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Key idea: RNNs have an 
“internal state” that is 
updated as a sequence is 
processed
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.
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(Simple) Recurrent Neural Network

x

RNN

y

Sometimes called a “Vanilla RNN” or an 
“Elman RNN” after Prof. Jeffrey Elman

The state consists of a single “hidden” vector h:
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x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT
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Sequence to Sequence: Many-to-one +  one-to-many

h0 fW h1 fW h2 fW h3

x3

…

x2x1
W1

hT

Many to one: Encode input 
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Sequence to Sequence: Many-to-one +  one-to-many

y1 y2

…

sequence in a single vector

One to many: Produce output 
sequence from single input vector

Many to one: Encode input

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

h0 fW h1 fW h2 fW h3

x3

…

x2x1
W1

hT



Example:  Character-level  
Language Model

Vocabulary:  
[h,e,l,o]

Example training 
sequence: 
“hello”
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Language Model



Vocabulary:  
[h,e,l,o]

Example training 
sequence: 
“hello”
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Example:  Character-level  
Language Model



Vocabulary:  
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Language Model
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Vocabulary:  
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model

Example:  Character-level  
Language Model
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Backpropagation through time

Loss

Forward through entire 
sequence to compute 
loss, then backward 
through entire sequence
to compute gradient
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Truncated Backpropagation through time

Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence
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Truncated Backpropagation through time

Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps
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Truncated Backpropagation through time

Loss



(https://gist.github.com/karpathy/d4dee 
566867f8291f086)

35

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086


https://colab.research.google.com/driv
e/1VqYQlGmDtIZT5fC7TfpWNIXYId4-
Pr00?usp=sharing
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at first:

After some 
iterations



partial credit by CS311n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

39
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Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission



partial credit by CS311n

Searching for interpretable cells

quote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

line length tracking cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

if statement cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

quote/comment cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

68



partial credit by CS311n

code depth cell

45

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells
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RNN tradeoffs

 RNN Advantages:
 Can process any length input
 Computation for step t can (in theory) use information from many steps  back
 Model size doesn’t increase for longer input
 Same weights applied on every timestep, so there is symmetry in how  inputs are processed.

 RNN Disadvantages:
 Recurrent computation is slow
 In practice, difficult to access information from many steps back

46



IN IMAGE: PIXEL-RNN
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Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Then maximize likelihood of training data

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Lecture 11 -

Complex distribution over pixel
values => Express using a neural 
network!
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Recurrent Neural Network
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RNN

xn

h1 h2 h3h0

Lecture 11 -
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PixelRNN

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Lecture 11 -

[van der Oord et al. 2016]



partial credit by CS311n

PixelRNN

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Lecture 11 -

[van der Oord et al. 2016]



partial credit by CS311n

PixelRNN

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Lecture 11 -
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PixelRNN

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Lecture 11 -

[van der Oord et al. 2016]

Drawback: sequential generation is slow 
in both training and inference!
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PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region 
(masked convolution)

Lecture 11 -
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PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region 
(masked convolution)
Training is faster than PixelRNN
(can parallelize convolutions since context region 
values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of 
the network 1024 times for a single image

Lecture 11 -
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Generation Samples

32x32 CIFAR-10

Lecture 11 -

32x32 ImageNet



Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei 
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al. 
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

57

Image Captioning

Figure from Karpathy et a, “Deep
Visual-Semantic Alignments for Generating  
Image Descriptions”, CVPR 2015; figure 
copyright IEEE, 2015.
Reproduced for educational purposes.



