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Neural Networks

 Linear score function:

 2-layer Neural Network
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

4

Convolutional Neural Networks
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Landscape image is CC0 1.0 public domain  
Walking man image is CC0 1.0 public 
domain

Learning network parameters through optimization
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&amp;picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/


Today

Deep learning hardware
 CPU, GPU, TPU

Deep learning software
 PyTorch and TensorFlow

 Static and Dynamic computation graphs
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DEEP LEARNING  HARDWARE
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Inside a 
computer
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Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en
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Spot the GPUs!
(graphics processing unit)

This image is in the public domain
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NVIDIA AMDvs

Google TPU



CPU vs GPU
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Cores Clock  
Speed Memory Price Speed

CPU
(Intel Core  
i7-7700k)

4
(8 threads with  
hyperthreading)

4.2 GHz System  
RAM $385 ~540 GFLOPs FP32

GPU  (NVIDIA  
RTX 4090) 16,384 2.52

GHz
24 GB  
GDDR6X $1999 ~83 TFLOPs FP32

GPU  (NVIDIA  
RTX 3090 ) 10,496 1.7 GHz 24 GB  

GDDR6 $1499 ~35.6 TFLOPs FP32

CPU: Fewer cores,  
but each core is  
much faster and  
much more  
capable; great at  
sequential tasks

GPU: More cores,  
but each core is  
much slower and  
“dumber”; great for  
parallel tasks



Example: Matrix Multiplication
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A x B
B x C

A x C

=
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CPU vs GPU in practice
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(CPU performance not
well-optimized, a little unfair)

66x 67x 71x 64x 76x

Data from https://github.com/jcjohnson/cnn-
benchmarks



CPU vs GPU in practice
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cuDNN much faster than  
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

Data from https://github.com/jcjohnson/cnn-
benchmarks



CPU vs GPU
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Cores Clock  
Speed

Memory Price Speed

CPU
(Intel Core  
i7-7700k)

4
(8 threads with  
hyperthreading)

4.2 GHz System  
RAM

$385 ~540 GFLOPs FP32

GPU  
(NVIDIA  
RTX 2080 Ti)

3584 1.6 GHz 11 GB  
GDDR6

$1199 ~13.4 TFLOPs FP32

TPU  
NVIDIA  
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB  
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud  
TPU

? ? 64 GB  
HBM

$4.50
per  
hour

~180 TFLOP

CPU: Fewer cores,  
but each core is  
much faster and  
much more  capable; 
great at  sequential 
tasks

GPU: More cores,  
but each core is  
much slower and  
“dumber”; great for  
parallel tasks

TPU: Specialized  
hardware for deep  
learning



CPU vs GPU
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Cores Clock  
Speed

Memory Price Speed

CPU
(Intel Core  
i7-7700k)

4
(8 threads with  
hyperthreading)

4.2 GHz System  
RAM

$385 ~540 GFLOPs FP32

GPU  
(NVIDIA  
RTX 2080 Ti)

3584 1.6 GHz 11 GB  
GDDR6

$1199 ~13.4 TFLOPs FP32

TPU  
NVIDIA  
TITAN V

5120 CUDA,
640 Tensor

1.5 GHz 12GB  
HBM2

$2999 ~14 TFLOPs FP32
~112 TFLOP FP16

TPU
Google Cloud  
TPU

? ? 64 GB  
HBM

$4.50
per  
hour

~180 TFLOP

NOTE: TITAN V
isn’t technically  
a “TPU” since  
that’s a Google  
term, but both  
have hardware  
specialized for  
deep learning
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Programming GPUs

 CUDA (NVIDIA only)
 Write C-like code that runs directly on the GPU
 Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

OpenCL
 Similar to CUDA, but runs on anything
 Usually slower on NVIDIA hardware

HIP https://github.com/ROCm-Developer-Tools/HIP
 CUDA to AMD:

 New project that automatically converts CUDA code to  something that can run on AMD GPUs

How to parallel programming:
 https://developer.nvidia.com/udacity-cs344-intro-parallel-programming
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CPU / GPU Communication
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Model  
is here

Data is here



CPU / GPU Communication
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Model  
is here

Data is here

If you aren’t careful, training can  
bottleneck on reading data and  
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads  

to prefetch data



DEEP LEARNING  SOFTWARE
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A zoo of frameworks!
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Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

Chainer

JAX
(Google)



A zoo of frameworks!

2023/4/26 Chih-Chung Hsu@ACVLab 25

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

Chainer

JAX
(Google)

We’ll focus on these



Recall: Computational Graphs
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input image

weights  

loss

Figure copyright Alex Krizhevsky, Ilya Sutskever, and  
Geoffrey Hinton, 2012. Reproduced with permission.

