and clear description, let us focus the displacement of point P in the xy plane only. The
displacement of point P can be described by continuous functions of x and y

u=u(xy), V=V (X Y) (2B-8)
The functions can be expanded about point P in terms of a Taylor’s series expansion. If u, ou/ox,

o%ul ox?, etc., are evaluated at point P, the displacement for point D, which is Ax from P, in the x
direction will be

ou i %

Up =u+&Ax+2!¥(Ax)2+O((AX)3) (2B-9)

Likewise, if v, ov/ox, 6%v/ox?, etc., are evaluated for the point P, the displacement for point D in the

y direction will be

ov 105, v )
Vp =V +—AX+——(AX)” + O(( Ax 2B-10
D Y > ax2( ) +0((Ax)*) ( )

If Ax is considered very small, it is satisfactory to neglect the terms higher than the first order. Thus

ou ov
Up =U+—AX and Vh =V + —AX 2B-11
D OX D OX ( )

Similarly, if the displacements of point B, which is Ay from P, are also obtained from a Taylor’s series
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expansion about point P, and Ay is considered very small, then

uB:u+6—uAy and VB:v+@Ay (2B-12)
oy oy

Then the length of P’D’and P’B’ can be written, respectively, as

PD= {[(AX+UD)—U]2 +(vp —v)z}l/2 = AX+(0u/ ox)Ax (2B-13a)

P'B= {[(Ay+VB)—V]2 +(ug —u)z}u2 = Ay +(év/ dy)Ay (2B-13b)

The rate of change in elongation of PD and PB, defined as the normal strain &xand &y, respectively, is

. PPD-PD ocu
€ = IlIM ——  =—
ax—0  PD OX

. P'B-PB ov
gy = lim — ==
ay—0  PB oy

(2B-14)

(2B-15)

As seen in Fig. 2B-4, the reduction in angle DPB is defined as the shear strain yxy in point P in the form

Yy = lim (£BPD-/B'P'D')= (0. +p) (2B-16)
Ax—0
Ay—0
where tano = —(a\// Ox)AX _ o and tanp = —(6u [ oy)ay _d (2B-17)
AX X Ay oy

However, if the strains are very small, or the angles o and 3 are very small, then
tanao~a and tanp ~ 3, the shear strain yxy can be represented by

ou ov
i 2-18a
Txy 5 ox Y ( )

yX

The different form of shear strain, &y, defined as half of yy, is generally used in mathematical
description of elasticity and can be written as

1(ou ov
Sxy = E(g + 5) = Syx (2-18b)

The rigid-body rotation of a line segment at point P can be found from the average rotations of the line
segments PD and PB. This can be accomplished by determining the rotation of the bisector of PD and PB.
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The initial angle of the bisector of angle BPD relative to the x axis is ©/4. The final angle that the bisector
of angle B’P’D’makes with the x axis is:

a+%[£—(oc+ B)}=§+—(a—[3) (28-19)

Then the rigid-body rotation about z axis, axy, can be obtained by subtracting the initial angle of the bisector
n/4 from the final angle as shown in Eq. (2B-19)

1{ov ou

Dy =—(a—B);§(&—5j=mw (2B-20)

Considering w to be the displacement of point P in the z direction and then performing a similar
analysis in the yz and zx planes, it results in
ow

€, = = (2B-21)
Yyz =28y :%J“%:Yzy (2B-22)
Yox = 2€5 :g—lzj+2—\:(v=yﬂ (2B-23)
Oy, = %[% - %) = =0y (2B-24)
O,y = %(% — %V] =—0y, (2B-25)

Therefore, the strain state at point P, expressed by totally 9 components can also be represented by a
set of new notation in mathematical theory of elasticity

Ex &y &x

¢ (2B-26)

&ij 7| Eyx

€x €y €z
This is called the strain matrix or strain tensor, in which only 6 components are independent due to
symmetry property of shear strain. Moreover, the rigid-body rotation tensor is anti-symmetric. 1f we

use the notation xi, x2, and xs to represent x, y, and z, respectively; and uz, U2, and us to represent u, v, and
w, respectively, then the relationship between strains and displacements becomes

. 0U;
& _Ljow i) i,j=1,2 3 (2B-27)
2\ ox; o

[Example]: If the displacement fields in a deformed body along x, y, and z directions are u, v, and w,
respectively, which can be expressed by

uix,y,z)=ar+bix+ciy+di z
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V(X,y,Z)=az—Cix+Coy + dz z
W(X,y,2) =as+dix—dy+dsz

where the parameters a;, bi, ci, and d; are all constants.
Please evaluate the strain tensor and illustrate the physical meaning of all the parameters aj, bj, Ci
and d in the displacement functions.

