

### **Business Decision Methods** Fall 2022

3.6

COLLEGE OF MANAGEMENT

Dr. Wei-Shiun Chang Institute of International Management





**Professor:** Wei-Shiun Chang **Office:** YungPing East 27811,

**Phone:** 06-27575757 ext.53566

Email: <u>wschang@mail.ncku.edu.tw</u>

Meeting Times: Monday 6:10PM~9:00PM Location: NCKU Yu-Ping Office Hour: Wed 2:00PM~3:00PM







- 1. Apply statistics to test research hypotheses.
- 2. Construct effective models of decision making situations.
- 3. Compute optimal solutions to decision making models.
- 4. Analyze simulation models and decisions with uncertain outcomes.





### Textbook

 <u>Quantitative Analysis for management by</u> Render, Stair, Hanna and Hale. Pearson 2018. 13<sup>rd</sup> ed.





# Grading

- Grading for this course will come from five sources-Attendance (10%), Participation (20%), Quizzes (20%), Presentations (20%), Group Projects (30%).
- Attendance:
- <u>*Participation:*</u> Students are encouraged to engage in class discussion. Participation will be evaluated based on the frequency and the quality of the engagement in discussion.
- <u>Quizzes:</u> Some quizzes will be given from time to time in class for previous lecture. Your top 10 performed quizzes out of all will be used for this grade.
- *Presentations:* Literature review of your group project.
- **<u>Final Project</u>**: Students should form a group and work on a research project that is related to the course.





- W1 Introduction to Quantitative Analysis
- W2 Probability Concepts and applications
- W3 Decision Analysis
- W4 Regression Models
- W5 Forecasting
- W6 Inventory Control Models
- W7 Liner Programming
- W8 Transportation, Assignment, and Network Model
- W9 Integer Programming, Goal Programming, and Nonlinear Programming
- W10 Waiting Lines and Queuing Theory Models
- W11 Review Presentation
- W12 Simulation Modeling
- W13 Analytic Hierarchy Process (AHP)
- W14 Conjoint Analysis
- W15 Data Envelopment Analysis
- W16 Applications
- W17 Guess Speak
- W18 Final Project Presentation





### Introduction

- Mathematical tools have been used for thousands of years
- Quantitative analysis can be applied to a wide variety of problems
  - Not enough to just know the mathematics of a technique
  - Must understand the specific applicability of the technique, its limitations, and assumptions
  - Successful use of quantitative techniques usually results in a solution that is timely, accurate, flexible, economical, reliable, and easy to understand and use

## Examples of Quantitative Analyses

- Taco Bell saved over \$150 million using forecasting and scheduling quantitative analysis models
- NBC television increased revenues by over \$200 million between 1996 and 2000 by using quantitative analysis to develop better sales plans
- Continental Airlines saves over \$40 million every year using quantitative analysis models to quickly recover from weather delays and other disruptions





### What is Quantitative Analysis?

**Quantitative analysis** is a scientific approach to managerial decision making in which raw data are processed and manipulated to produce meaningful information







- Quantitative factors are data that can be accurately calculated
  - Different investment alternatives
  - Interest rates
  - Inventory levels
  - Demand
  - Labor cost
- **Qualitative factors** are more difficult to quantify but affect the decision process
  - The weather
  - State and federal legislation
  - Technological breakthroughs





- Quantitative and qualitative factors may have different roles
- Decisions based on quantitative data can be automated
- Generally quantitative analysis will aid the decision-making process
- Important in many areas of management
  - Production/Operations Management
  - Supply Chain Management
  - Business Analytics





# **Business Analytics**

- A data-driven approach to decision making
  - Large amounts of data
  - Information technology is very important
  - Statistical and quantitative analysis are used to analyze the data and provide useful information
- **Descriptive analytics** the study and consolidation of historical data
- **Predictive analytics** forecasting future outcomes based on patterns in the past data
- **Prescriptive analytics** the use of optimization methods