Recall: Computational Graphs
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Recall: Computational Graphs
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Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en


The point of deep learning frameworks

Quick to develop and test new ideas

Automatically compute gradients

Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)
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Computational Graphs
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X Y Z
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Numpy



Computational Graphs
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Numpy X Y Z

*
a

+
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Computational Graphs
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Numpy

Bad:
- Have to compute  

our own gradients
- Can’t run on GPU

Good:
Clean API, easy to  
write numeric code

X Y Z

*
a

+

b

Σ

c



Computational Graphs
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Numpy PyTorch

Looks exactly like numpy!

X Y Z

*
a

+

b

Σ

c



Computational Graphs

2023/4/26 Chih-Chung Hsu@ACVLab 34

Numpy PyTorch

PyTorch handles gradients for us!

X Y Z

*
a

+

b

Σ

c



Computational Graphs
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Numpy PyTorch

Trivial to run on GPU - just construct  
arrays on a different device!

X Y Z

*
a

+

b

Σ

c



PYTORCH
(MORE DETAIL)



PyTorch: Fundamental Concepts

 Tensor: Like a numpy array, but can run on GPU

 Autograd: Package for building computational graphs out of  Tensors, and 
automatically computing gradients

Module: A neural network layer; may store state or  learnable weights

4/26/2023 Chih-Chung Hsu@ACVLab 37



PyTorch: Versions

 For this class our code was tested on PyTorch version 1.10.1 with CUDA 12.0
 (Released 2022)

 Be careful if you are looking at older PyTorch code!

4/26/2023 Chih-Chung Hsu@ACVLab 38



PyTorch: Tensors

2023/4/26 Chih-Chung Hsu@ACVLab 39

Running example: Train  
a two-layer ReLU  
network on random data  
with L2 loss



PyTorch: Tensors
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PyTorch Tensors are just like numpy  
arrays, but they can run on GPU.

PyTorch Tensor API looks almost  
exactly like numpy!

Here we fit a two-layer net using  
PyTorch Tensors:



Create random tensors  
for data and weights

PyTorch: Tensors
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PyTorch: Tensors
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Forward pass: compute  
predictions and loss



PyTorch: Tensors
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Backward pass:  
manually compute  
gradients



PyTorch: Tensors

2023/4/26 Chih-Chung Hsu@ACVLab 44

Gradient descent  
step on weights



To run on GPU, just use a  
different device!

PyTorch: Tensors
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PyTorch: Autograd
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Creating Tensors with  
requires_grad=True enables  
autograd

Operations on Tensors with  
requires_grad=True cause PyTorch  
to build a computational graph



PyTorch: Autograd
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We will not want gradients  
(of loss) with respect to data

Do want gradients with  
respect to weights



PyTorch: Autograd
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Forward pass looks exactly  
the same as before, but we  
don’t need to track  
intermediate values -
PyTorch keeps track of  
them for us in the graph



PyTorch: Autograd
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Compute gradient of loss
with respect to w1 and w2



PyTorch: Autograd
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Make gradient step on weights, then zero

them. Torch.no_grad means “don’t build  
a computational graph for this part”



PyTorch: Autograd
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PyTorch methods that end in underscore
modify the Tensor in-place; methods that
don’t return a new Tensor



PyTorch: New Autograd Functions
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Define your own autograd  
functions by writing forward  
and backward functions for  
Tensors

Use ctx object to “cache” values for  
the backward pass, just like cache  
objects from A2



PyTorch: New Autograd Functions
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Define your own autograd  
functions by writing forward  
and backward functions for  
Tensors

Use ctx object to “cache” values for  
the backward pass, just like cache  
objects from A2

Define a helper function to make it  
easy to use the new function



PyTorch: New Autograd Functions
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Can use our new autograd  
function in the forward pass



PyTorch: New Autograd Functions

2023/4/26 Chih-Chung Hsu@ACVLab 55

In practice you almost never need
to define new autograd functions!
Only do it when you need custom
backward. In this case we can just
use a normal Python function



PyTorch: nn
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Higher-level wrapper for  
working with neural nets

Use this! It will make your life  
easier



PyTorch: nn
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Define our model as a
sequence of layers; each  
layer is an object that  
holds learnable weights



PyTorch: nn
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Forward pass: feed data to

model, and compute loss



PyTorch: nn
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Forward pass: feed data to

model, and compute loss

torch.nn.functional has useful  
helpers like loss functions



PyTorch: nn
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Backward pass: compute  
gradient with respect to all  
model weights (they have  
requires_grad=True)



PyTorch: nn
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Make gradient step on  
each model parameter  
(with gradients disabled)



PyTorch: optim
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Use an optimizer for different 
update rules



PyTorch: optim
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After computing gradients, use  
optimizer to update params 
and zero gradients



PyTorch: nn
Define new Modules
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A PyTorch Module is a neural net  
layer; it inputs and outputs Tensors

Modules can contain weights or other  
modules

You can define your own Modules  
using autograd!



