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Introduction The purpose of this chapter is to familiarize the reader
with some of the mathematical tools that are needed for the study of informa-
tion theory. Although the tools are simple and their mastering requires no
knowledge of advanced mathematics, the reader must have a certain level of
mathematical maturity and sophistication in order to use them effectively.
Knowledge of probability theory at an introductory level and familiarity with
combinatorial techniques are the only prerequisites for the study of this book;
although Section 1.1 is devoted to a review of probability, it is no substitute for
formal education in this area. Section 1.2 describes the Chebyshev inequality
and the weak law of large numbers. In Section 1.3 we define convexity and
prove an important relationship, known as the Jensen inequality, for convex
functions. A simple derivation of Stirling’s approximation to the factorial func-
tion is given in Section 1.4.

1.1 REVIEW OF PROBABILITY

In a probability experiment the outcome can be any member of a given set E.
The set E is known as the sample space of the experiment. Certain subsets of E
are defined as events. If the outcome of a trial belongs to the event E;, then E;
is said to have occurred. To each E;, a probability p; is assigned. The assign-
ment is not arbitrary, and the collection of p;’s must satisfy the axioms of
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probability theory. For the most part, in this book we assume either that the set
E is countable or that it is divided into a countable number of elementary
events. In either case, we have a discrete probability space.

Example 1

In a coin-flipping experiment, E = {H, T}. If the coin is fair P{H} = P{T} = 0.5.
Example 2

If the experiment is to throw a die, then E = {1,2,3,4,5,6}. If the die is fair,
p{1}=P{2} = --- = P{6} =% P{2,5} =4, P{1,3,5} = 3.

Example 3

Let the experiment be the weather forecast for a certain day; then E = {sunny, cloudy,
rainy, snowy}. A possible probability assignment is P{sunny} = L P{cloudy} = 3,
P{rainy} = 1, P{snowy} = .

Example 4

Take a typical English text and pick a letter at random; then E = fa.bies s s s X Ya 2
The probability distribution will be P{a} = 0.0642, ..., P{e} = 0.103, ...,
P{z} = 0.0005.

If the outcome of an experiment is always the same, it is said to be a de-
generate (or certain) experiment.

Example 5

In the English language, the letter that follows q in a word is always u. The experiment
is to open a book at random and to pick the letter following the first q encountered. The
sample space is E = {a,b,c,...,x,y,z}, but P{u} = 1 and P{a}= -+ =P{z} = 0.

A discrete random variable x is defined by assigning a real number x; to
each elementary event E; in a discrete sample space. The probability of x; is
then denoted by p(x;). The average (or expected value) and the variance of x
are defined as follows:

E(x =X = 2 xpx)
Var(x) = E((x — x)?) = 2 (x; = X)’p(x:)

= E (x? + x? = 2x,x)p(x;)

=Ex) +x*—2%x+x = Ex) — X*
where E(x?) is the expected value of x*. In general, the expected value of a
function of x, such as f(x), is given by

E(f) = Sfx)  plxi)
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A pair of random variables (, y) associated with an experiment forms a
joint random variable. If x,y are discrete, the joint probability distribution is
defined as {p;}, where p; = P{x = x,,y = y;}.

Example 6

i

The experiment is to throw a coin and a die. The possible outcomes are il
|

(H,1),(H,2),...,(H,6),(T,1),(T,2),...,(T.6 i

If the coin and the die are fair and independent, Py = + for all i, Jj. The diagram of
Figure 1.1 is often helpful in visualizing the situation. Using the diagram, it is easy to
verify that i

(i) The sum of the probabilities Dy is equal to 1. |
(ii) P{Coin = Head} = P{(H, 1)} + P{(H,2)} + -+ + P{(H,6)} = 1. i
(iii) P{Die = 5} = P{(H,5)} + P{(T,5)} = L. i

Now assume that the coin and the die are somehow interacting and as a
result their outcomes are not independent. The joint density may have the dis-
tribution shown in Figure 1.2. The following statements can be directly verified
from the diagram.