Convolutional Neural Network

58

Recurrent Neural Network
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test image

This image is CC0 public domain

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - May 7, 2020

test image
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h0

y0

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

x0
<START>



h0

y0

test image

straw

sample!

ei-Fei Li, RaF njay Krishna, Danfei Xu

x0
<START>
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ei-Fei Li, RaF njay Krishna, Danfei Xu



h0

y0

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

ei-Fei Li, RaF njay Krishna, Danfei Xu

x0
<START>
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using neuraltalk2 
All images are CC0 Public domain:
cat suitcase, cat tree, dog, bear,
surfers, tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
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Image Captioning: Failure Cases

A woman is holding a cat 
in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform  
throwing a ball

Captions generated using neuraltalk2 
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
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Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

RNN focuses its attention at a different spatial location 
when generating each word

Image Captioning with Attention
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Image Captioning with Attention

CNN

Image: 
H x W x 3

Features:  
L x D

Where L = W x H

h0

Xu et al, “Show, Attend and Tell: Neural  
Image Caption Generation with Visual 
Attention”, ICML 2015
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CNN

Image: 
H x W x 3

Features:  
L x D

h0

a1

Distribution over 
L locations

Xu et al, “Show, Attend and Tell: Neural  
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention

v
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CNN

Image: 
H x W x 3

Features:  
L x D

h0

a1

Weighted 
combination  
of features

Distribution over 
L locations

z1
Weighted 

features: D
Xu et al, “Show, Attend and Tell: Neural  
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features:  
L x D

h0

a1

z1

Weighted 
combination  
of features

h1

Distribution over 
L locations

Weighted 
features: D y1

First wordXu et al, “Show, Attend and Tell: Neural  
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features:  
L x D

h0

a1

z1

Weighted 
combination  
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

Weighted 
features: D

Distribution  
over vocab

Xu et al, “Show, Attend and Tell: Neural  
Image Caption Generation with Visual 
Attention”, ICML 2015
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CNN

Image: 
H x W x 3

Features:  
L x D

h0

a1

z1

Weighted 
combination  
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

z2 y2
Weighted 

features: D

Distribution  
over vocab

Xu et al, “Show, Attend and Tell: Neural  
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features:  
L x D

h0

a1

z1

Weighted 
combination  
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

a3 d2

z2 y2
Weighted 

features: D

Distribution  
over vocab

Xu et al, “Show, Attend and Tell: Neural  
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention

v
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Soft attention

Hard attention

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Visual Question Answering (VQA)

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention
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Das et al, “Visual Dialog”, CVPR 2017
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Dialog: Conversations about images
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Agent encodes instructions in 
language and uses an RNN to 
generate a series of movements as 
the visual input changes after each 
move.

Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised 
Imitation Learning for Vision-Language Navigation”, CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room
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Burns et al. “Women also Snowboard: Overcoming Bias in Captioning Models” ECCV 2018 
Figures from Burns et al, copyright 2018. Reproduced with permission.

Image Captioning: Gender Bias

All images are CC0 Public domain: 
dog,

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
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Jabri et al. “Revisiting Visual Question Answering Baselines” ECCV 2016

Visual Question Answering: Dataset Bias

All images are CC0 Public domain: 
dog,

What is the dog 
playing with?

Frisbee

Image

Question

Answer

Model Yes or No

86

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
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Multilayer RNNs

tim
e

depth

87
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Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM

88

Long Short Term Memory (LSTM)



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow

89

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow

90

Backpropagation from ht 
to ht-1 multiplies by W
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4y1 y2
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3

Almost always < 1
Vanishing gradients

x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4

What if we assumed no non-linearity?

97



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3

What if we assumed no non-linearity?

Largest singular value > 1:
Exploding gradients

x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4

Largest singular value < 1:
Vanishing gradients
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3

What if we assumed no non-linearity?
x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4

Largest singular value > 1:
Exploding gradients

Gradient clipping:
Scale gradient if its
norm is too big

Largest singular value < 1:
Vanishing gradients
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3

What if we assumed no non-linearity?