Define our whole model  
as a single Module

PyTorch: nn
Define new Modules
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Initializer sets up two  
children (Modules can  
contain modules)

PyTorch: nn
Define new Modules
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PyTorch: nn
Define new Modules
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Define forward pass using  
child modules

No need to define  
backward - autograd will  
handle it



PyTorch: nn
Define new Modules
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Construct and train an  
instance of our model



Very common to mix and match
custom Module subclasses and
Sequential containers

PyTorch: nn
Define new Modules
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Define network component  
as a Module subclass

PyTorch: nn
Define new Modules
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PyTorch: nn
Define new Modules
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Stack multiple instances of the  
component in a sequential



PyTorch: DataLoaders
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A DataLoader wraps a  
Dataset and provides  
minibatching, shuffling,  
multithreading, for you

When you need to load  
custom data, just write  
your own Dataset class



PyTorch: DataLoaders
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Iterate over loader to form  
minibatches



Super easy to use pretrained models with 
torchvision  https://github.com/pytorch/vision

PyTorch: Pretrained Models
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https://github.com/pytorch/vision


PyTorch: Visdom
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This image is licensed under CC-BY 4.0; no changes were made to the 
image

Visualization tool: add  
logging to your code, then  
visualize in a browser

Can’t visualize  
computational graph  
structure (yet?)

https://github.com/facebookresearch/visdom

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/facebookresearch/visdom


PyTorch: tensorboardX

2023/4/26 Chih-Chung Hsu@ACVLab 76

This image is licensed under CC-BY 4.0; no changes were made to the 
image

A python wrapper around  
Tensorflow’s web-based  
visualization tool.

pip install tensorboardx

Or

pip install tensorflow

https://github.com/lanpa/tensorboardX

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/lanpa/tensorboardX


PyTorch: Dynamic Computation Graphs
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PyTorch: Dynamic Computation Graphs
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x w1 w2 y

Create Tensor objects



PyTorch: Dynamic Computation Graphs
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x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND  
perform computation



PyTorch: Dynamic Computation Graphs
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x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND  
perform computation



PyTorch: Dynamic Computation Graphs
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x w1 w2 y

mm

clamp

mm

dy_pre

-

pow sum loss
Search for path between loss and w1, w2  
(for backprop) AND perform computation



PyTorch: Dynamic Computation Graphs

2023/4/26 Chih-Chung Hsu@ACVLab 82

x w1 w2 y

Throw away the graph, backprop path, and  
rebuild it from scratch on every iteration



PyTorch: Dynamic Computation Graphs
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x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND  
perform computation



PyTorch: Dynamic Computation Graphs
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x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND  
perform computation



PyTorch: Dynamic Computation Graphs
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x w1 w2 y

mm

clamp

mm

dy_pre

-

pow sum loss
Search for path between loss and w1, w2  
(for backprop) AND perform computation



PyTorch: Dynamic Computation Graphs
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Building the graph and  
computing the graph happen at  
the same time.

Seems inefficient, especially if we
are building the same graph over
and over again...



Static Computation Graphs
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Alternative: Static graphs

Step 1: Build computational graph  
describing our computation  
(including finding paths for  
backprop)

Step 2: Reuse the same graph on  
every iteration



TENSORFLOW
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TensorFlow Versions
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Pre-2.0 (1.13 latest)
Default static graph,  
optionally dynamic  
graph (eager mode).

2.12 Alpha (2023 early)
Default dynamic graph,  
optionally static graph.
We use 2.8.0 in this class.



(Assume imports at the  
top of each snippet)

TensorFlow:  
Neural Net  (Pre-2.0)
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TensorFlow:  
Neural Net  (Pre-2.0)
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First define
computational graph

Then run the graph  
many times



TensorFlow: 2.0 vs. pre-2.0
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Tensorflow 2.0:  
“Eager” Mode by default
assert(tf.executing_eagerly()) Tensorflow 1.15



TensorFlow: 2.0 vs. pre-2.0
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Tensorflow 2.0:
“Eager” Mode by default

Tensorflow 1.15



TensorFlow: 2.0 vs. pre-2.0
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Tensorflow 2.0:
“Eager” Mode by default

Tensorflow 1.15



TensorFlow:  Neural Net
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Convert input numpy  
arrays to TF tensors.  
Create weights as  
tf.Variable

95



TensorFlow:  Neural Net
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Use tf.GradientTape()  
context to build  
dynamic computation  
graph.

96



TensorFlow:  Neural Net
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All forward-pass  
operations in the  
contexts (including  
function calls) gets  
traced for computing  
gradient later.

97



TensorFlow:  Neural Net
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Forward pass

98



TensorFlow:  Neural Net
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tape.gradient() uses the  
traced computation  
graph to compute  
gradient for the weights

99



TensorFlow:  Neural Net
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Backward pass

100



TensorFlow:  Neural Net
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Train the network: Run  
the training step over  
and over, use gradient  
to update weights

101



TensorFlow:  Neural Net
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Train the network: Run  
the graph over and over,  
use gradient to update  
weights

102



Can use an optimizer to  
compute gradients and  
update weights

103

TensorFlow:  Optimizer
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Use predefined  
common losses

104

TensorFlow:  Loss

2023/4/26 Chih-Chung Hsu@ACVLab 104



Keras: High-Level  Wrapper
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Keras is a layer on top of  
TensorFlow, makes common  
things easy to do

(Used to be third-party, now  
merged into TensorFlow)

105



Keras: High-Level  Wrapper

2023/4/26 Chih-Chung Hsu@ACVLab 106

Define model as a  
sequence of layers

Get output by  
calling the model

Apply gradient to all  
trainable variables  
(weights) in the  
model

106



Keras: High-Level  Wrapper
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Keras can handle the  
training loop for you!