2B-4 The equilibrium equations

An elastic body under consideration is subjected to the action of external forces, which can be
classified into surface tractions and body forces (body moments). The surface tractions are the
external forces acting on the surface of body in the unit of force per unit area; for instance, the wind and
hydrostatic pressure acting on the surface of body. The body forces, such as gravitational force, electric
and magnetic forces, etc., are the external forces whose magnitudes are proportional to the volume and
are exerted on the interior of body in the unit of force per unit volume. The body moments are similar
to body forces and are also exerted on the interior of body but in unit of moment per unit volume, such
as materials with electric and magnetic dipoles. In this section, the equilibrium equations, formulated
with respect to rectangular Cartesian frame of reference, are shown only. The equilibrium condition on
an arbitrarily and infinitesimal element taken from interior of body, acting by stresses and body forces,
as shown in Fig. 2B-5, is considered. The changes in stresses are replaced by Taylor’s series expansion
terms in which nonlinear higher order terms are neglected. If By, By, and B; represent the body forces in
X, Y, and z direction, respectively, but without body forces, the force and moment equilibrium conditions
in x direction are:

Fig. 2B-5
0
e YF-0= (GXX + agxx AXJAyAZ + (ny + %AXJAZAX + (GZX + agzzx AszxAy
i

— G AYAZ — Gy AZAX — G, AXAY — B, AXAYAZ =0

51



Simplify this expression and let Ax, Ay, Az approach zero, we obtain

OC N aﬁyx N 0C

+B, =0 2B-28
x oy T T (2B-28)

oc Ay 0c, Az
Y ZMX =0= (Gyz +—yZijAXAZ——(GZy + Y AZJAXAy_
- oy 2 0z 2

Ay Az
+ 0y, AXAZ > csZyAxAy7 =0

Simplify this expression and let Ax, Ay, Az approach zero, we obtain

Oyz =0y (2B-29)

Similarly, summing forces and moments in the y and z directions, respectively, yields

0 10, 0
Oy POy | Py B, =0 (2B-30)
x oy | @

Oz =0y (2B-31)
o
Gog , Oy, 0Ou g _ (2B-32)
x oy a
Oyy =Oyx (2B-32)

If we use the notation x1, X2, and xs to represent x, y, and z, respectively, then the force equilibrium
equations, as shown in Egs. (2B-28), (2B-30), and (2B-32), can be compactly expressed in tensor form:

Gij, j +Bi =0 i,j:]., 2,3 (28-33)

where the repetition of an index in a term will denote a summation with respect to that index over its

({34

range; for instance, o j,j =O111 10122 + 01335 the subscript “,” means differentiating with respect to

coordinate, for instance, oj,3=001,/0%;. Moreover, it is seen that the stresses are symmetric

without the action of body moment, i.e.,
Gij =0 Lj=1,2,3 (2B-34)

Consequently, only 6 stress components in stress tensor are independent with no body moment.
[Remarks]: If the body under consideration moves with acceleration, the equilibrium equations shall be
modified to equations of motions as follows:
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Gij,j + Bi ZpUi |,J = 1, 2, 3 (2-33a)

where p is the density of body; the dot ““.” on the upper side of the variable means differentiating
with respect to time.

2B-5 Compatibility

As we try to find a solution of the stress distribution in a body, the equilibrium equations of the body
must be satisfied in case the body under consideration is in static equilibrium. At any given section, it
may be possible to find many different sets of stress distributions which all satisfy the condition of
equilibrium. An acceptable stress distribution is one which ensures a continuous deformation
distribution of the body. This is the essential characteristic of compatibility; i.e., the stress
distribution must be compatible with boundary conditions and a continuous distribution of deformations
so that no “holes” or “overlapping” of specific points in the body occur. ~ Sometimes, the stress
distributions can be uniquely determined by the equilibrium equations and associated traction boundary
conditions. If it is needed to evaluate the displacements of the body further, some compatibility
relations must be used to assure the continuous deformation distribution of the body without generation
of holes and overlapping. The six compatibility equations in terms of strains can be derived