Largest singular value > 1:
Exploding gradients

x4

Gradients over multiple time steps:
y1 y2

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y3 y4

Largest singular value < 1:
Vanishing gradients

Change RNN 
architecture
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell
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☉ct-1

ht-1

f
i

o

W g ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack

xt
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ct-1

ht-1

f
i

o

W g ☉

☉ + ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Backpropagation from ct to

stack

ct-1 only elementwise 
multiplication by f, no matrix 
multiply by W

xt
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Long Short Term Memory (LSTM): Gradient Flow

c3

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

c0 c1 c2

105

Notice that the gradient contains the f gate’s vector of activations
- allows better control of gradients values, using suitable parameter updates of the 

forget gate.
Also notice that are added through the f, i, g, and o gates

- better balancing of gradient values
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Do LSTMs solve the vanishing gradient problem?

The LSTM architecture makes it easier for the RNN to preserve information 
over many timesteps

 e.g. if the f = 1 and the i = 0, then the information of that cell is preserved 
indefinitely.

 By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix Wh
that preserves info in hidden state •

 LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does
provide an easier way for the model to learn long-distance dependencies
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Long Short Term Memory (LSTM): Gradient Flow

c3c0 c1 c2

3x3
conv,128

3x3
conv,128

3x3
conv,128

3x3
conv,128

3x3
conv,128

3x3
conv,128

/2

3x3
conv,64

3x3
conv,64

3x3
conv,64

3x3
conv,64

3x3
conv,64

3x3
conv,64

Pool
7x7

conv,64
/

2  Input

Softm
ax  

FC
1000

Pool

3x3
conv,64

3x3
conv,64

3x3
conv,64

3x3
conv,64

3x3
conv,64

3x3
conv,64

...

Similar to ResNet!

107[Hochreiter et al., 1997]

Uninterrupted gradient flow!

In between:
Highway Networks

Srivastava et al, “Highway Networks”, 
ICML DL Workshop 2015
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LSTM cell

Neural Architecture Search for RNN architectures

108

Zoph et Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.

Cell they found
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Other RNN Variants

[LSTM: A Search Space Odyssey, 
Greff et al., 2015]

[An Empirical Exploration of 
Recurrent Network Architectures, 
Jozefowicz et al., 2015]

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation, 
Cho et al. 2014]
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Recently in Natural Language Processing

New paradigms for reasoning over sequences
 [“Attention is all you need”, Vaswani et al., 2018]
 New “Transformer” architecture no longer  

processes inputs sequentially; instead it can  
operate over inputs in a sequence in parallel  
through an attention mechanism

 Has led to many state-of-the-art results and  pre-
training in NLP, for more interest see e.g.
 “BERT: Pre-training of Deep Bidirectional  

Transformers for Language  Understanding”, Devlin 
et al., 2018
OpenAI GPT-2, Radford et al., 2018
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Transformers for Vision

 LSTM is a good default choice

 Use variants like GRU if you want faster compute and less  parameters

 Use transformers (not covered in this lecture) as they are

 dominating NLP models
 We need more work studying vision models in tandem with transformers

111

Su et al. "Vl-bert: Pre-training of generic visual-linguistic representations." ICLR 2020
Lu et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS 2019 
Li et al. "Visualbert: A simple and performant baseline for vision and language." arXiv 2019



partial credit by CS311n

Summary

 RNNs allow a lot of flexibility in architecture design

 Vanilla RNNs are simple but don’t work very well

 Common to use LSTM or GRU: their additive interactions  improve gradient flow

 Backward flow of gradients in RNN can explode or vanish.

 Exploding is controlled with gradient clipping. Vanishing is  controlled with additive 
interactions (LSTM)

 Better/simpler architectures are a hot topic of current research,

 as well as new paradigms for reasoning over sequences

 Better understanding (both theoretical and empirical) is needed.
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BEYOND RNNS
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Transformer 

 In NLP, transformer is the first try without RNN
 RNN relies on “ordered-data”
 RNN needs to computing sequentially

 Slow

[1] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. NPIS. 2017: 5998-6008.
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Sequence-to-sequence is everywhere!