107



108

TensorFlow: High-Level Wrappers

 Keras (https://keras.io/)

 tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

 tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

 Sonnet (https://github.com/deepmind/sonnet)

 TFLearn (http://tflearn.org/)

 TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)
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@tf.function:  compile static  graph
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tf.function decorator  
(implicitly) compiles  
python functions to  
static graph for better  
performance

109



@tf.function:  
compile static  graph
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Here we compare the  
forward-pass time of  
the same model under  
dynamic graph mode  
and static graph mode

110



@tf.function:  
compile static  graph
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Static graph is in general  
faster than dynamic graph,  
but the performance gain  
depends on the type of  
model / layer.

111



112

There are some caveats in  
defining control loops (for,  
if) with @tf.function.

@tf.function:  
compile static  graph
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TensorFlow: More on Eager Mode

 Eager mode: (https://www.tensorflow.org/guide/eager)

 tf.function: (https://www.tensorflow.org/alpha/tutorials/eager/tf_function)
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114

TensorFlow: Pretrained Models

 tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

 TF-Slim: (https://github.com/tensorflow/models/tree/master/research/slim)

4/26/2023 Chih-Chung Hsu@ACVLab 114



Add logging to code to record loss, stats, etc  
Run server and get pretty graphs!

115

TensorFlow: Tensorboard
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TensorFlow: Distributed Version
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https://www.tensorflow.org/deploy/distributed

Split one graph  
over multiple  
machines!

116

https://www.tensorflow.org/deploy/distributed


TensorFlow: Tensor Processing Units
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Google Cloud TPU
= 180 TFLOPs of compute!
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TensorFlow: Tensor Processing Units
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Google Cloud TPU
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute

118



TensorFlow: Tensor Processing Units
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Google Cloud TPU
= 180 TFLOPs of compute!

NVIDIA Tesla V100
= 125 TFLOPs of compute
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NVIDIA Tesla P100 = 11 TFLOPs of compute  
GTX 580 = 0.2 TFLOPs



TensorFlow: Tensor Processing Units
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Google Cloud TPU Pod
= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

Google Cloud TPU
= 180 TFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

120

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu


TensorFlow: Tensor Processing Units
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Edge TPU = 64 GFLOPs (16 bit)

https://cloud.google.com/edge-tpu/

121

https://cloud.google.com/edge-tpu/


Static vs Dynamic Graphs
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TensorFlow (tf.function): Build graph  
once, then run many times (static)

PyTorch: Each forward pass defines  
a new graph (dynamic)

Compile  
python  
code into  
static graph

Run each  
iteration New graph each iteration

122



Static vs Dynamic: Optimization
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With static graphs,  
framework can  
optimize the  
graph for you  
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote Equivalent graph with
fused operations

Conv+ReLU
Conv+ReLU
Conv+ReLU

123



Static vs Dynamic: Serialization
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Static
Once graph is built, can  
serialize it and run it  
without the code that  
built the graph!

Dynamic
Graph building and 
execution  are intertwined, 
so always need to keep code 
around



Dynamic Graph Applications
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Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for  Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

125

-Recurrent networks



Dynamic Graph Applications
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The cat ate a big rat

- Recurrent networks
- Recursive networks
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Dynamic Graph Applications
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- Recurrent networks
- Recursive networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 
2016  Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

Figure copyright Justin Johnson, 2017. Reproduced with permission.
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Dynamic Graph Applications

 Recurrent networks

 Recursive networks

Modular Networks

 (Your creative idea here)
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PyTorch vs TensorFlow, Static vs  Dynamic

 PyTorch

Dynamic Graphs

 TensorFlow

 Pre-2.0: Default  Static Graph  2.0+: 
Default  Dynamic Graph

 2.x: Eagar mode
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Static PyTorch: Caffe2 https://caffe2.ai/

Deep learning framework developed by Facebook

 Static graphs, somewhat similar to TensorFlow

 Core written in C++

Nice Python interface

 Can train model in Python, then serialize and deploy  without Python

Works on iOS / Android, etc

4/26/2023 Chih-Chung Hsu@ACVLab 130130

https://caffe2.ai/


Static PyTorch: ONNX Support

ONNX is an open-source standard for neural network models

 Goal: Make it easy to train a network in one framework, then run  it in another 
framework

 Supported by PyTorch, Caffe2, Microsoft CNTK, Apache MXNet  
https://github.com/onnx/onnx
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Static PyTorch: ONNX Support
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You can export a PyTorch model to  
ONNX