Die
1712 1/12
6 ° °
112 1/12
5 ° °
1/12 112
4 ° °
112 1/12
3 . °
112 1/12
2 (] °
1/12 1/12
1 ° °
H T Coin
Figure 1.1 I8
Die
1/12 1/12 i
6 ° ° i
1/18 1/24
53 ° °
1/9 1/24
4 L] °
1/9 1/6
3 ° °
1/9 1/18
2 ° °
112 1/18
1 . .
H T Goin ‘;T
Figure 1.2 i
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(i) P{H,5)} =%
(ii) P{Coin = H} = 3
(iii) P{Coin = T} = 3
(iv) P{Die = 5} = %
(v) P{Die = 5 given Coin = H} =
1/18
(1/12) + (1/18) + (1/9) + (1/9) + (1/9) + (1/12)

= 1/10

The conditional density of y given x is defined as

plxi,y)
Lyl = ————
12
where the marginal density p(x;) is assumed to be nonzero. The marginal densi-
ties are defined as follows:

plx;) = Zp(xz, )’j)

P(}’j) T Zp(-xbyj)

The random variables x and y are said to be independent if p(x;,y;) =

p(x:)p(y;) for all i, ;.
The correlation C between x and y is defined as the expected value of

(x—X)y —y)
Cx,y) =E((x —x)(y—-y) = E E (i = x) (3 = ¥Ip(xi, ;)
= E(xy) — xy . 2
In the special case where x and y are independent,
E(xy) = Z ;xiyjp(xi)p(yj) = ;xip(xi)%:)’jp(}’j) =xy

Independence thus results in a lack of correlation. The opposite, however, is
not true (see Problem 1.3).

1.2 CHEBYSHEV INEQUALITY AND THE WEAK LAW OF
LARGE NUMBERS

Given a random variable x with average x and variance o7, the Chebyshev in-

equality for an arbitrary positive number 8 is
2

P{!x—ﬂz&}s%
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A simple proof of this result is given here (for another proof, see Problem 1.4).
Define the function f(x) as follows:

S PR T
f(x)_{o, if v — x| <8
Then

P{lx = )7] =y = Zf(xi)p(xi)

Upon inspection of Figure 1.3, it is obvious that

i) [x ; ,7]2

Therefore,

v 12 2
P72 0 = 3252 | ) - 2

The Chebyshev inequality can now be used to derive the weak law of
large numbers. Consider a binary experiment where the outcomes are 0 and 1
with probabilities p, and 1 — p,, respectively. This experiment is repeated N
times independently, and the average output is defined as yy; that is, yy is equal
to the total number of 1’s in the N trials divided by N. Obviously, yy is a ran-
dom variable with sample space {0, 1/N,2/N, ..., 1}. Defining x” as the r.v.
associated with the outcome of the nth trial, we have

1 N
N ZNZ,]X(")

The average and variance of yy are obtained as follows:

. 1 & 8 - -
yN_Ng ("))_Ngx:x
‘<X—7>2 |
\ 8 /
\ /
\ //
\\ r
1 \ / f(x)
i
\\\ " ///
X —8 X X+ e

Figure 1.3
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o} = Bl — ) = A%E([z - z)] )
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g oy

For an arbitrary positive number €, the Chebyshev inequality
2

i o
P{lyy _}’N|28}5’€7y

leads to the following statement of the weak law of large numbers:

R = ol

Bl a3 e s —
Uw 2] -5 =) <
Notice that the right side approaches zero with increasing N. The weak law of

large numbers thus asserts that the sample average of x approaches the statisti-
cal average x with high probability as N — .

1.3 CONVEX SETS AND FUNCTIONS:
JENSEN'S INEQUALITY

In the Euclidean space, a set S is convex if, for every pair of points P, P, in §,
the straight line connecting P, to P, is completely contained in S. Figure 1.4a
shows two convex sets in the two-dimensional Euclidean space. The sets of
Figure 1.4b are not convex.

If P, = (xi,...,x,) and P, = (yy, ..., y,) are points in the Euclidean n-
space, then the straight line connecting them is represented by the set of points

O &
W

(a)
Figure 1.4
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P, where P = AP, + (1 = NP, = [Ax; + (1 = Nyy,. .., Ax, + (1 — Myal,
and \ is a real number in the interval [0, 1]. An important example of a convex
set is the set of all n-dimensional probability distributions {p1,...,pn} (see
Problem 1.6).

The real function f(P), defined on a convex set S, is convex cap (N) if
for every pair of points Py, P, in the set and for every A in [0, 1] the following
inequality is satisfied:

fINP + (1 = MP] = M(P) + (1 = Nf(P)
This property is shown graphically in Figure 1.5 for a function defined on
a one-dimensional space. If the direction of inequality is reversed (for all
P,, P, \), then the function is convex cup (U).

Theorem. If \,,...,\y are nonnegative numbers whose sum is unity,
then, for every set of points Py, . . ., Py in the domain of the convex N function
f(P), the following inequality is valid:

f<§ M P") = 3 M)

Proof. We use induction on N. For N = 2, the inequality is valid by
definition of convexity. Assuming the validity of the theorem for N — 1, we
prove it for N.

f(% ?\nPn> =f<7\NPN 4 (1= )w)Nil %\’ﬂ)

= Mf(Py) + (1 — AN)f(i %):VPO

n=1

A
1_)\1\/

= Mf(Py) + (1 - )\N)i ey

2 A f(Py)

The proof is thus complete.