8zyxy _ 0% . 828W

2B-35
oy - o2 o ( )
0 0? 2
e _C w0y (2B-36)
oyor oz oy?
2 2 2
0Yox _ 078y +8 Exx (2B-37)
ozx  ox?  ar?
2
208 O[O Orx Oy (2B-38)
o0yoz  oOx OX oy oz
52
0%y 00y vy Oy (2B-39)
0zox  oy\ oX oy oz
2
20%n _ 0[Ny Ors I (2B-40)
oyoz oz\ OX oy 0z
The first three equations are the in-plane dependent; while the last three equations are the out-of plane
dependent.
[Remarks]: The compatibility equations (2B-35)~(2B-40) can be expressed by tensor notation as
follows:

8ij,k| _Ski,j| _8|j,ki +8k|,ji :0, i,j, k, | = l, 2, 3

Above tensor equations can be written to 81 equations; but only 6 of these 81 equations are truly
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independent.

2B-6 Cauchy’s formula

The Cauchy’s formula provides the useful relations between tractions acting on a specific surface
and the stresses at a specific point adjacent to the surface. Therefore, it is useful to evaluate the
tractions acting on the surface if the stresses at this point are known; or, on the contrary, to evaluate the
stresses at a point if the tractions acting on the surface through the point are given. Moreover, Cauchy’s
formula can also be applied to perform the stress transformation with respect to different coordinates and
to evaluate the principal stresses and principal axes. Consider a tetrahedral element about a point P,
which has three mutually orthogonal planar surfaces with normals in the X, y, and z directions,
respectively, while the last surface is an arbitrary oblique plane with unit normal direction n, as shown in
Fig. 2B-6.

n
Tx AA= 0w AA =S W AR, — G, AR, =0
where AA, =AA-n,, AA =AA-ng and AA;, =AA-n,

Then we can obtain the Cauchy’s formula in x direction by taking the limit h
approaches zero (the point P is located on the oblique plane):

n

Tx =0y Ny +GyNy +0,N, (2B-41)

Similarly, Cauchy’s formula in y and z directions can also be obtained

n
o ZFy =0= Ty = nynx +nyny —l—GZynZ (28-42)
i
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n
o ze =0= T:=0,N+0y,N, +0,N, (2B-43)
i
Cauchy’s formula can also be compactly expressed in tensor form

n

Ti=0;n; Lj=XY,2 (2B-44)

ity
2B-7 Principal stresses (strains) and maximum shear stress

We have shown that the stress state at arbitrary point of the body can be expressed by a stress matrix
or stress tensor which generally includes both normal and shear stress components. However, along
some specific direction, we called the principal axis of stress, the stress matrix becomes diagonalized,
i.e., all the shear stresses in off-diagonal portion become disappeared and only the normal stresses in the
diagonal portion still remain. These three normal stresses are called principal stresses, which are
independent of the directions of coordinates we select. Let us consider a point P in the interior of body
whose stress state is aij. According to Cauchy’s formula, the traction vector acting on a specific surface
passing through point P and with unit normal n can then be expressed as

n
Ti=o;n;, Lj=xy,z (orl23) (2B-45)

If the unit normal n of the surface is parallel to one of the principal axes, the traction vector acting on the
surface, represented by the principal stress o, shall be normal to the surface, which can be expressed
mathematically as

n

Ty =0 Ny + Oy Ny + 0y, N, = 0Ny (2B-46a)
n

Ty =oxNy +oyNy +0y,N, =on, (2B-46b)
n

T, =0,Nx +OxyNy +0,N, =N, (2B-46¢)

or expressed in matrix form

O —OC Oy oy [Ny
Gy Oy —GC Oy nyr=0 (2B-47a)
Ozx Gy G;; =0 )N,

[Remarks]: Equation (2-47) can also be derived in tensor notation as:

n n
T =on :>Ti :Gni :>Gijnj —Gni :O:(Gij _GSij}lj =0 (28-47b)

where the symbol &; is Kronecker delta, defined as 6; = 1 ifi = jand &; =0 if
I#]. Itisobvious that Egs. (2-47b) in tensor form and (2-47a) in matrix form are identical.