Run the graph on a dummy input, and  
save the graph to a file

Will only work if your model doesn’t  
actually make use of dynamic graph -
must build same graph on every  
forward pass, no loops / conditionals

132



Static PyTorch: ONNX Support
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Static PyTorch
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PyTorch vs TensorFlow, Static vs  Dynamic
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PyTorch
Dynamic Graphs  

Static: ONNX, Caffe2

TensorFlow  
Dynamic: Eager  

Static: @tf.function



My Advice:

 PyTorch is my personal favorite. Clean API, native dynamic graphs  make it very 
easy to develop and debug. Can build model in  PyTorch then export to Caffe2 
with ONNX for production / mobile

 TensorFlow is a safe bet for most projects. Syntax became a lot  more intuitive 
after 2.x. Not perfect but has huge community and  wide usage. Can use same 
framework for research and production.  Probably use a high-level framework. 
Only choice if you want to run  on TPUs.
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MODEL COMPRESSION 

Low-power required? Mobile Device?
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DL looks great. How about the low-power devices?



Why model compression?

Deep Neural Networks are BIG ... and getting BIGGER
 e.g. AlexNet (240 MB), VGG-16 (520 MB), GPT-3.5 (~5215 GB)

 Too big to store on-chip SRAM and DRAM accesses use a lot of energy

Not suitable for low-power mobile/embedded systems

 Solution: Deep Compression
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Why smaller models?

Network Compression and Speedup 140

Operation Energy [pJ] Relative Cost 
32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM 
Memory

640 6400

Source: 
http://isca2016.eecs.umich.edu/wp-content/uploads/2016/07/4A-1.pdf



Methods to Model Compression

 Technique to reduce size of neural networks without losing accuracy

Matrix factorization

 Pruning to Reduce Number of Weights

Quantization to Reduce Bits per Weight
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Fully Connected Layers: 
Singular Value Decomposition

Most weights are in the fully connected layers (according to Denton et al.)

𝑊𝑊 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤
 𝑊𝑊 ∈ ℝ𝑚𝑚×𝑘𝑘,𝑈𝑈 ∈ ℝ𝑚𝑚×𝑚𝑚,𝑈𝑈 ∈ ℝ𝑚𝑚×𝑘𝑘 ,𝑉𝑉⊤ ∈ ℝ𝑘𝑘×𝑘𝑘

 𝑈𝑈 is diagonal, decreasing magnitudes along the diagonal

http://www.alglib.net/matrixops/general/i/svd1.gif
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Singular Value Decomposition

 By only keeping the 𝑡𝑡 singular values with largest magnitude:

 �𝑊𝑊 = �𝑈𝑈�̃�𝑈 �𝑉𝑉⊤
 �𝑊𝑊 ∈ ℝ𝑚𝑚×𝑘𝑘, �𝑈𝑈 ∈ ℝ𝑚𝑚×𝑡𝑡 , �̃�𝑈 ∈ ℝ𝑡𝑡×𝑡𝑡 , �𝑉𝑉⊤ ∈ ℝ𝑡𝑡×𝑘𝑘

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑊𝑊 = 𝑡𝑡
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SVD: Compression

𝑊𝑊 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤,𝑊𝑊 ∈ ℝ𝑚𝑚×𝑘𝑘 ,𝑈𝑈 ∈ ℝ𝑚𝑚×𝑚𝑚, 𝑈𝑈 ∈ ℝ𝑚𝑚×𝑘𝑘 ,𝑉𝑉⊤ ∈ ℝ𝑘𝑘×𝑘𝑘

 �𝑊𝑊 = �𝑈𝑈�̃�𝑈 �𝑉𝑉⊤, �𝑊𝑊 ∈ 𝑅𝑅𝑚𝑚×𝑘𝑘 , �𝑈𝑈 ∈ 𝑅𝑅𝑚𝑚×𝑡𝑡, �̃�𝑈 ∈ 𝑅𝑅𝑡𝑡×𝑡𝑡, �𝑉𝑉⊤ ∈ 𝑅𝑅𝑡𝑡×𝑘𝑘

 Storage for 𝑊𝑊: 𝑂𝑂(𝑚𝑚𝑅𝑅)

 Storage for �𝑊𝑊: 𝑂𝑂(𝑚𝑚𝑡𝑡 + 𝑡𝑡 + 𝑡𝑡𝑅𝑅)

 Compression Rate: 𝑂𝑂 𝑚𝑚𝑘𝑘
𝑡𝑡 𝑚𝑚+𝑘𝑘+1

 Theoretical error: 𝐴𝐴 �𝑊𝑊 − 𝐴𝐴𝑊𝑊 𝐹𝐹 ≤ 𝑠𝑠𝑡𝑡+1 𝐴𝐴 𝐹𝐹

Gong, Yunchao, et al. "Compressing deep convolutional networks using vector quantization." arXiv preprint 
arXiv:1412.6115 (2014).
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SVD: Compression Results

 Trained on ImageNet 2012 database, then compressed

 5 convolutional layers, 3 fully connected layers, softmax output layer

Network Compression and Speedup 145

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in 
Neural Information Processing Systems. 2014.