 Sequence-to-sequence is useful for more than just MT

Many NLP tasks can be phrased as sequence-to-sequence:
 Summarization (long text → short text)
 Dialogue (previous utterances → next utterance)
 Parsing (input text → output parse as sequence)
 Code generation (natural language → Python code)
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Grammar as a Foreign Language

Vinyals et al., 2015
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Grammar as a Foreign Language

Parsing tree
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Parsing tree
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Parsing tree
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Grammar as a Foreign Language

Parsing tree
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Grammar as a Foreign Language

Parsing tree

John   has     a              dog .
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Grammar as a Foreign Language

Converting tree to sequence
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Grammar as a Foreign Language

Converting tree to sequence



partial credit by CS311n

Grammar as a Foreign Language

Model
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Grammar as a Foreign Language

Results
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Attention is a general Deep Learning technique

More general definition of attention
 Given a set of vector values, and a vector query, attention is a technique to compute a 

weighted sum of the values, dependent on the query.
 We sometimes say that the query attends to the values
 For example, in the seq2seq + attention model, each decoder hidden state attends to the 

encoder hidden states

https://distill.pub/2016/augmented-rnns/

https://distill.pub/2016/augmented-rnns/
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Attention is all you need? 

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

– Transformer Networks

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Problems with RNNs = Motivation for Transformers

 Recurrent models typically factor computation along the symbol positions of the input 
and output sequences
 Sequential computation prevents parallelization
 Critical at longer sequence lengths, as memory constraints limit batching across examples

 Despite advanced RNNs like LSTMs, RNNs still need attention mechanism to deal with 
long range dependencies – path length for codependent computation between states 
grows with sequence

 But if attention gives us access to any state… maybe we don’t need the RNN?
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Transformer Overview
Sequence-to-sequence
Encoder-Decoder
Task: machine translation with 

parallel corpus
Predict each translated word
Final cost/error function is 

standard cross-entropy error 
on top of a softmax classifier

https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf
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Transformer Basics

 Let’s define the basic building blocks of transformer networks first: new attention 
layers!
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Dot-Product Attention (Extending our previous def.)

 Inputs: a query q and a set of key-value (k-v) pairs to an output
 Query, keys, values, and output are all vectors

Output is weighted sum of values, where
 Weight of each value is computed by an inner product of query and corresponding key
 Queries and keys have same dimensionality
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Dot-Product Attention – Matrix notation

When we have multiple queries q, we stack them in a matrix Q:

 Becomes:
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Scaled Dot-Product Attention

Problem: As 𝑑𝑑𝑘𝑘 gets large, the variance of 𝑞𝑞𝑇𝑇𝑘𝑘 increases  some values 
inside the softmax get large  the softmax gets very peaked  hence 
its gradient gets smaller.

Solution: Scale by length of query/key vectors:
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Self-attention and Multi-head attention

 The input word vectors could be the queries, keys and values
 In other words: the word vectors themselves select each other
 Word vector stack = Q = K = V

 Problem: Only one way for words to interact with one-another

 Solution: Multi-head attention
 First map Q, K, V into h many lower dimensional spaces via W matrices
 Then apply attention, then concatenate outputs and pipe through linear layer
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Self-Attention

(example and picture from David Talbot)
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Self-attention: A Running Example
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Self-attention: A Running Example



partial credit by CS311n

Self-attention: A Running Example
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Self-attention: A Running Example



partial credit by CS311n

Complete transformer block

 Each block has two “sublayers”
 1. Multihead attention
 2. 2 layer feed-forward Nnet (with relu)

 Each of these two steps also has:
 Residual (short-circuit) connection and LayerNorm:
 LayerNorm(x + Sublayer(x))

 Layernorm changes input to have mean 0 and variance 1, 
per layer and per training point (and adds two more parameters)

Layer Normalization by Ba, Kiros and Hinton, https://arxiv.org/pdf/1607.06450.pdf

https://arxiv.org/pdf/1607.06450.pdf
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Blocks are 
repeated N=6 
times
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Encoder Input

Actual word representations are byte-pair encodings
Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of 

Rare Words with Subword Units. ACL 2016.