COLLEGE OF MANAGEMEN'T

# **Business Analytics**

| BUSINESS ANALYTICS<br>CATEGORY | QUANTITATIVE ANALYSIS TECHNIQUE<br>(CHAPTER)                                                                                                                                                                                                                                    |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descriptive analytics          | Statistical measures such as means and standard<br>deviations (Chapter 2)<br>Statistical quality control (Chapter 15)                                                                                                                                                           |
| Predictive analytics           | Decision analysis and decision trees (Chapter 3)<br>Regression models (Chapter 4)<br>Forecasting (Chapter 5)<br>Project scheduling (Chapter 11)<br>Waiting line models (Chapter 12)<br>Simulation (Chapter 13)<br>Markov analysis (Chapter 14)                                  |
| Prescriptive analytics         | Inventory models such as the economic order quantity<br>(Chapter 6)<br>Linear programming (Chapters 7, 8)<br>Transportation and assignment models (Chapter 9)<br>Integer programming, goal programming, and<br>nonlinear programming (Chapter 10)<br>Network models (Chapter 9) |



COLLEGE OF

### The Quantitative Analysis Approach

FIGURE 1.1







## Defining the Problem

- Develop a clear and concise statement of the problem to provide direction and meaning
  - This may be the most important and difficult step
  - Go beyond symptoms and identify true causes
  - Concentrate on only a few of the problems selecting the right problems is very important
  - Specific and measurable objectives may have to be developed





## Developing a Model

 Models are realistic, solvable, and understandable mathematical representations of a situation



**\$** Advertising

• Different types of models

Physical models



Scale models



Schematic

models



1 – 16





# Developing a Model

- Mathematical model a set of mathematical relationships
- Models generally contain variables and parameters
  - Controllable variables, decision variables, are generally unknown
    - How many items should be ordered for inventory?
  - Parameters are known quantities that are a part of the model
    - What is the cost of placing an order?
- Required input data must be available





### Acquiring Input Data

• Input data must be accurate – GIGO rule



• Data may come from a variety of sources – company reports, documents, employee interviews, direct measurement, or statistical sampling





### Developing a Solution

- Manipulating the model to arrive at the best (optimal) solution
- Common techniques are
  - Solving equations
  - Trial and error trying various approaches and picking the best result
  - Complete enumeration trying all possible values
  - Using an algorithm a series of repeating steps to reach a solution





### Testing the Solution

- Both input data and the model should be tested for accuracy before analysis and implementation
  - New data can be collected to test the model
  - Results should be logical, consistent, and represent the real situation





## Analyzing the Results

- Determine the implications of the solution
  - Implementing results often requires change in an organization
  - The impact of actions or changes needs to be studied and understood before implementation
- Sensitivity analysis determines how much the results will change if the model or input data changes
  - Sensitive models should be very thoroughly tested





### Implementing the Results

- Implementation incorporates the solution into the company
  - Implementation can be very difficult
  - People may be resistant to changes
  - Many quantitative analysis efforts have failed because a good, workable solution was not properly implemented
- Changes occur over time, so even successful implementations must be monitored to determine if modifications are necessary



# Modeling in the Real World

- Quantitative analysis models are used extensively by real organizations to solve real problems
  - In the real world, quantitative analysis models can be complex, expensive, and difficult to sell
  - Following the steps in the process is an important component of success



### How To Develop a Quantitative Analysis Model

A mathematical model of profit:

**Profit** = Revenue – Expenses

• Revenue and expenses can be expressed in different ways



### How To Develop a Quantitative Analysis Model

- Profit = Revenue (Fixed cost + Variable cost)
- Profit = (Selling price per unit)(Number of units sold) [Fixed cost + (Variable costs per unit)(Number of units sold)]
- Profit = sX [f + vX]
- Profit = sX f vX

where

s = selling price per unit f = fixed cost v = variable cost per unit X = number of units sold



### How To Develop a Quantitative Analysis Model

$$Profit = Revenue - 0$$

Profit = 
$$sX - [f + vX]$$
  
Profit =  $sX - f - vX$ 

The *parameters* of this model are *f*, *v*, and *s* as these are the inputs inherent in the model