The evaluation of principal stresses and principal axes as shown in Eq. (2B-47), becomes an eigenvalue
problem which is of the form:
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[Alls}=21s} (2B-48)
Equation (2-48) can be placed in the form
(A]-2[1Dis}=0 (2B-49)

where [I] is a unit matrix. Compared Egs. (2B-49) to (2B-47), it is obvious to find that [A] = [o3], 4 =
o, and {s} = {ni}.

To avoid the trivial solution, i.e., {s} = {0}, [A]-A[1] is forced to be singular. That is the determinant is
set to zero as follows

[A]-A[1]=0 (2B-50)

Equation (2B-50) is called the characteristic equation, which yields n roots of A which are the
eigenvalues of the matrix [A], which, for instance, is nxn matrix. For each eigenvalue Ai there is an
associated eigenvector {s;} obtained from Eq. (2B-49). The corresponding three eigenvalues and
eigenvectors are principal stresses and principal axes, respectively.

Generally the three principal stresses are denoted as o1, o2, and o3, where the ordering in magnitude is
generally such that o1 > o2 > 3. If three principal stresses are distinct from each other in magnitude,
there exists only one set of principal axes. If two of the principal stresses are equal, there will exist an
infinite set of surfaces containing these principal stresses, where the normals of these surfaces are
perpendicular to the direction of the third principal stress. If all three principal stresses are equal, a
hydrostatic state of stress exists, and regardless of orientation all surfaces contain the same principal
stresses with no shear stress. The maximum shear stress, zmax, IS equal to half of the difference
maximum and minimum principal stresses, i.e.,

Tmax = ((51 - (53)/2, and tmin = —(Gl - (53)/2, (25-51)

The solutions of principal stresses, o, are independent of the coordinate system used to define the
coefficients of the cubic equation for o in the form

o —1,6% +1,6—13=0 (2B-52)

Therefore, the three coefficients of o in Eq. (2B-52), 11, 12, and I3, are constant and are normally referred
to as the stress invariants. Thus

l; =0ji =0y + Oy +05 (2B-53a)
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o o c c o c
b=l e e Y=o - o) 2
Ozy Oz| [Oxx Oz [Ow Ow
- % —C5— % 2B-53b
=00y + 0y Oy + 050y — Gy —GCgx — Oy (2B-53b)
Ox Oxy Ox
I3 = ‘Gij‘ =1%%x Oy Oyz| = ErstOr10520s3 (2B-53c)

Gzxx Oy Oz

where erst, the permutation symbol, is defined as: it vanishes whenever the values of any two indices; erst

= 1 when the subscripts permute like 1, 2, 3; and erst = —1 otherwise. The Kronecker delta can be
related to permutation symbol by

€ijkCist =0 Okt — 9 jtOs -

[Example]: For the stress matrix given below, determine the principal stresses and corresponding
principal axes.

311
(6)=|1 0 2|MPa
120

2B-8 Stress and strain transformations

Relationship of stress tensors between two different coordinates with same origin can be compactly
derived by tensor notation. Consider a tetrahedral element about a point P having two different oblique
planes with unit normals n and »°, respectively, as shown in Fig. 2-8, the corresponding traction vectors

n n
on these two planesare T and T', respectively. Hence,

n n n n
T'n :Ti ni :Gjinj' ni :Gjininj':TJ‘ nj':T -n (28-54)

Suppose two different rectangular frames (X1, X2, X3) and (X1’, X2’, x3’) have the same origin P and the
direction cosine between xi’ and ¥; is denoted by njj. If ox’ represents the stress component of traction

o
vector T'acting on the plane normal to the axis Xk’ along the direction of x;’. In other words, the

normals »”’ and n are parallel to the axes Xk’ and of X/’, respectively. By using the Eq. (2-54), we can
write

n n
oy =T"-n=T-M'=0;NgN; =N Nj;Cjj (2B-553)
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Similarly, we can also obtain
Gl = NikN;j|ojj' (2B-55b)

Equations (2-55a) can also be expressed as

: : : T
Ox Ox Ox Mex Nyxy Nxz | Oxx Oxy Ox | Mxx MNxy Ny
Oy Oy Oy |Z|Nyx Nyy Nyz | Oy Oy Oy | Nyx Nyy Ny,
Ozxx Oz Oz Ngx Nzy Nzz \Ozxx Ozy Oz \Nzx Nzy Nzg