Added is a positional encoding so same words at different locations 
have different overall representations:

pos is the position of a word
i is the dimension index
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Self Attention Visualization in Layer 5

Words start to pay attention to other words in sensible ways
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Transformer Decoder

2 sublayer changes in decoder
Masked decoder self-attention
 Only depends on previous words

Encoder-Decoder Attention
 Queries come from previous decoder layer 

and keys and values come from output of 
encoder
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Advantages

 No recurrence: parallel encoding

 Fast training: both encoder and decoder are parallel

 No long range problem: O(1) for all tokens direct connections

 Three attentions: the model does not have to remember too much

Multi-head attention allows to pay attention to different aspects

Why self-attention and CNN is better than RNN on NMT is still under investigation

A comparison of RNN, CNN, and self-attention 
http://aclweb.org/anthology/D18-1458

http://aclweb.org/anthology/D18-1458
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Summary

 RNN: 
 Arbitrary length of the input sequences
 Ordered information captured by RNN itself
 First-order dependency considered
 Slow (both training and inference)

 Transformer (Fully-connected layer actually):  
 Long-ranged dependency considered
 Unordered information 

 Positional encoding required
 High space complexity but fast



SWIN-TRANSFORMER V2 [2022.4]
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Efficient Attention Block

• It is hard to scale up (unstable in the 
training phase)

• Ineffective for different scales 
setting

• GPU memory cost is large

• Solution:
• Post normalization
• Scaled cosine attention 

approach
• Log-spaced continuous position 

bias (Log-CPB)
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Post normalization
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Scaled cosine attention

 Since post-normalization results in some dominations in some blocks/head, attention 
should be improved

 Rescale by the factors of element norm B
 Gamma is learnable parameter
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Log spaced CPB

 Solution
 Learning a “position” predictor by network (G, e.g. , MLP)
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Log spaced CPB

 Solving the mismatching between different window sizes



APPENDIX

Multi-head self-attention
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Sequence

Hard to parallel !

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

Previous layer

Next layer

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

Using CNN to replace RNN
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…
…

…
……
…

Sequence 

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

Previous layer

Next layer

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

(CNN can parallel)

…
…

𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

Filters in higher layer can 
consider longer sequence 

Using CNN to replace RNN
Hard to parallel !
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Self-Attention 

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

Self-Attention Layer

𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4 can be parallelly computed. 𝑏𝑏𝑖𝑖 is obtained based on the whole 
input sequence. 

You can try to replace any thing that has been done by RNN with self-
attention. 
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑞𝑞: query (to match others)
𝑘𝑘: key (to be matched)
𝑣𝑣: information to be extracted

𝑎𝑎𝑖𝑖 = 𝑊𝑊𝑥𝑥𝑖𝑖

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑎𝑎𝑖𝑖

𝑘𝑘𝑖𝑖 = 𝑊𝑊𝑘𝑘𝑎𝑎𝑖𝑖

𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑎𝑎𝑖𝑖

https://arxiv.org/abs/1706.03762

Self-attention
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝛼𝛼1,1 𝛼𝛼1,2

Scaled Dot-Product Attention:

𝛼𝛼1,3 𝛼𝛼1,4

𝛼𝛼1,𝑖𝑖 = 𝑞𝑞1 � 𝑘𝑘𝑖𝑖/ 𝑑𝑑

dot product

d is the dim of 𝑞𝑞 and 𝑘𝑘

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

Self-attention
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4Softmax

�𝛼𝛼1,𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒 𝛼𝛼1,𝑖𝑖 /�
𝑗𝑗
𝑒𝑒𝑥𝑥𝑒𝑒 𝛼𝛼1,𝑗𝑗

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

Self-attention
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𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏1

Considering the whole sequence 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑖𝑖𝑣𝑣𝑖𝑖

Self-attention
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𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

�𝛼𝛼2,1 �𝛼𝛼2,2 �𝛼𝛼2,3 �𝛼𝛼2,4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏2

𝑏𝑏2 = �
𝑖𝑖

�𝛼𝛼2,𝑖𝑖𝑣𝑣𝑖𝑖

Self-attention
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

Self-Attention Layer

𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4 can be parallelly computed. 

𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

Self-attention
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝑎𝑎4𝑎𝑎3𝑎𝑎2𝑎𝑎1

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑎𝑎𝑖𝑖

𝑘𝑘𝑖𝑖 = 𝑊𝑊𝑘𝑘𝑎𝑎𝑖𝑖

𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑎𝑎𝑖𝑖

𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑞𝑞4 = 𝑊𝑊𝑞𝑞
𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4

= 𝑊𝑊𝑘𝑘

= 𝑊𝑊𝑣𝑣

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4𝑣𝑣1 𝑣𝑣3 𝑣𝑣4𝑣𝑣2

𝑘𝑘1 𝑘𝑘3 𝑘𝑘4𝑘𝑘2
I

I

I

𝑄𝑄

𝐾𝐾

𝑉𝑉

Self-attention: Matrix operation
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𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

𝑏𝑏1

𝛼𝛼1,1 = 𝑞𝑞1𝑘𝑘1

(ignore 𝑑𝑑 for simplicity)

𝛼𝛼1,2 = 𝑞𝑞1𝑘𝑘2

𝛼𝛼1,3 = 𝑞𝑞1𝑘𝑘3 𝛼𝛼1,4 = 𝑞𝑞1𝑘𝑘4
𝑞𝑞1

𝑘𝑘1

𝑘𝑘2

𝑘𝑘3

𝑘𝑘4

=

𝛼𝛼1,1

𝛼𝛼1,2

𝛼𝛼1,3

𝛼𝛼1,4

Self-attention
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𝑏𝑏2

𝑏𝑏2 = �
𝑖𝑖

�𝛼𝛼2,𝑖𝑖𝑣𝑣𝑖𝑖

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

𝑞𝑞1

𝑘𝑘1

𝑘𝑘2

𝑘𝑘3

𝑘𝑘4

=

𝛼𝛼1,1

𝛼𝛼1,2

𝛼𝛼1,3

𝛼𝛼1,4

𝑞𝑞2

𝛼𝛼2,1

𝛼𝛼2,2

𝛼𝛼2,3

𝛼𝛼2,4

𝛼𝛼3,1

𝛼𝛼3,2

𝛼𝛼3,3

𝛼𝛼3,4

𝛼𝛼4,1

𝛼𝛼4,2

𝛼𝛼4,3

𝛼𝛼4,4

𝐾𝐾𝑇𝑇𝐴𝐴
𝑄𝑄

𝑞𝑞3 𝑞𝑞4

�𝛼𝛼1,1

�𝛼𝛼1,2

�𝛼𝛼1,3

�𝛼𝛼1,4

�𝛼𝛼2,1

�𝛼𝛼2,2

�𝛼𝛼2,3

�𝛼𝛼2,4

�𝛼𝛼3,1

�𝛼𝛼3,2

�𝛼𝛼3,3

�𝛼𝛼3,4

�𝛼𝛼4,1

�𝛼𝛼4,2

�𝛼𝛼4,3

�𝛼𝛼4,4

�̂�𝐴

Self-attention
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𝑖𝑖

�𝛼𝛼2,𝑖𝑖𝑣𝑣𝑖𝑖

𝑣𝑣1𝑘𝑘1𝑞𝑞1 𝑣𝑣2𝑘𝑘2𝑞𝑞2 𝑣𝑣3𝑘𝑘3𝑞𝑞3 𝑣𝑣4𝑘𝑘4𝑞𝑞4

�𝛼𝛼1,1

�𝛼𝛼1,2

�𝛼𝛼1,3

�𝛼𝛼1,4

�𝛼𝛼2,1

�𝛼𝛼2,2

�𝛼𝛼2,3

�𝛼𝛼2,4

�𝛼𝛼3,1

�𝛼𝛼3,2

�𝛼𝛼3,3

�𝛼𝛼3,4

�𝛼𝛼4,1

�𝛼𝛼4,2

�𝛼𝛼4,3

�𝛼𝛼4,4

�̂�𝐴

𝑣𝑣1 𝑣𝑣3 𝑣𝑣4𝑣𝑣2
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=𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