𝐾𝐾 refers to rank of approximation, 𝑡𝑡 in the previous slides.



SVD: Side Benefits

 Reduced memory footprint
 Reduced in the dense layers by 5-13x

 Speedup: 𝐴𝐴 �𝑊𝑊,𝐴𝐴 ∈ ℝ𝑛𝑛×𝑚𝑚, computed in 𝑂𝑂 𝑅𝑅𝑚𝑚𝑡𝑡 + 𝑅𝑅𝑡𝑡2 + 𝑅𝑅𝑡𝑡𝑅𝑅 instead of 𝑂𝑂(𝑅𝑅𝑚𝑚𝑅𝑅)
 Speedup factor is 𝑂𝑂 𝑚𝑚𝑘𝑘

𝑡𝑡(𝑚𝑚+𝑡𝑡+𝑘𝑘)

 Regularization
 “Low-rank projections effectively decrease number of learnable parameters, suggesting 

that they might improve generalization ability.”
 Paper applies SVD after training

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in 
Neural Information Processing Systems. 2014.
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Convolutions:
Matrix Multiplication

𝐹𝐹 𝑥𝑥, 𝑦𝑦 = 𝐼𝐼 ∗ 𝑊𝑊

http://stackoverflow.com/questions/15356153/how-do-convolution-matrices-work
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Most time is spent in the convolutional layers



Flattened Convolutions

 Replace 𝑐𝑐 × 𝑦𝑦 × 𝑥𝑥 convolutions with 𝑐𝑐 × 1 × 1, 1 × 𝑦𝑦 × 1, and 1 × 1 × 𝑥𝑥 convolutions

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward 
acceleration." arXiv preprint arXiv:1412.5474 (2014).
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Flattened Convolutions

�𝐹𝐹 𝑥𝑥, 𝑦𝑦 = 𝐼𝐼 ∗ �𝑊𝑊 = �
𝑥𝑥′=1

𝑋𝑋

�
𝑦𝑦′=1

𝑌𝑌

�
𝑐𝑐=1

𝐶𝐶

𝐼𝐼 𝑐𝑐, 𝑥𝑥 − 𝑥𝑥′,𝑦𝑦 − 𝑦𝑦′ 𝛼𝛼 𝑐𝑐 𝛽𝛽 𝑦𝑦′ 𝛾𝛾 𝑥𝑥′

𝛼𝛼 ∈ ℝ𝐶𝐶 ,𝛽𝛽 ∈ ℝ𝑌𝑌, 𝛾𝛾 ∈ ℝ𝑋𝑋

 Compression and Speedup:
 Parameter reduction: O(𝑋𝑋𝑋𝑋𝑋𝑋) to O 𝑋𝑋 + 𝑋𝑋 + 𝑋𝑋
 Operation reduction: 𝑂𝑂(𝑚𝑚𝑅𝑅𝑋𝑋𝑋𝑋𝑋𝑋) to 𝑂𝑂 𝑚𝑚𝑅𝑅 𝑋𝑋 + 𝑋𝑋 + 𝑋𝑋 (where Wf ∈ ℝ𝑚𝑚×𝑛𝑛)

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward 
acceleration." arXiv preprint arXiv:1412.5474 (2014).
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Flattening = MF

�𝐹𝐹 𝑥𝑥, 𝑦𝑦 = �
𝑥𝑥=1

𝑋𝑋

�
𝑦𝑦′=1

𝑌𝑌

�
𝑐𝑐=1

𝐶𝐶

𝐼𝐼 𝑐𝑐, 𝑥𝑥 − 𝑥𝑥′,𝑦𝑦 − 𝑦𝑦′ 𝛼𝛼 𝑐𝑐 𝛽𝛽 𝑦𝑦′ 𝛾𝛾 𝑥𝑥′

= �
𝑥𝑥=1

𝑋𝑋

�
𝑦𝑦′=1

𝑌𝑌

�
𝑐𝑐=1

𝐶𝐶

𝐼𝐼 𝑐𝑐, 𝑥𝑥 − 𝑥𝑥′,𝑦𝑦 − 𝑦𝑦′ �𝑊𝑊 𝑐𝑐, 𝑥𝑥′,𝑦𝑦′

 �𝑊𝑊 = 𝛼𝛼 ⊗ 𝛽𝛽⊗ 𝛾𝛾,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑊𝑊 = 1

 �𝑊𝑊𝑆𝑆 = ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘 ⊗ 𝛽𝛽𝑘𝑘 ⊗ 𝛾𝛾𝑘𝑘, Rank 𝐾𝐾

 SVD: Can reconstruct the original matrix as 𝐴𝐴 = ∑𝑘𝑘=1𝐾𝐾 𝑤𝑤𝑘𝑘𝑢𝑢𝑘𝑘⨂𝑣𝑣𝑘𝑘

Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient evaluation." Advances in 
Neural Information Processing Systems. 2014.
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Flattening: Speedup Results

 3 convolutional layers (5x5 filters) with 96, 128, and 256 
channels

Used stacks of 2 rank-1 convolutions

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello. "Flattened convolutional neural networks for feedforward 
acceleration." arXiv preprint arXiv:1412.5474 (2014).
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Other Deep Compressions?