A direct consequence of the preceding theorem is Jensen’s inequality for
discrete random variables. Let r.v. X assume the values x,, . . ., x, with proba-
bilities py, . ..,p.- Let f(x) be a convex N function whose domain includes
X1, ..., %. Now E(x) = 2, p;x; and E(f(x)) = 2, p.f(x;). Therefore,

fIEX) = E(f(x)

This is known as Jensen’s inequality.

1.4 STIRLING'S FORMULA

In this section we derive Stirling’s formula, which provides upper and lower
bounds to N!. Consider the function In(x) whose integral from 1 to N is given
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fx,)

f(x)
flAx, £ (T X) X,
|
\
|
} f(x,)
i

Alx, ) + (1= X fix,)

/ X (TN X X, b
Figure 1.5

by
fv (2 dt = ¢ (R = ale WV — N+ 1

This integral is underapproximated by the trapezoid method of Figure 1.6a and
overapproximated by the midpoint method of Figure 1.6b. Consequently,

N
f In(x)dx =2+ 13+ -+ +In(N — 1) + 3 In(N) = In(N!) — 3 In(N)
1

N
f In(x)dr =@ +Wm2+Wn3+ - +In — 1) + 3 1n(¥V)
1

=In(N!) + }) — 3 1In(N)
Therefore,
NInN) +inN) =N+ @ <=InW!) =N In(N) + 3In(N) — N + 1

In(x) In(x)

q i

(a) (b)
Figure 1.6
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which yields Stirling’s formula as
Ne ™™ \V/Ne™ < NI < NVe VNe

PROBLEMS I

1.1. Three events E,, E,, and E;, defined on the same space, have probabilities P(E,) =
P(E)) = P(E;) = %. Let Ey be the event that one or more of the events E,,E,, E, |
occurs. i
(a) Find P(E,) when:

(1) E\, E,, E; are disjoint.
(2) E\,E,,E; are statistically independent.
(3) E\, E,, E; are three names for the same event.
(b) Find the maximum values that P(E) can assume when:
(1) Nothing is known about the independence or disjointness of E,, E,, E;.
(2) It is known that E,, E,, Ej are pairwise independent; that is, the probability
of realizing both E; and E; is P(E;)P(E;), but nothing is known about the
probability of realizing all three events together.
Hint: Use Venn diagrams.

1.2. A box contains two dice, one fair and the other loaded, so that for the first one
P(1) =P2)=---P(6) = é and for the second one P(6) = %, Pl)y=:---=
PS) = % We choose one die from the box at random and roll it. If the outcome is
the number 6, what is the probability that the loaded die has been selected? What if
the die is rolled twice and the outcome of both trials is the number 6?

1.3. Let x and y be discrete random variables,

(a) Prove that E(x + y) = E(x) + E(y)

(b) If x and y are independent, prove that E(xy) = E(x)-E(y); that is, x and y are
uncorrelated.

(¢) Is it possible for x and y to be dependent but uncorrelated? Give an example.

(d) If x and y are independent, prove that Var(x + y) = Var(x) + Var(y). Is this
relationship valid when x and y are dependent but uncorrelated?

1.4. (a) For any random variable y that assumes only nonnegative values, prove the

following inequality:

> =<l

Ply =8} =

where & is an arbitrary positive number.
(b) Let x be a random variable with average x and variance o2, Define a nonnega-
tive random variable y = (x — X) and show that

2
= (o g8
P{|x—xl25}5§

This is the Chebyshev inequality derived in Section 1.2.
1.5. A sequence of independent identically distributed random variables Yi,...,Yyy with
average y and standard deviation o, is given. Define the random variable x as
follows:
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X =

N
> Y
n=1

| Show that the Chebyshev inequality for x is

z|~

| - )

‘ P{|x_y|28}SIW

| and investigate the limit when N — c°.

| 1.6. Prove that the set of all n-dimensional probability distributions {py, ..., p,} is con-
vex. For n = 3, show the set graphically.

1.7. The function f(x) is defined on the open interval (a, b) and is convex M. Prove that
f(x) is continuous. Would this conclusion be valid if the domain of the function
were a closed interval?

1.8. The function f(x) is defined and has second derivative on the interval (a, b). Prove
that the necessary and sufficient condition for f(x) to be convex N is

2
d dJ;(ZX) i

0

for all points in (a, b).
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