O
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Self-attention
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𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖

𝑎𝑎𝑖𝑖

𝑞𝑞𝑖𝑖

𝑞𝑞𝑖𝑖,1 𝑘𝑘𝑖𝑖,1

𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗

𝑎𝑎𝑗𝑗

𝑞𝑞𝑗𝑗

𝑏𝑏𝑖𝑖,1

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑎𝑎𝑖𝑖

𝑞𝑞𝑖𝑖,1 = 𝑊𝑊𝑞𝑞,1𝑞𝑞𝑖𝑖

𝑞𝑞𝑖𝑖,2 = 𝑊𝑊𝑞𝑞,2𝑞𝑞𝑖𝑖

Multi-head Self-attention: 2 heads as example

𝑞𝑞𝑖𝑖,2 𝑘𝑘𝑖𝑖,2 𝑣𝑣𝑖𝑖,2𝑣𝑣𝑖𝑖,1 𝑞𝑞𝑗𝑗,2𝑞𝑞𝑗𝑗,1 𝑘𝑘𝑗𝑗,2𝑘𝑘𝑗𝑗,1 𝑣𝑣𝑗𝑗,2𝑣𝑣𝑗𝑗,1

𝑏𝑏𝑖𝑖,2
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Multi-head Self-attention: 2 heads as example

𝑏𝑏𝑖𝑖,1

𝑏𝑏𝑖𝑖,2
𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖 = 𝑊𝑊𝑂𝑂

𝑏𝑏𝑖𝑖,1

𝑏𝑏𝑖𝑖,2

𝑘𝑘𝑖𝑖 𝑣𝑣𝑖𝑖

𝑎𝑎𝑖𝑖

𝑞𝑞𝑖𝑖

𝑞𝑞𝑖𝑖,1 𝑘𝑘𝑖𝑖,1

𝑘𝑘𝑗𝑗 𝑣𝑣𝑗𝑗

𝑎𝑎𝑗𝑗

𝑞𝑞𝑗𝑗

𝑞𝑞𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑎𝑎𝑖𝑖

𝑞𝑞𝑖𝑖,2 𝑘𝑘𝑖𝑖,2 𝑣𝑣𝑖𝑖,2𝑣𝑣𝑖𝑖,1 𝑞𝑞𝑗𝑗,2𝑞𝑞𝑗𝑗,1 𝑘𝑘𝑗𝑗,2𝑘𝑘𝑗𝑗,1 𝑣𝑣𝑗𝑗,2𝑣𝑣𝑗𝑗,1
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Positional Encoding 

 No position/order information in self-attention.

Original paper: each position has a unique positional vector 𝑒𝑒𝑖𝑖 (not learned from data)

 In other words: each 𝑥𝑥𝑖𝑖 appends a one-hot vector 𝑒𝑒𝑖𝑖

𝑥𝑥𝑖𝑖

𝑣𝑣𝑖𝑖𝑘𝑘𝑖𝑖𝑞𝑞𝑖𝑖

𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖 +
𝑒𝑒𝑖𝑖 =

1
0

0…
…
…
…

i-th dim

𝑥𝑥𝑖𝑖

𝑒𝑒𝑖𝑖
𝑊𝑊

𝑊𝑊𝐼𝐼 𝑊𝑊𝑃𝑃

𝑊𝑊𝐼𝐼

𝑊𝑊𝑃𝑃+

= 𝑥𝑥𝑖𝑖

𝑒𝑒𝑖𝑖

𝑎𝑎𝑖𝑖

𝑒𝑒𝑖𝑖



NEXT: EFFICIENT ATTENTION AND DOWNSTREAM 
TASKS

Flash Attention, SSM, Mamba
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