 “Deep Compression: Compressing Deep Neural Networks with 
Pruning, Trained Quantization and Huffman Coding”, Song Han et al., 
ICLR 2016



 Remove weights/synapses “close to zero”

 Retrain to maintain accuracy

 Repeat

Pruning

Sparse Network



Pruning Results



Magnitude-based method: Iterative Pruning + Retraining

 Pruning connection with small magnitude.

 Iterative pruning an re-training.

Operation Energy [pJ] Relative Cost 
32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM 
Memory

640 6400
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Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Magnitude-based method: Iterative Pruning + Retraining
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Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Magnitude-based method: Iterative Pruning + Retraining 
(Algorithm)

 1. Choose a neural network architecture.

 2. Train the network until a reasonable solution is obtained.

 3. Prune the weights of which magnitudes are less than a threshold 𝜏𝜏.

 4. Train the network until a reasonable solution is obtained.

 5. Iterate to step 3.
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Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Magnitude-based method: Iterative Pruning + Retraining 
(Experiment: AlexNet)

Layer Weights FLOP Act% Weights
%

FLOP%

conv1 35K 211M 88% 84% 84%

conv2 307K 448M 52% 38% 33%

conv3 885K 299M 37% 35% 18%

conv4 663K 224M 40% 37% 14%

conv5 442K 150M 34% 37% 14%

fc1 38M 75M 36% 9% 3%

fc2 17M 34M 40% 9% 3%

fc3 4M 8M 100% 25% 10

Total 61M 1.5B 54% 11% 30%
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Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Magnitude-based method: Iterative Pruning + Retraining 
(Experiment: Tradeoff)
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Han, Song, et al. "Learning both weights and connections for efficient neural network." NIPS. 2015.



Pruning with rehabilitation: Dynamic Network Surgery 
(Motivation)

 Pruned connections have no chance to come back.

 Incorrect pruning may cause severe accuracy loss. 

 Avoid the risk of irretrievable network damage .

 Improve the learning efficiency.
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Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Pruning with rehabilitation: Dynamic Network Surgery 
(Formulation)

𝑊𝑊𝑘𝑘 denotes the weights, and 𝑇𝑇𝑘𝑘 denotes the corresponding 0/1 masks.

 min
𝑊𝑊𝑘𝑘,𝑇𝑇𝑘𝑘

𝐿𝐿 𝑊𝑊𝑘𝑘⨀𝑇𝑇𝑘𝑘 𝑠𝑠. 𝑡𝑡. 𝑇𝑇𝑘𝑘(𝑖𝑖,𝑗𝑗) = ℎ𝑘𝑘 𝑊𝑊𝑘𝑘
(𝑖𝑖,𝑗𝑗) ,∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝔗𝔗

 ⨀ is the element-wise product. 𝐿𝐿 � is the loss function.

Dynamic network surgery updates only 𝑊𝑊𝑘𝑘. 𝑇𝑇𝑘𝑘 is updated based on ℎ𝑘𝑘 � .

 ℎ𝑘𝑘 𝑊𝑊𝑘𝑘
(𝑖𝑖,𝑗𝑗) =

0 𝑅𝑅𝑘𝑘 ≥ 𝑊𝑊𝑘𝑘
(𝑖𝑖,𝑗𝑗)

𝑇𝑇𝑘𝑘(𝑖𝑖,𝑗𝑗) 𝑅𝑅𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘
(𝑖𝑖,𝑗𝑗) ≤ 𝑏𝑏𝑘𝑘

1 𝑏𝑏𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘
(𝑖𝑖,𝑗𝑗)

 𝑅𝑅𝑘𝑘 is the pruning threshold. 𝑏𝑏𝑘𝑘 = 𝑅𝑅𝑘𝑘 + 𝑡𝑡, where 𝑡𝑡 is a pre-defined small margin.
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Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Pruning with rehabilitation: Dynamic Network Surgery
(Algorithm)

 1. Choose a neural network architecture.

 2. Train the network until a reasonable solution is obtained.

 3. Update 𝑇𝑇𝑘𝑘 based on ℎ𝑘𝑘 � .

 4. Update 𝑊𝑊𝑘𝑘 based on back-propagation.

 5. Iterate to step 3.
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Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Pruning with rehabilitation: Dynamic Network Surgery
(Experiment on AlexNet)

Layer Parameters Parameters (Han et al.
2015)

Parameters (DNS)

conv1 35K 84% 53.8% 
conv2 307K 38% 40.6%
conv3 885K 35% 29.0%
conv4 664K 37% 32.3%
conv5 443K 37% 32.5%
fc1 38M 9% 3.7%
fc2 17M 9% 6.6%
fc3 4M 25% 4.6%
Total 61M 11% 5.7%

Network Compression and Speedup 166

Guo, Yiwen, et al. "Dynamic Network Surgery for Efficient DNNs." NIPS. 2016.