The *decision variable* of interest is *X* 

where

s = selling price per unit f = fixed cost v = variable cost per unit X = number of units sold





### Pritchett's Precious Time Pieces

- The company buys, sells, and repairs old clocks
  - Rebuilt springs sell for \$8 per unit
  - Fixed cost of equipment to build springs is \$1,000
  - Variable cost for spring material is \$3 per unit

$$s = 8 \qquad f = 1,000 \qquad v = 3$$
  
Number of spring sets sold = X  
Profits =  $8X - 1,000 - 3X$ 

If sales = 0, profits = -f = -\$1,000If sales = 1,000, profits = [(\$8)(1,000) - \$1,000 - (\$3)(1,000)]= \$4,000





• Companies are often interested in the **break-even point** (BEP), the BEP is the number of units sold that will result in \$0 profit

$$0 = sX - f - vX$$
, or  $0 = (s - v)X - f$ 

Solving for *X*, we have

$$f = (s - v)X$$
$$X = \frac{f}{s - v}$$

Fixed cost

BEP =

(Selling price per unit) – (Variable cost per unit)





### Pritchett's Precious Time Pieces

BEP for Pritchett's Precious Time Pieces

 $BEP = \frac{1,000}{(\$8 - \$3)} = 200 \text{ units}$ 

- Sales of less than 200 units of rebuilt springs will result in a loss
- Sales of over 200 units of rebuilt springs will result in a profit

Fixed cost

BEP =

(Selling price per unit) – (Variable cost per unit)



### Advantages of Mathematical Modeling

- 1. Models can accurately represent reality
- 2. Models can help a decision maker formulate problems
- 3. Models can give us insight and information
- 4. Models can save time and money in decision making and problem solving
- 5. A model may be the only way to solve large or complex problems in a timely fashion
- 6. A model can be used to communicate problems and solutions to others





### Models Categorized by Risk

- Mathematical models that do not involve risk or chance are called **deterministic** models
  - All of the values used in the model are known with complete certainty
- Mathematical models that involve risk or chance are called **probabilistic** models
  - Values used in the model are estimates based on probabilities



COLLEGE OF

### Computers and Spreadsheet Models

### POM-QM for Windows

- An easy to use decision support system for use in POM and QM courses
- This is the main menu of quantitative models
- An Excel add-in

|                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| File Edit View Module File   □ □ □ □ □ Assign   Arial □ □ □ □ □ □ □   Arial □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | inment<br>even/Cost-Volume Analysis<br>on Analysis<br>esting<br>Theory<br>Programming<br>er & Mixed Integer Programmi<br>tory<br>Programming<br>ov Analysis<br>ial Requirements Planning<br>ovks<br>et Management (PERT/CPM)<br>by Control<br>ation<br>igs (mean, var, sd; normal dist<br>portation<br>ig Lines<br>by OM Modules only<br>ig QM Modules only<br>ig QM Modules only<br>ig ALL Modules | P<br>Select a module from the<br>drop-down menu<br>To see the modules relevant<br>for this book, select Display<br>QM Modules |

#### PROGRAM 1.1 – Main Menu





### **Computers and Spreadsheet Models**

| Eile Edit View Module      | e Format Iools 🛛 | <u>M</u> indow <u>H</u> elp |             |                                    |
|----------------------------|------------------|-----------------------------|-------------|------------------------------------|
| D 🕞 🖬 🖨 🖻 🖻                | 覊 覇  " True      | 甘田 100%                     | - 🗆 🏧       | ▲ % 😰 ► Solve                      |
| Arial                      | • 8.2f • ]       | B <i>I</i> <u>U</u> ≣ ≣     | 00. 📑 🗃     | - 🗽 0.0 , 🔘 🖬 🗛 - 🖄 - 🖽 -          |
| Volume for volume analysis |                  | Pritchett's Precious        | Time Pieces | Click Solve to run<br>the program. |
|                            | Cost Type        | Costs                       | Revenues    | Enter the data                     |
| Fixed Costs                | Fixed            | 1000                        | X000000X    | Enter the data.                    |
| Variable costs             | Variable         | 3                           | X000000X    |                                    |
| Revenue per unit           | Variable         | 30000000                    | 8           |                                    |