(2B-56)

Since the coordinate transformation between x’y’z’ system and xyz system can be expressed by

X r]x'x rlx'y r]x'z X
Yi=[np nyy Ny Hy (2B-57)
Z Nyx Nzy Ny J(2Z

The displacements relative to xy z” system can also be related to that of the xyz system as

u' Nex Ney Nyg ||U
Vie=|Nyy Nyy Nyy RV (2B-58)
w Nzx Nzy Nz,

It can be proved in the lengthy procedures that

C T
Ex  Exy &x Mex  Nxy NMyz | 8x 8y &x | Mxx My MNxz
Ey By By |Z|Myx Nyy Nyz &y 8y 8y | Nyx Nyy Ny
€x 8y &g Npx Nzy Nzz \€x &y &z \Nzx Nzy Nyg

(2B-59)

Compared Egs. (2-59) to (2-56), it is seen that the strain tensor performs the same coordinate
transformation as that of the stress tensor.

2B-9 Mohr’s circles in two and three dimensions

Let us start from a simpler two-dimensional case first. As shown in Fig. 2-9, a transformation of
stresses is performed between x’y’ system and xy system and z’ keeps concided with z.  Since the
directional cosines are:

Nyx =C0s0, ngy=sin®, ny, =0; ny, =-sin6, ny, =cosd, ny, =0;
nyx=0, nyy=0, ny, =1. (2-60)
By substituting Egs. (2-60) into (2-56), we obtain
Gy x =Gy COS° 0+, Sin”0+25,, CosOsiNG (2-61a)
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Gyy = Oy SIN”0+Gy, COS* O— 20, SINOCOSO (2-61h)

Oy =0y —Oy )SINOCOSO + 6, cos? 6—sin? O (2-61c)
y =1 w) xy(

If we are only interested in obtaining the normal stress and shear stress (s, t) on a single surface, say
the x’surface, then Eqgs. (2-61a) to (2-61c) can be combined to

G =0y C0S” 0+ Gy, Sin° 0+ 25, COsOSING (2-62a)

yy

t=—(o, — 0y, JsinOCOsO+ o, (cosze—sin2 6) (2-62b)

These equations can be rewritten using the trigonometric identities

Gy, + O Oy —O

c= XX2 Wy XXZ Y0520 + G, 5in 20 (2-63a)
Oy —O

T= —%sin 20 + G, C0S 20 (2-63b)

Then, we obtain the equation of Mohr’s circle

(6—0pe ) +12 =R? (2-644)

2
_|_ —_
where G4, = w and R= \/(w] +0Xy2 : (2-64b)

The Mohr’s circle can be shown as in Fig. 2-10.

From the Mohr’s circle it can be seen that the maximum and minimum value of o and t are:
Omax =Oae TR and 7t =%R (2-65).
min min

An element in a body undergoing a general state of three-dimensional stress can be transformed to
an element containing only principal stresses o1, o2, and o3 acting along principal axes 1, 2, and 3,
respectively. A transformation of stresses in the 12 plane depends only on o1 and o2; in the 23 plane
depends only on o2 and o3; and in the 13 plane depends only on 1 and 3.  This means that for each
case, a plane stress analysis describes the state of stress in each of the three planes, and three Mohr’s
circles can be constructed to portray each case as shown in Fig. 2-11. Furthermore, it will shown that
all possible states of stress (o, t) exist either on the circles or within the shaded area as shown in the
figure.
For the element containing the principal stresses in the directions 1, 2, and 3, let n1, nz, and nz be the
directional cosines of an arbitrary surface relative to the 1, 2, and 3 axes, respectively. The stress state

(o, 7) of the surface can be obtained by Cauchy’s law

n
o=T-n=cn?, =123 (2-66a)

2 o I 2
o+t =T-T=(gin;)", 1=1,23 (2-66b)
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n-n=1 (2-66¢)
The solution of n of above three equations can be obtained

1° +(G—G3)(G—Gl)
(02 —03)(02 —01)

nZ =

ng _ 7 +(G—C$1)(G—C$2). (2-67)
(03—01)(03 —02)