Why Reduced Precision Computing?

Decrease the inference speed

Decrease the model size (memory)

 Keeping same level of accuracy

  Approach: Reduced Precision Computing



Default Arithmetic in Deep Learning

 The default arithmetic in deep learning frameworks (TensorFlow, PyTorch) is 32-bit 
floating point (float32) or single precision

 Float32: 
 1 bit for the sign
 8 bits for the exponent
 24 bits for the fraction

Max value: 3.4 ∗ 1038



Reduced Precision

 Float16 or half precision:
 16 bits

 1 sign
 5 exponent
 10 fraction

Max value : 65504

 Integer 8 (int8):
 8 bits (no fraction!)
Max value : 256 values

 And even smaller formats



What is Quantization?

 Converting numbers from one format to another

More specific: From a higher precision to a lower precision (float32  int8)

 In theory quantization is simple: 

 Example float32 to int8
 Find scaling factor: 

 Search the maximum abslute number 𝐵𝐵
 Scaling factor: 𝑈𝑈 = 255

𝐵𝐵

 Quantizing:
 𝑄𝑄 = 𝑟𝑟𝑟𝑟𝑢𝑢𝑅𝑅𝑟𝑟(𝑈𝑈 ∗ 𝑁𝑁32)

𝑁𝑁 = [15, 50, 200]  𝐵𝐵 = 200

𝑈𝑈 =
255
200 = 1,275

𝑄𝑄1 = 𝑟𝑟𝑟𝑟𝑢𝑢𝑅𝑅𝑟𝑟 1,275 ∗ 15 = 19
𝑄𝑄2 = 𝑟𝑟𝑟𝑟𝑢𝑢𝑅𝑅𝑟𝑟 1,275 ∗ 50 = 64
𝑄𝑄3 = 𝑟𝑟𝑟𝑟𝑢𝑢𝑅𝑅𝑟𝑟 1,275 ∗ 200 = 255



Post-Training Quantization

Training in 32-bit Quantization to 8-
bit

Inference with 8-
bit



Quantization with Neural Networks

• Operations to quantize:
• Weights, Bias
• Activations

• Depending on the quantization tool, it is necessary to quantize the input into the 
neural network

• Depending on the tool you can get the output in quantized format

Training in 32-bit Quantization to 8-
bit

Inference with 8-
bit



Possible Benefits of Quantization

• Reduction in model size

• Reduction in memory bandwidth

• Faster inference

 Example: float32  int8

 4x

 2-4x *

 2-4x *

 *depending on hardware and the modle



Disadvantage of Quantization

• Only one disadvantage: Slightly less accuracy
• Roughly 2-3 %
• Depends greatly on the model

• Constraint: Not many hardware devices support low precision computing
• Even if low precisions are not supported yet, you can run inference with the quantized 

models, but you don‘t see any speed up 



Why is 8-bit Quantization so Famous?

• Because it is the smallest format which is supported by mainstream hardware 
devices

• Lower bit numbers have a strong drop in accuracy

• Typically when it is talked about quantization, they mean int8



Example Quantization Tools

 In general HWs 
 TensorFlow Lite supports quantization to float16 and int8

 Generally work well: like MTK dimensity series, Quancomm Adreno, etc. 

 PyTorch -> Pytorch mobile
 Intel Low-Precision Quantization tool

 In Nvidia-related platform, like nx, tx2, px2
 Tensorrt

 In other platforms like Kneron
 Onnx (cross-platform)

 Intel-based
 Openvino



Many tricks on Embedding System

 TF Lite version 
 Could be affected by TF version, HW supports, and even naïve ops.
 Quantization supporting: <TF1.3, only QUint8 and FP32. >TF1.3.2, FP16 supported

 Pytorch mobile
 New one, but not verified comprehensively yet.

 Intel openvino
 OK but the supported ops are incomplete

Other platforms
 Many issues on “versions” from Pytorch or TF



COMBINE THEM TOGETHER
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Pruning + Quantization + Encoding: Deep Compression

Network Compression and Speedup 179

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations 
constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).



Pruning + Quantization + Encoding: Deep Compression

 1. Choose a neural network architecture.

 2. Train the network until a reasonable solution is obtained.

 3. Prune the network with magnitude-based method until a reasonable solution is 
obtained.

 4. Quantize the network with k-means based method until a reasonable solution is 
obtained.

 5. Further compress the network with Huffman coding.

Network Compression and Speedup 180

Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations 
constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).
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Pruning + Quantization + Encoding: Deep Compression
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NEXT TIME:
LATEST CNNS
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