#### PROGRAM 1.2A – Entering Data



COLLEGE OF

### **Computers and Spreadsheet Models**

| Arial                       | 型 型 "т<br>• 9.7!• _ | Cascade<br>Tile | Additional outp<br>from the Windo | out is available<br>ow menu. |
|-----------------------------|---------------------|-----------------|-----------------------------------|------------------------------|
| Volume for volume analysis— |                     | Edit Data       |                                   |                              |
| • • 0                       |                     | 1 Breakeven/C   | ost-Volume Analysis               | Results                      |
|                             |                     | 2 Graph of Bre  | akeven Analysis                   | N                            |
| Ereakeven/Cost-Volum        | e Analysis Results  |                 |                                   |                              |
|                             | Pritchett's P       | recious Time P  | ieces Solution                    |                              |
|                             |                     | Cost Type       | Costs                             | Revenues                     |
| Fixed Costs                 |                     | Fixed           | 1000                              | XXXXXXX                      |
| Variable costs              |                     | Variable        | 3                                 | XXXXXXX                      |
| Revenue per unit            |                     | Variable        | XXXXXXXX                          | 8                            |
|                             |                     |                 |                                   | 63                           |
| BREAKEVEN POINTS            |                     | Units           | Dollars                           |                              |

PROGRAM 1.2B – Solution Screen



COLLEGE OF MANAGEMENT

### **Computers and Spreadsheet Models**



PROGRAM 1.3 – Excel Ribbon and Menu



COLLEGE OF MANAGEMENT

### **Computers and Spreadsheet Models**



PROGRAM 1.4 – Entering Data



COLLEGEOF

### **Computers and Spreadsheet Models**



#### PROGRAM 1.5 – Using Goal Seek



### Possible Problems in the Quantitative Analysis Approach

- Defining the problem
  - Problems may not be easily identified
  - Conflicting viewpoints
  - Impact on other departments
  - Beginning assumptions
  - Solution outdated
- Developing a model
  - Fitting the textbook models
  - Understanding the model



Possible Problems in the Quantitative Analysis Approach

- Acquiring accurate input data
  - Using accounting data
  - Validity of the data
- Developing a solution
  - Hard-to-understand mathematics
  - Only one answer is limiting
- Testing the solution
  - Solutions not always intuitively obvious
- Analyzing the results
  - How will it affect the total organization





- Lack of commitment and resistance to change
  - Fear formal analysis processes will reduce management's decision-making power
  - Fear previous intuitive decisions exposed as inadequate
  - Uncomfortable with new thinking patterns
  - Action-oriented managers may want "quick and dirty" techniques
  - Management support and user involvement are important





- Lack of commitment by quantitative analysts
  - Analysts should be involved with the problem and care about the solution
  - Analysts should work with users and take their feelings into account







# Quantitative Analysis for Management

TWELFTH EDITION

Barry Render • Ralph M. Stair, Jr. • Michael E. Hanna • Trevor S. Hale



# CHAPTER \_\_\_\_

Probability Concepts and Applications

To accompany *Quantitative Analysis for Management, Twelfth Edition, Global Edition,* by Render, Stair, Hanna and Hale Power Point slides created by Jeff Heyl

Copyright ©2015 Pearson Education, Inc.



## LEARNING OBJECTIVES

COLLEGE OF

After completing this chapter, students will be able to:

- 1. Understand the basic foundations of probability analysis.
- 2. Describe statistically dependent and independent events.
- 3. Use Bayes' theorem to establish posterior probabilities.
- 4. Describe and provide examples of both discrete and continuous random variables.
- 5. Explain the difference between discrete and continuous probability distributions.
- 6. Calculate expected values and variances and use the normal table.