If the order of three principal stresses in magnitude is o1 > o» > o3, then

Eq. (2-67) = t?+(0-0,)o—-03)20 (2-68a)
7 +(c-o3)c-07)<0 (2-68b)
2 +(c-0y)o-0,)>0 (2-68c)

Since 2 +(G—Gi )(G—Gj)zo represents a circle passing through the points (ci, 0) and (oj, 0),

©?+(c-oi)\o-0;)>0 and ?+(c—c;)No—oc;)<0 show the regions beyond and within the circle,

respectively. Consequently, it is seen the possible stress state shall be located either on the boundaries
of three circles or within the shaded region shown in Fig. 2-11. Moreover, the maximum shear stress is

equal to (61-03)/2 in the direction n=(+1/v2 0 +1/+/2)

[Remarks]: The method to determine the stress state (o, t), which directional cosine vector with

respect to principal axes (ni, nz, n3) is as follows:

(a) Letn; =cosa,, plot a line passing through point (o1, 0) with an angle /2 + a1 with the horizontal

axis o, which will intersect circle C» at point P.

(b) Plot a line passing through point (o3, 0) with an angle /2 — as with the horizontal axis o, which

will intersect circle C; at point Q.

(c) Plot two circular arcs S1 and Sz based on the origin Oy, radius O1P and the origin Os, radius O3Q,
respectively; The intersection point R between these two arcs denotes the stress state of the

surface in three-dimensional Mohr’s circles.

Reference:

1. Y. C. Fung, Foundations of Solid Mechanics, 1965, Prentice-Hall International, Inc.
2. R. G. Budynas, Advanced Strength and Applied Stress Analysis, Second ed., 1999,

McGRAW-HILL International Editions.
3. Some Elasticity books in Japanese version.
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[Appendix 2A-1]:  Formulation of compatibility equations
Suppose point Po (X10, X20, X30) be an arbitrary point in the domain of elastic body under consideration
with displacement uip and rigid body rotation wijo. = Moreover, the domain is assumed to be
single-connected and strains are C2-level continuous in the domain V. The displacement and rigid body
rotation of the other arbitrary point P’ (x1’, x2’, x3°) in the domain V are u;’ and wij’, respectively. Let us
connect the points Poand P’ by using a curve C and then integrate the du; along the curve

o
,[Pod“j =u;(x' %" %)~ Ujg (A-1)

and I::duj = J.F:ijkdxk :_[:)'(Sjk +(Djk)jxk = I:)‘gjkdxk +J.:)'cojkdxk . (A-Z)

The second term in the R.H.S. of Eq. (A-2), by using the relation dxx’ = 0 and technique of integration by
parts, can be changed to

P P p
'[Po ®jicdx = IPo o jkd (% =) = (%' ~Xeo ) jeo + IPO (% =% Jo i ydxy, (A-3)

o |1[duj ou 1 1
where @y =—| =] —L ==K | |==(ui =up o )+ ={up 3 —uy
(’Ojk,l OX {2[5& aXJ J:l 2( jk k,J|) 2( l,jk |1Jk)

1 1
= E(Uu +u|,j)!k_§(uk,l +U) )vj =Eljk W, (A-4)
Substituting Egs. (A-2)~(A-4) into (A-1), we obtain
o
U 04 %" X' ) = Ujo + @ jo(X —Xko)+jPOU j1dX (A-5)
where Uj| =8j| +(Xkl_xk)(8|j,k _8k|,j) (A'6)

By using the hypothesis of continuum mechanics, the displacement at point P’ shall definitely be a
single value. In other words, the value of displacement at point P’ shall be independent of the path C; or
the last term at R.H.S. of Eq. (A-5), Ujdx, shall be exactly differentiable. The corresponding sufficient and
necessary conditions of exact differentiation can be written mathematically as

=Ujiy —Uj,; =0 (A-7)
By inserting Egs. (A-6) into (A-7), it yields
:>|_8ij,l —dy (gij,k —8ki,j)—8j|,i +5ki(8|j,k —Skl,j)J
+(Xk'—xk)(8ij,k| —&4,jl ~8ljki +8k|,ji)=0
:>(8ij,k| — &4, jl ~ Elj ki +8k|,ji):O (A-8)

Equation (A-8) can be broken down and written to 3* = 81 equations, in which only 6 equations, expressed
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by Egs. (2B-35)~(2B-39) are independent.
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