### **CHAPTER OUTLINE**

- 2.1 Introduction
- 2.2 Fundamental Concepts
- 2.3 Revising Probabilities with Bayes' Theorem
- 2.4 Further Probability Revisions
- 2.5 Random Variables
- 2.6 Probability Distributions
- 2.7 The Binomial Distribution
- 2.8 The Normal Distribution
- 2.9 The *F* Distribution
- 2.10 The Exponential Distribution
- 2.11 The Poisson Distribution





# Introduction

- Life is uncertain; we are not sure what the future will bring
- Probability is a numerical statement about the likelihood that an event will occur



# Chapters in This Book

#### TABLE 2.1

| CHAPTER  | TITLE                                       |
|----------|---------------------------------------------|
| 3        | Decision Analysis                           |
| 4        | Regression Models                           |
| 5        | Forecasting                                 |
| 6        | Inventory Control Models                    |
| 11       | Project Management                          |
| 12       | Waiting Lines and Queuing Theory Models     |
| 13       | Simulation Modeling                         |
| 14       | Markov Analysis                             |
| 15       | Statistical Quality Control                 |
| Module 3 | Decision Theory and the Normal Distribution |
| Module 4 | Game Theory                                 |





# **Types of Probability**

- Objective Approach
  - Relative frequency approach

Number of occurrences of the event

P (event) =

Total number of trials or outcomes

- Classical or logical method
- $P \text{ (head)} = \frac{1}{2} \text{ Number of ways of getting a head}$   $P \text{ (head)} = \frac{13}{2} \text{ Number of possible outcomes (head or tail)}$   $P \text{ (spade)} = \frac{13}{52} \text{ Number of chances of drawing a spade}$

Copyright ©2015 Pearson Education, Inc.



# **Diversey Paint Example**

- Historical demand for white latex paint at = 0, 1, 2, 3, or 4 gallons per day
- Observed frequencies over the past 200 days

TABLE 2.2





# **Diversey Paint Example**







# **Types of Probability**

- Subjective Approach
  - Based on the experience and judgment of the person making the estimate
    - Opinion polls
    - Judgment of experts
    - Delphi method

# Mutually Exclusive and Collectively Exhaustive Events

- Events are said to be mutually exclusive if only one of the events can occur on any one trial
  - Tossing a coin will result in either a head or a tail
  - Rolling a die will result in only one of six possible outcomes



Copyright ©2015 Pearson Education, Inc.

# Mutually Exclusive and Collectively Exhaustive Events

- Events are said to be collectively exhaustive if the list of outcomes includes every possible outcome
  - Both heads and tails as possible outcomes of coin flips
  - All six possible outcomes of the roll of a die

| OUTCOME<br>OF ROLL | PROBABILITY     |
|--------------------|-----------------|
| 1                  | 1/6             |
| 2                  | 1/6             |
| 3                  | 1/6             |
| 4                  | 1/6             |
| 5                  | 1/ <sub>6</sub> |
| 6                  | 1/6             |
|                    | Total 1         |





# Venn Diagrams

#### FIGURE 2.1



FIGURE 2.2



### Events that are mutually exclusive

Events that are not mutually exclusive

Copyright ©2015 Pearson Education, Inc.

2 - 53





# Drawing a Card

 Draw one card from a deck of 52 playing cards

> A = event that a 7 is drawn B = event that a heart is drawn P (a 7 is drawn) =  $P(A) = \frac{4}{52} = \frac{1}{13}$ P (a heart is drawn) =  $P(B) = \frac{13}{52} = \frac{1}{4}$

- These two events are not mutually exclusive since a 7 of hearts can be drawn
- These two events are not collectively exhaustive since there are other cards in the deck besides 7s and hearts





# Differences

|    | DRAWS                              | MUTUALLY<br>EXCLUSIVE | COLLECTIVELY<br>EXHAUSTIVE |
|----|------------------------------------|-----------------------|----------------------------|
| 1. | Draws a spade and a club           | Yes                   | No                         |
| 2. | Draw a face card and a number card | Yes                   | Yes                        |
| 3. | Draw an ace and a 3                | Yes                   | No                         |
| 4. | Draw a club and a non-club         | Yes                   | Yes                        |
| 5. | Draw a 5 and a diamond             | No                    | No                         |
| 6. | Draw a red card and a diamond      | No                    | No                         |